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THIRD-ORDER COMPARISON OF UNBIASED TESTS:
A SIMPLE FORMULA FOR THE POWER DIFFERENCE
IN THE ONE-PARAMETER CASE
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SUMMARY, Thiz paper devalops s simpla and readily applicable formula for third erder
comparison of teats in the one-peremeter cass and extends some sprlivr reaslts m this srea. Thiz
lenda to peimple proof of the intuitively plawsible result oo the optiolity of the locolly most
powerful unbiased test in a very larze claes of teata, Az & consequenca, the optimality of Reo's
st Ie proved in & clags muck larger then thet in Chandre end Mukarjea (1284, Commun. Sotig,
—Theor. Math., 18, 1507-1618). A new identity for the mmltivirisle normel distribution tume

out to ba very helphal.

1, INTBRODTOTION

For n sequence {X_ }, » > I, of iid. random variables with 2 common
density flw, 2}, #6 @, an open subsel of X%, cungider the problem of testing
H,: 8 = d, (¢ @) ogainst the alternabive # £ ;. In such 2 setting, Chandra
and Joshi (1983) mads a third-order comparison of the likelihood ratio, Rao’
and Wald’s tests (see Rao, 1973, 417-418) ; for the last two tests Chandra
snd Joshi considered modified versions which are locally uebizsed up to sin
under contiguous alternetives &,+dn—+, and showed that for sufficiently
amall but reasonable common pize of the tests, the power of Rao’s test is
higher than those of the other two tests provided & is also small. Subsequently,
Chandra and Mukerjee (1984, 1985} established the optimality of Rao's test,
in the same sense, within o larger class of tegts. Furbhermore, it wag demons-
trated by Mukerjee and Chondra (1987) that, under a third-order comparison,
the loesily most powerful unbiased (LMPU) test is only marginally snperior
o Rao’s test,

The objective in this paper iz to develop a simple formula using whick
the third-order powerd of any two tests in a large family can be easily com-
perod. As a by-product, in seetion 5, the optimality of Rao's test is sstab-
lished in & very large class of tests {much wider than that in Chandrs and
Mukerjes, 1984 ; 1985). Also, » simple proof of the inbuitively expeoted

AMS (1980) subjoct alassification : 42E20, "
Hey worde and phraser : Uontiguons slternetives ; loeslly most powarful test; powsr;
Rao's test,
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optimality of the LMPU test within 2 large clags of tests is available and this
hae heen presented in section 5. In passing, i is observed that idemtity of
powser up to the first order implies that up o the second order-a phenomenon
anelogoua to that of first-order efficiency implying second-crder efficiency
for one-sided teata.

Recently, Kumon and Amari (1883, 1985) and Amari (1985) developed
an elegant differential geomstric approach for the third-order comparison of
tests in multiparamacier curved exponential families, Although the present
work deals with the one-parameter sitwation, the derivationa roquirm no
agsumphion regarding curved exponentislity, Also, compared to the differen-
tial geometric approach, the final resulta here can he presented in a rether
elementary form which possibly makes spplications to patticular situations
gimpler. There is some similariby between our main results and Thecrem 2
in Pfanzagl and Welfelmayer (1978) for one-sided tests. Howover, our resulis
do not seem to follow from Pfenzagl and Wefelmeyer {1978) without consi-
derable nlgebra (vide remark following Theorem 1). For further literature
references in this area, sen Chandrs end Joshi (1983) and Kumon and Amard
{1985),

Barlier, Peers (1971} comparod the likclihood ratio, Bao's and Walds’
tesis withont correcting the last two for bias ap to o{n1) and, consequently,
the tests differed in terms of thelr sceond-order power. Our results differ
from those of Peers because we are comparing modified versiona of the tests
(in partivalar, of Rao's and Wald's tests), the objsotive being to make thom
unbiased up to o{n—1}., Chandra and Joshi (1983), who initiated sach stmdies
following a suggestion of J. K. Ghogh, discuss why this may be & roore satis-
tactory way of comparing teats for two-sided alternatives.

2 NOTATION, PRELIMINARIES AND MATN BESULTS
Let X,, X, ..., be iid. random variables each with p.d.f. f(z, @), where
6 e #1, or an open subset thereof. For the problem of festing H,: 8 = &,
againet § £ 8, let

H, = B 7, 1og S0, 6) . @D

and consider & family & of tesh procedures s desoribed below. For comti-
guous alternatives 8, = f,+én* and for every festh procedure in &, &
set 4, with P, (4,)= I-+o(x), vniformly over compact subaets of &, cun
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bo obtained (of. Chandra and Joshi, 1893) such that over 4, the test procedure
in given by @ critical region of the form :

Wi = 2-ba7 28, 07 le 4o(n) }

(2.2)
or Wy << —=+a~ 1 2hy-nToy+ o)
whers ¢ is the upper (x/2)-point of a normal deviate and
Wo = HIVELn-0Q +niQy, W) = By 2Quknly,
. {2.3a)
d t
=, | (e )’}
QD‘ = Fr[@vp QH&I LELH q“"]r
(2.5b}

Qoo = m172 E: (Gool K — Lot} {l & 8 <1y, 1 € 0 4).

Here g4.) are polynomialy and gu(.) are such that
BolaelX5}) = FuulD), ¥ {1l 8 1o, 1 < v  4), - (24)
which are assumed to exdisf.

In the sbove, by, by, 5, ¢y are constants, free from %, 1o be 0 chosen that
the teab procedure has size &+ o{n1) and is locally unbiased up to ofn—1).

It may be mede explicit that @, ., @,, ¢, snd also the gu's depend
on the particular test procedure in & under comsideration, The family &is
very rioch and includes the likelihood ratio, LMPU and nubiased (up to ofn~1))
versions of Rao’s and Wald's test procedures. Iet

@, = n-mffl Goal ) —BorlB ) L < & 70 1 0 € 4),

Hy= a7 ( B log ST, 0 tal),

H}=ﬂ"f"(i

11

é% bg-fl:xfr ﬂﬁ}‘_nﬂan [-.é‘:a lﬂgﬂxjﬁﬂ.}]) e [2.53]

s = By, { 7u 1R AX. 6,),

P (EI % log S(Xy, O)—nla), (=1,2,...
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B = tog /1, 6), ]
Lyp =B % [(RD)m (Riony (Remnye], s - (2.60)
Lﬂif=Lﬂju,Lﬂ.=Lﬁn{ﬂ,j,k=u, 1,2, ...}. -

It may be remerked that among the {I,} and the {Lyp} only those which have
been used later are sssumed to exiab.

The following assumptions are made to avoid justification of various
formel manipulations. Since we are working with polynomials in sample
means, they should not be hard to verify.

Assumption 1 : (i} Under 6, for each v, adeqnately many momenta
exist for (A, Q% ..., Q;r“}' and ita characteristic function admits an expan-
gion ap to ofn ).

({iy Under 8,, for each », udegustely many momonts exist for
(&g HY, Qs o &, ) and ite limiting distribubion is multivariate normel.
L

Assumption 2 : For sach », .Ea" (@), Egﬂ (Hy Qe and E’,ﬂ {©Q2) exist and
the following can be caleulated up b0 stebed orders of approximation, naing
the expansion for characteristic funotion considersd in Assumphion I sbove :

Ey (Qo) = Oo)4-n- V2 Myfd)+ote1) (1 € v < 4),
Epﬂtq'aqﬂ g) = Ce(8)+-O0n~13) (5 £ v < 8),
7y (@30} == Cul)-+0(™1%) (9 < 0 < 19),

where the C'y(8) and M,(5) are free from «.

Since each gy(.) is & polynomial, it follows from (2.3b} that for each v,
Cul.), My(.) are polynomisla (see alao the proof of Lemma 1 below). For each
v, let O {3) be the rth derivative of Oy(8) with reapect to §{(r=0,1,2, ...}.
Alsg, for r= 0,1, 2, ..., let J{z) be the Hermite polynomial of degree ¢ in «,
Note that for each » and for % ==z or —z, the expression (L O (§) J-n
Jolu—38712)/r 1} is essentially a finite sum 88 Oy(.) is & polynomisl. Hexnce
noting  that dJ{x)jdx = rJ, (@) {r = 1,2, ...), it follows readily fhrough
wrm-by-term differentiation that

% (S 00 (8) [+, (u—8DA)fr 1} = 0, .. {2.8)
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80 that one may write

D 008 I T (u—8IVir | = CWu) (1 L e 12 0 =201 —3, .., {2.7)

where {(X™{u)} aze free from & {and alsc from »). We are now in a positien
to state one of the main theorems of the paper which is a3 follows :

Theorem 1: If b, by, ¢y, ¢g are chosen subject lo the conditions of size
and local unbigsedness up fo o(n=1), ther the (local) power function of a lest pro-
cedure of the form (2.2) és given by

P = Py+-n7AP, w1l tolel),
swhere Pg, Py, Py are free from n and

h —s—gr1ie
] Po= [ ddy+ | Plydy,
HUE -0

My) being the standard normal density,
(i} P, is free from @, Q,, @, Q, and hence the same for afl test procedures
i the family &,
(i) P,= V() + $le—l—(ZI tyma+yal-Hynd+re®
+ P8IV {22 )Yy +Ya) H Y+ v,
with V{5) free from Q, Qg Qp @y aud

Yar = 5 FA—OP (3)-HOPE)S.
oy = % IO —2)— (S —z)))
Yar = g —Lad-R00% )+ G0N,

T = %_ Luf‘l"zolm'[—a]—% Gg'.uu:t(_,g}

Remark : From the expression for P,, it followr that the right- and
left-tailed “aizes” up *o o{n~) may vary over the faiaily of tests of the form
(2.2) sines ¥y, ¥y mey vary from one tesh to another, Moreover, sxamples
show that this holds ¢ven if one restricts to a subfamily of tests based cnly
on the first two derivatives of the log-likelihood. Henes a possible application
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of Theorem 2 in Pfenzagl and Wefelmeyer (1978) o the prosent context will
glso require explicit evaluation of ¥+, and for that slmost the same
computations a6 in the present paper are required. Thus it appears thub
an application of the findings in Pfanzagl and Wefelmeyer {1978} cannot
possibly leed to a considerable reduction in the algebra.

In passing we nofe that (if) in Theorem 1 gives a formal demounstration
of the phenomenon that identity of power up to first order jimplies that up
to second order (of. Pfanzagl, 1979; Bickel, Chibishov and van Zwet, 1981)
for two-gided testa in the one-parameter case. Also, {iif} in Theorem | ahows
that P, doed not dspend on @, and @,

A further reduction is obtained as follower. With referemce to {2.3b),

let for v =1, E,E, denote the dispersion matrix of (g;—! log f(X, 8,),

o (X ) .”,gwu{.K}) under 5, snd gWw = I-12 (£, (8,), ...,ﬁ;r* (8,))"; where
B (0,) is the first derivagive of Sy (f) at 6, (1 < 8 < vy} Also, let 8, = I717L,,
and B9 = (8,, B''Y. Then the following holds :

Thearem 2: P,, and in Theoreme 1, can be expressed as

F, = V(8)+48 ¢ @)R+0(H),
where F{iﬂ 38 free. ffﬂm le Qg, Qa: Q;u
8 = §[000(Zy, go(Z0-+2B)) I oar(, (ZV+B)
—200( By, Go(ZN —2B))— Iz var{g(Z™—2pP)],
g, (), g5l) are as in (2.30), ond for v = 1,3, the (ryi-1)-component random
vector (Z,, Z'9'Y i8 mullivariate normol with ¢ zevo mean veclor and @ dispersion
malria "z‘u_ﬁwﬁ‘m-.

It may be remarked that the explicit evaluation of B, far a given teet
procecdure, is quite straightforward. Hence Theorem 2 serves as o gimple
bub powerfal tool for third-order comparison of testa in the family &. An
illustrative example in this comnexion will be pregented later in Section 5
where applications of Theorem 2 in studying the performance of the LMPU
snd Rao's teats have been comsidered. The procfs of Theorems 1,2 have
been presanted in Mections 3 and 4. The following lemmas, which have been
proved jn the Appendix, will be helpful in the sequel.

A2-.12
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Lemma 1 : (&) E,“[Q,,eu‘-] = e-!‘i"‘[ﬂp{ﬁ+ﬁ)+ﬂ'”“ {-M w04E)
e g . i
— % Cup8 0~ (542 | ZonCiald+8)} |+otn),
B) F (Q3™) == 0,40+ -0,

(6) By (QuH ™) = /300, (3+E)+ 017,
(L £ v d) where £ = it, 2 = —1.
Yemma 2. Let Z* = (Z], ..., Z}Y be r-variote normal with o null mean

vector and a disperston malriz X, () be a polynomial in r cariales ond p =

(tas vons 265Y, B = (81, .-, BV be fixed vectors such that T—RR' 5 non-negalive
definite. Then

Bew{—F (Z 4D )"} o +p) | = BigE-+).

where Dy s the aperalor of pariial diffreeniiabion with respecl o Zl € s < v}

aond & =(5,, ..., &y} iz r-variale normal with a null mean vector and a dispersion
mainiz T—pH'.

2. DRRIVATIOR OF THE POWHER FURCTION

Let
Tﬂ = Wﬁ—-n“”’bl—u—lcj—ﬂ“‘
= B 3(Q,—b) Qg0 — 8T, . (318)
T = Wo—n V%, plp, 5718
= B3 Qyby) 4 Mo S, . (3)

In this section, Theorem 1 will be proved considering formal Rdgeworth
expansions for the distributions of T, and T, wmder 4,

Note thet by a formal expansion (cf. Chandra snd Joshi, 1983),
H AR = AJ-3R LIV LRy, 0y +-o(n—),

v (32
where A = {y—n~ 1058, L B% Ay,

and ., 7y are free from n but may involve 4.

Aspumplion. 3: The characteristic fumetion of A, under 4,, admity s0
expansion up to ofw1) and for that adequately meny moments exist.
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By Aﬂﬂmpﬁﬂn 3: let
By (o) = (LB, b tP O o), o (89

where £ == ¢ and F, (), F,l.) are polynoimials in % and § which ate fres from
alef. Chandra and Joshi, 1983). Then the following lemma, which hag heen
proved in the Appendix, halds :

Lemma 3: By (6®) = X, 8) & to(n~),
where X(E, 8) == 140~ A{(my —b, JE+EC(8+I-VIE) 4 (111, 8]
(g - — BRI, 8)- (B2

HEM(3-H I V) L ECBHFVIE) S (30, (3 1-1g)
8 (GRS O @)

Lt (- I g I | Oy IV B, 5)
+&TVIERL Oy (0 FVE) |- (my— 8 )ERCH{E-HI1EE)],
Hence through a formal Edpeworth expansion,
Py(T, &2y = | X(—D.8) 4te) dy-+oln) . (B4)

where D is the operator of differantietion with respect fo y. A similar ex-
pression. may be obtained considering Ty, instead of 7', proceeding along the
same line, It is sssumed that the formal Edgeworth expansions considersd
hero are valid. Now by Lemma 3, (3.1a, b,}, (3.4) and the ansiogous expre-
ssion, for 77, the (local) power function of the test procedure (2.2) is given by

P = Py (T, > z—8IV8+ Py (T, < —2—81'7%)
@ -
= { i) dy+ § $y) dy + w i —bigle)

+ T B(— D, yptgiiy—(mi—bae')+ T Fi(—1-2D, 0y

HOUS~=T12D) b (1) }yme—{C5(8— 172D #@J}M-]
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it —o)ple)—m—b;) | DF(—T-7D, S)gly)iy

+ § By~ 119D, 813y { 1 (m—b,)2D+ My(6—I-7D)
+0y(8—1-1AD)— 3 DOJE—IAD)4-D (3 D+ 1148 )Cyfs— -2y
~ LoD 7;;- 31—1--;— 4D ) C\(9—I-D)

— ALy DO, (8—F-12D)— (my ~b)DC{8— 135D} } 344 [yme.

¥
—{mg—oa)h(e*)—{m, —by) _.L DF((— 7D, d)dly)dy
&
+ ' F~1-1D, pigily+{ g (m—8,PD— M(8—-I1-12D)

—C8—I-2D) DO~ 1-2D)—-D( — D4 183)0(8 1D

1

+LoD* (5 31— ¢ I95D) Cy8—ID)

A8 -1RLy, DO~ 112 D)-+-(my—BDOKE~ I D) |6 ) |y
+-o(n—%), een (3.D)

where ¢ = 28IV, ¢ = — 4%, In deriving (8.5}, it has been noted thas
the funobions C'{.), My{.) are polymomials and hence for s=0,1,2,3,
DO (¢—-I-ViDply), DM, (6—I12Did(y) tend to zero as y— oo,

In order bo simplify {8.5) further, note that for 2 = 0,1,2,3: 1 < » ¢ 12,
U=z —Z,

DG (8— I D)Py) | ymariis = (— 1RO (8) 1772 Jp (1em BTV2)eh (u— ST
' . @8
where O (.} and Jr,,{.) are as dofined in the preceding section. The fact

that Cp(.) is & polynomial implies that the right-hand member of (3.8) is &
finite sum and hencs, analogously to {2.6), term-by-term differsntiation yields

gril
gd&eHl

{ £ 00 @) 110, 2P b=o,



THIED-ORDEE COMPARISON OF UNBIASHMD TEET:R 221
go that {analogoualy to (2.7})
B 0% (8) T J, lu—SRA) s ¢ =’ﬁ o () &, )
r =g

where ') (%) are free from & (snd alse from =), Similasly,

MBI () | gme = MO(R)PLe),
M(8— VDD () | e = MG (—2) $ 1), } S
where M{™ (), MY (—z) are free from § and n. By (3.5)—(3.8),
P = Ppt-n~Y3 Py +-1Py+o{r™), - (3.9)

where Py, P,. P, are froe from 2 (but involve §), P, i as in Theorem 1, and
P,, P, are given by

o — I
Pl = ILIF: Fl[-f_lﬂ-ﬂi a:' ¢ l:.'f}dﬂ‘F 11: Fl(_I_H'D’ 3} ¢ w}@

+my—by + 09 (£)) @ (e— 8P — (i, —by + 04 (—2)} ¢ 187,
. (8.1}

@ —ggdllE
Py= [ Ful—1712D, 8} 8 (9dy+ _L Fo(—1-32D, 8) ¢ (y)dy

=3

~m—b) _ [ )y DF(—ID, 8)¢ (Mly

=4I

_z grliz

—{my—by) | DF(—I74D, 8) ¢ (y)dy

—

+B—aT) [ ()5 by b, — 8T+ H 2)
+OP @+ {09 (0% @18}

—~ 5 INOP ()40 (2104048 63

—I-RB{C,O0 )+ O ()0}

om 3 8110 9 ()0 R (2] 51O ) (2)6%)

__;_ Lo I ¥2(00 (7)1 0 (2)3 4+ C92 ()88 409 (2)8%)
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+ SH=1RLL{09 () 4-C4Y ()6}
Hmg =) (O ()40 @8]

+pla-+8PN)| ~(ry—og)+3- (ory—be) o-+-B18)— HY® (—)
—O% (—2)— 5 (O (~2)+C 4(-2)9)

g IO (—2) O (~2)8+-O) (2
+IASOY (—2)+ 0% (~2)0)
+ 5 Loy S0P (—2)-+ OB (—2)3-+ G40 (—2)8%)

o Land SO (~2) 0 ()40 (—2)P-+ O ()09
=BIALA{ORY (—2) +C4Y (—2)8}

—(my—b9) §09° (—2)+ O ()3} | BRNERN
Writing P = P,(8), Py = P,(8), from the conditions of size and local
unbiasadness (up to o{n1}) it follows that &, b, c,, ¢, must satisfy
Py(0) = 0, Pi(0} = 0, .- [(3.12a)
P, (0) = 6, F}(0) = O, e (B2D)
where primes denote differentistion with respect to 8. Binee (vide Chandea
and Joghi, 1983)

my = 3 (Tt DIV, G 8 = L 8811 2p, L @9
snd therefore,
¥ By(-—I7D, 8 ¢ ty)iy
gt

=1, [—;* I (#—JI"*)+_;. I (f—gT1myh— 1}] $ —aDA),

1/
=1 FA—1VD, 8¢ iy = L [ § 813 1)

—i

- 3 1 fparmpo1y] ¢ AP
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it follows from (3.10), (3.12a), after some simplification, that

by = - LT S0P, by = 5 LIV G40 (). . (8.24)
Henoe,
Py = o [le—818) {— LJ = BeLyl - 80 Ly + L)V
A+ Pl 8110 {L T3 BT T2 — 33, L)V, .. (3.15)

which agrees with the corresponding expression in Chandrs and Joahi (1983),
Observe that the expression for Py, as in (3.15), does not depend on @, &,
@, @,- 'This proves (i) in Theorem 1.

By (3.13),

f DF{—I-2D,8)¢ (yMy
L

= Ly | 3 81 (e SRR [A(p— TIPS I)] § (o811

(3.168)

—zgrlf2

1 DE(—I77D.4) ¢ ykdy

= Iy | 3 017 (AT 1) — 3 19 {4 AP a0 | g tot-a8,
{(8.16h)

Further, sinee for each v, () is 2 polynomial and henee the left-hand member
of (3.7) is & finite sum ,ome obteing, by term-by-term differentintion, from
(3.7) the recursion relafion.

OMw) = {% B GO fu— 8D | }l-n 5

= g LAAQL-LI=1Hy), e (B.17)
where 1w 12, IS igeand u=2 or -2

From {3,11), (3.12h), making use of (3.13), {3.14), (3.18s, b), and prooesd-
ing a8 in the derivation of (3.14), detailed expressions for ¢;, ¢, may be obtained,
These expressions are anslogous to {3.14) bubt more involved (snd will nod
be wged explicitly in the rest of the work) and hence not shown here. Now,
With &, ¢, 80 determined, (iii) in Theorem 1 follows from (3,11}, (3.13), (3.14),
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(3.18s, b), (3.17) after some algebra. Neote that V{4), as in Theorem 1, satis.
fies F{0) =90, F{0) = 0.

4, FUurTEER REDUCITON

Tn this section, Theorem 2 will be proved. For v = 1, 8, let %, dencte
the djsp&rgiun metrix of {1 (X], TN gwﬂ{x}]' under ﬂ[l' Then h}l’ {ﬂ.ﬂh}’

(2.6), Assumption 1 and the definition of {8} (see also the proof of Lemma 1),

Cold) = Blge{ £+ 88(00), - s B3y 8By (Bo))];
wheve Z7, ..., 5;,'
makrix Tv = 1, 8). Considering a multivariate Tayior’s expansion fur the
polynomial gof.), it follows that

are jointly normal with null mean vector and dispersion

09w =B ({ B goana 042 -, 20l =008, . 4

where Dy, is the operator of partial differeutiation with respeet to
Bl e r; v=1,3). Note that by (2.7) with 8 =0,

3"} = jﬂﬂi‘“(ﬂ] =7 Ty 7 |, o (42)
for v=1,8; 4t =2 or —=z

Since the summation in the right-hand member of (4.2} is essentially
finite, it folows from (4.1) and & well-kmown result on the generating function
of Hermite polynomialy that

00 ) = B T (7405 9 {1  futbDus) 07, . 7))
= B[ oxp| 1% E; ACN M o g FolPDes) "}
g2y, ..., BE, J]
1

= Efop{~ 5 % ( % Ai6p0a)')

gl Zy HI V2 ufly(By), ..., 5;,,-1-1‘1’%;3;,'{6“}] , . {43)
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where ¥ ==z or —=.  Defining A% as in gection 2, it followa from the multi-

parameter Rao-Cramer inequality that Z,—@%'B(Y js non-negative definite.
Henoe by (4.3) and Lemma 2,

COV(w) == BigdZW+up)} (= 1,850 =2,—2), .. (448)
where Z\ = Zyy, ..., £, ) I8 ry-variate normal with a null mean vector and
a dispersich matrix Z,—pW@.  Similaxly,

O} = BlgXZ* - ufY) (2= 1,3 w =2 —2}. e [4.40)

Alro, donoting the dispersion matrix, under &, of (% log FiX, )
‘Iﬂ {I}r wuy QWE(X}T h}"

— T 1z
5= ( ).
F 1o Ly
and assuming a simple regularity condition, it may be seen that
Ow) = B Zytufoge (2B N0 =1, 3 u=2,—2), .. (4do)

where g,=[-12L,,, and {Z;, 29" ia distribubed as (ry-1)-variate normal with

null mean vector and a dispersion matrig "fm_?ﬁim'ﬁwl', with EWJ = {f PYY.
In particular, observe thaet

var(B;) = o fE = Lou— B—1L3 = 1| M, |, e (4B)

| Mp, | being the determinant of the dispersion matrix, under 6, of the first
two derivatives of the loglikeliiood {hased oh & single observation).
Sinoe by Theorem 1(iii}, Py = V{8}+#3Hz)R+ 5%, where V(6) is free
from @y, @y, @5, @y, and
B = AP @+ {00 (5P — CF® () — O —2)]
+ O (2)— O (—2)— Ly V2{CPMe) + CFN{—2)}),
Theorem 2 now follows from (4.4a-c).

5. PErroRMaNcE OF TR LMPU AnD mAO'S THSTS
Intuitively, ib is flt that the LMPU test should be optimal in the class
& in the sense of maximizing P, for small & This will now be formally
demonstrated by showing that R is maximum, over the family &, for the
LMPU tost,

AZ.14



528 BAHUL MUEXRIRE

From Mukerjee and Chandra {1987), for the LMPU teat, £ — -0, =
(2Izy*H,, and

B = (aI%)| M, | = RLMPU), — (5)

asy. Congidering the value of R for any other test procedure in &, it foliows
from (4.6), (6.}) and Thecrom 2 that

RLMPU)—R = } [(412)? var{Z,)+ Iz var{g, (2} 42BM))
—co¥{Zy, §1(Z+2FN)A-(Al2) " var(Zo)
+ Iz var{g,| Z® ~2819)) 4 eov{ Z,, 7(ZD —zBP))]
2 L [{var(Z,)var(g (2 +RON)PE—cav(Zy, g ZD+2pH))
Hvar(Zgvar(gy# 0 —2f 900V ( Zy, go(29 2] 2> 0,
. {5.2)

for every z (> 0). The inequality (6.2) demonstrates the optimaliby of the
LMPU test in the family & under the stated assumptions. Foliowing the
line of Chandra and Mukerjee (1985) snd using Theorem 2, it is straightforward
to derive a detailed expression, in terms of Hermite polynomiels, for the
deficiency of any test procedure in & relative to the LMPU test,

In view of the findings of Chandre and Joshi {1983) and Chandra and
Mukerjoo {1984, 1986) on the optimality of Rao’s test, it is interesting to
examine the performance of Rao’s test as a member of . Note that for

Rao's test, ¢y =@y =@, =@, =0 and hence by Thecrem 2, E=0=2B
{Ba0), say.

Let &, be & subclass of & consisting of the test procedures for which 2
ia zero or a polymomial in z. Bince by (4.5}, (5.1), (5.2),

E(LMYU)—RB = (41z) var (Z)—R > 0,

for every poaitive z, it followa that for every test in &, the coefficient of the
highest power of z in B must be non-positive. Thus given any test procedure
in &, it s posaible to find. a critical valne {depending on the particular test
under consideration} such that R{Rao)—R == —R ;» 0, whenever z exceeds
that oritical value, and, in this sense, Reo’s test is optimal in &, By (2.55)
and Theorem 2, the clase &, includes, in particular, the fest procedures for
which @, snd @, are free from z, This observation extends the eatlier results
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on the optimality of Rao’s test (vide Chandra and Joshi, 1983, Chandra
and Mukerjoe, 1084, 1985) to & much more peneral setting.

Rro's test, however, is not optimal in the entire class & since it iy
dominated by the LMPU test (see e.g., Mukerjee and Chandra, 1984) Also,
it ia not optimal in the subclass & of & consisting of the test procedures
for which @, = @5, @z = @, (note that the LMPU feat: does not belong to &).
The following example serves as an illustration.

Ezample : Oonsider a tegh procedurs in & for which
Q1= Qe = ()T iy, Q= @y = 0.
By (4.5) and Theorem 2, for this test procedurs,

R = 5 [eov {Zg, QAP (Zytof) (Zytoh)

— Iz vor { 2T Y 2 Lol X Z2fo))
—cov {Z,, (22D Y7, —zf)) (Z,=280}
—Iz vat {22081 (2, —of\ KZy—2f,],

where 2, = I-32 Ly, f, = I'#, and the joint distribution of Z,, Z, is biva-
riate normal with a noll mean vertor and a dispersion metrix

(r—1| M, | u) .
0 0

Henoo it may be seen that R = (&%) | Y, | > B (Rao), for every z{ > 0)
pravided ]Ma¢| > 0,
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Appendix
Proof of Lemmal: For notationel simplicity, consider the situation
#3 = 1 {the proof for geners) r, is similar bub the notation is more involved)

and let, without loss of generality, @y = @f, where r i3 & non-negative
integer and @, is given by (2.8h). Sinco

Qo = Qa1 +88,1(Bo) 11885 (0,) /2 o(n47),

where Qy, is as in (2.5), one obteins

rFrqr
Qo= X (. J@ny@s @)y
=0 " J
rot ., Tzl gr—1 i
+a-Le Tﬁﬁ[ﬂn} Z ( ; )fQ:ﬂ’(ﬂﬁﬂb?uW‘f “ie(nTlZ) L (Ad)
=0 * }
Note that &, (Q;) = 0= F,{A,). Alsolet
By (G PAT™) = g gt Vippp g-roln V) (=0, 1, 2),
By (AL} = n~Mepg y-0ln~22) {j =0, 1, 2, 3).

the »#'s and p’s being free from 4, Then the joint cheracteristic function of
@, and A, upto o{n-V2), is given by

[l+n‘1m23pj1jaﬁ'iiﬁi“ﬂ’j1 {4, 1}] 0xP {r1ayE I+ 20 EaEt10ER)f2) +oln12),

whero E, = i2), £; = dfy, i* = —1, and the simamation within aguared bracketa
extends over non-negative integral j, 4, satisfying j,4-j; = 2 or 3.
Henoe with £ = 4,

By (@16 Y) = BHED4nm ] (5 pofth % pot | E(FLY
+ilput g pudt) BT

+{ ] Jowto@B @ (2 ) otiriee™)
+oln11), . (A8
where the joint dietrlbution of ¥,, ¥, is bivariate normal with zero mesns

and & digpersion matrix
(’-’?m '-‘Iu)
Tn kLD
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Sines B(¥e®) = BT, +§7)%) e3p (102},
for every non-negotive integral «, and by standard regularity conditions
i = Batdh da=1, 1 follows from (A.1), {A.2), that

» a i s 1 1 N
Eﬂ“{QnE 1) = ["u+“ {('ﬂ‘ # ﬂul{ﬂﬂ]}'l*t_'i Pm“n+€ P:u"'x)

+ (Pn"ﬁ"'.'";— Pu"n]f + (‘% Pavot ;T Pu"‘l) £ e (A.8)

+ 5o’} | exp U olnm),
where
Py — f{f'—l:h.,(?’—'H--'—l)E[{Yl-i-{&—Ff}ﬁ;l(&“)}rﬁu] (‘H- = ﬁ; II 2, 3'..
By Assumption 2, the relation (A.3) with ¢ = 0, yields

1 . 1 . .
0ul8) = vy Md) = 5 BBalOM+ 3 a4 pariy

where
it = rlr—1).. fr—u+ DEC T 88,00 (6 = 0, 1, 2, 8).

Similarly, by Assumption 2 and some standerd regularity conditions,
Co ) = 3L11”;+!5""I- o (AB)

.. (A4)

where
®
¥ = W"lu(?m{-x}. iE log f(X, 50))*

Lot Ay {#) = var, (gp(X)). Then uging regularity conditions and some
findings in Chandrs and Joshi (1983),

Pap = A, (60, o1y = BB51(00), o = — 0L+ Loy}, P = '1;1{511-}
My = Polbol—r, pox = Ly, Ly -+ 3L+ 1y = 0, 1

and p,, is free from §. The proof of (8) now follows from (A.3)—(A.8). The
proofs of {(b) and (¢) are similar.

. (A.B)

Proof of Lemma 2: For byly ...k > 0, lobg, .., (8%)=D¢..D¥

g(Z*). Also, for any non-negative inbeger s, let *be the set of all possi-
ble choioos of non-negative integors I, ..., k Mach that L--...-+i=s. Define
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Z na & standard normal variate distributed independently of Z and obaeryy
that Z* and Z-LZ@ aro identically distributed. Henoce

Bl (-} (3 40 s

_wls L, (23) !
E[§ e, El..ﬂ,gwll_—“’-f_' B . 1 &+t 2)]

- E[E—-i {_usy z Ilﬁ%lﬁ ... BT

<z & 3 3'.;,:"3 .6', R :+;(z+ul] e (A

applying a Taylor’s expansion for Gp,.eut, {Z+[.|.—{-§ﬂ}. All the summations
in {A.7), including those over § and s, are finite, since g(.) iz & polynomial.
Hence noting thet Z and Z are independently distribubed and that

E{Z) = for even 3, = 0 for odd s,

&1
(&2) T 9= _‘rg) I 9af
it follows from (A.7) by a change in the order of wnmmation that

o~ (40 lor-o)

_ (=1 (95) | (2) |
- [E EJ 125 Iyer Exfasﬂ ;!.E,:rl"h HL. UG Ll
+ ,
ﬁ:i l-uﬂ:rﬂ ﬂ';lﬂi B+ {z‘l‘l-ll}.J
_ g g
=5 ui...:f:: ur :fT:""—-fm Ty (AT

% b B 2TED

J BT G AR et tue—h = =)

e o L (=0 L. B |
L+t evmn

{___1]{11'1‘ LT
[ E bt 1) (ot i) 1

. (88
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Now for fixed wy, ..., tr, Auch that ). fwp = 2w, say, the term
within second brackets in (A 8) equals

5 5 (2) 1 {2w0—25) | (—1)
=0 b, be g bl =R Lol —0) T T e 5) T
b w i é

_ % () 220 1 {—1Y #y tr
=2 Fedtataly Le, (2] ()
bl wydgts
- % (24) | (2t0—24) | (—1)¢ ( LTI I S T
& Tt b g )

_ (2w ¥ (—1)
—wmlowl g flw—)) o (A9)

The right-hend member of (A.9) vanishes unlesa w = 0. Hence the lemma
follows from (A.8).

Proof of Lemma 3 : By (3.1), (3.2),
&' = [1+n‘”’£(@1—5z+ﬂhl+ﬂ‘1§[%—c;+mg]+% NG — by ) ]
xexp (EAI4)+o(n~2). . {ALlD)

Since by a formal expansion 8, = Hy—48L,+0(n1), it follows from (3.2)
and Lemma 1 that

By, [Qy exp GAT-V)] = By (@ (1—nVEI-VEdA ) exp (EA,I-VE)]-o(n-18)
= By [Q oxp (§8,1 )]+ VEI-VSE, [Qy(8Ly,— Hy)oxpEAIVE)]4-o(»~2)

= [0 1)+t 0+ T8 Eo {00 - 1) (84118

HPIL 0,0+ 1Y)~ 5 TR+ 18 ) Gfo+1-) ||

Fo(n-1%), - (A1)
E, [Qs exp (FAI-V)] = Oyf0+I-VEW B0, ... (A.12)
E, (@1 exp BAT-V)] = O3+ V)t 101, .. (A18)

From (3.3) and (A.10)~(A.13}, the lemma follows.
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