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Abstract

Stream Cipher models are cryptanalysed using statis-
tical techniques assuming that the detailed architecture of
the model {except for the key) and ciphertexts are available.
The idea is to estimate the secret key with a “reasonable”
computational complexity. The methodology used involves
statistical testing of hypothesis, maximum likelihood esti-
mation, Markov chain etc.
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1 Introduction

Cryptography is the science or art of secret writing. A general crypto-
graphic system consists of

a) P, a finite space of plain texts or messages.

b} C, a finite space of ciphertexts.
*Received (revised version} : May, 2004
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c) K, a finite set of keys.

d) An encryption function E : P x K - C such that each function
for a given &k € K, the restriction e, : P — ¢ defined by ex(m) =
E(m, k) is invertible, i.e., there exists a function di : ¢ — P such
that dy(ex(m)) = m for every m € P.

Also it is assumed that d). s easily computable, but is computationally
hard if & is unknown.

Cryptanalysiz (popularly known as code breaking) is the other side
of the coin. It is assumed that ciphertexts are always available to an
attacker and in some cases, same plaintext may also be available. In
this paper, “ciper text only attack” is considered where the ciphertexts
are available along with knowledge about P,C, K and the functionsl
form of E. Cryptanalysis attempts to recover the plain text/ secret
key. Even a partial recovery is generally regarded as success for the
cryptanalysts.

In this paper, “ciper text only attack” on a widely used cryptosys-
tem, called stream ciphers, is considered. The attacks are mostly statis-
tical in nature and thus demands the attention of the statisticians. The
tools used are : maximum likelihood estimation, testing of hypothesis,
Markov chain etc,

In Section 2, the general stream cipher model is described in de-
tails. The first statistical attack on this model was due to Siegenthaler
([6], [24]) which was subsequently modified/extended by the authars.
Section 3 details these. In this attack the combining Boolean function
was assumed to be known. Assuming that the function was unknown,
authors proposed a method of estimating the function. This is de
scribed in Section 4. Meier and Staffelbach [9] proposed “fast correla-
tion attack” which had significantly lower complexity compared to the
previous attacks. There algorithm was then slightly improved by the
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authors. These constitute Section 5. Two other attacks due to Mihal-
jevic and Golic ({14, [15]} and Filiol [23) are outlined in Section 6 and 7
respectively. Section 8 deals with Boolean functions with memory gnd
are due to Palit and Dasgupta [27].

2 The stream cipher system architecture
and its components

Figure 1 shows the general form of a popular stream cipher system.
The genmerator & produces a random sequence called the ‘keystream’
(Y). This is X-ORed (added modulo 2}, bit-by-bit with the encoded
message called the “plaintext’ (M) to produce the ‘ciphertext’ (C). For
decryption, the same keystream must be X-ORed with the ciphertext
{in synchronization with the encryption process) to retrieve the encoded
plaintext.

ENCOOEDPLAINTEXT M

FMGENERATOR TREAM ¥ CIPHERTEXT C

&5

Figure 1 : Block diagram of a stream cipher system.

A ecryptosystem is said to have perfect secrecy if pzly) = plz) ¥
x £ P,y € U, P is a fnite set of possible plaintexts, € is a finite set
of possible ciphertexts and K stands for the set of possible keys. This
means that the a posteriori probability that the plaintext is z, given
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that the ciphertext y is observed, is identical to the a priori probabil-
ity that the plaintext is . Let ¢x € E be the encryption rule and
dx € D be the decryption rule. Then Shannon {1] provides another
characterization of perfect secrecy : Suppose P, K,C, E, D represents
a cryptosystern with |P| = |K{ = }C{. Then the cryptosystem provides
perfect secrecy if and only if every key is used with uniform probability
ﬁandfnreveryme F and every y € C there is a unique key such that
ex{z) = y. A well known realization of a perfectly secret system is the
Vernam One-time pad. This consists of bit-by-bit X-ORing of the plain-
text and keystream to obtain the ciphertext. Decryption is performed
by X-ORing the ciphertext and keystream. Most importantly, each key
must be used only once which makes the system unconditionally secure
and must be of length at least, that of the plaintext.

One-time pads, therefore, have two major disadvantages— large length
requirements and also the necessity of not ever repeating. A perfectly
random sequence which would never repeat is impossible to obtain in
practice. Hence, random sequences must be repiaced by actually avail-
able psendo-noise (pn) sequences. These sequences are required to sat-
1fy some standard notions of randomness such as Golomb's randomness
postulates [2].

A linear feedback shift register (LFSR) is commonly used to im-
plement a pn sequence. It is both efficient and easy to implement in
bardware as well as software. The nth bit of the output generated se-
rially by an LFSR of length d is related to the previous d bits by the
linear equation

Xy = @1 ¥i-1 +aL; 2+ -+ 0g¥ia, (1}

&1, ..., 84 being binary constants which, along with the d initial values,
characterize the pn sequence. The above equation is often described by
means of the polynomial a{X) = 1+a; X +a3X* -+ 44X, known as
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the feedback or connection polynomial. When the feedback polynomial
is primitive, i.e., cannot be factorized and any root of it generates the
entire field, the period (cycie-length, after which repetition sets in}) of
the sequence generated is of marimal length and equala 22 — 1. The
longer the period length of the sequence, more i8 the "pseudorandom-
ness’ of the sequence. Having a long period length is of vital importance
to the security of the eryptosystem.

Ar exemple of an LFSR with a primitive feedback polynomial 1 +
z + z* is shown below in Figure 2. The period of the sequence is

24 -1 =15

— X; Ki-EI i3 | Aig f——a X, ,
X4

Figure 2 ; Block diagram of a linear feedback shift register
{LFSR) of lenght 4.

Since the bits of the LFSR sequence satisfy a linear recurrence rels-
tionship, the use of such a sequence as the keystream leads to an attack
of by the Berlekamp-Massey shift register synthesis algorithm [4]. In
order to eliminate the possibility of attacks along these lines, the oui-
puts of several LF'SRs are combined using a nonlinear Boolean firnction
in order to destroy the inherent linearity present in the keystream. The
corresponding system which is one of the most popular stream cipher
gystems, 18 shown in Figure 3. The system 15 inibtalized with a set of
initial conditions for the LFSHs which is the secret key.
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Figure 3. A stream cipher system driven by LFSRs with a
combining function.

In such a system, the attacker may face one or more of the follow-
ing problems, yiz. unknown initial conditions of the LFSRs, unknown
LFSR polynomials, unknown combining function, availability of limited
cipherlength and the need for computation in a reasonable amount of
time.

An LFSR of length d;, hag 2% — 1 different choices of the initial
conditions. The total number of LFSR initial conditions possible for
the system shown in Figure 3 is

K= ]]{2‘1j — 1} (the all zero condition is never used)
j=t

If the feedback polynomials of the shift registers are wnkmown, and R;
is the number of (possibly primitive) feedback polynomials for the jth
LFSR then

K =T] B;(2%7M).
J=1
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Note that R; = 3¢{2% — 1) where ¢(p) is the Buler phi-function and
gives the number of integers from the set {0,1,---,p — 1} that are
relatively prime to p [2]. Hence, in a situation when the attacker has
access to the ciphertext only, for a fruie forve attack, he must attempt
the decryption using all K keys and wait till a meaningful decrypted
message is obtained. This is computationally infeasible for LFSRs of

even modersate sizes.

3 Siegenthaler’s correlation attack

Because of the fact that the probability of 0 in the coded plain text is not
exactly equal to half, there is often a non-zero correlation between the
keystream and each of the LESR output sequences. This correlation
was first exploited by Siegenthaler [6] to form a divide gnd conquer
approach so that the correct initial condition (i.c.) of each LFSR may
be determined independently of the i.c.s of the others. He assumed that
the shift register sizes and the form of tke ponlinear combining functicn
are known. The oumber of trials to find the i.c.8 is then dramatically
reduced to

m
S R;2%

3=1

3.1 The method

Let N denote the cipherlength available, X1, ... ,Xﬂ the sequence pro-
duced by the jth L¥SR, and d;, the size of the jth LFSR, j =1,...,m.
Since each of the LFSR outputs are pn sequences, X7, § = 1,-+-, N are
i.i.d random variables with

Py(X] =0)=Px(X7 =1)
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for sl § apd j. Further, if the nonlinear combining function f is bal-
anced, 1.e. iis output has an egual number of zeros and ones, then

P(Y; =0} = P(¥; =1).

Let po = P(M; = 0) and p; = P(C; = X]). Even though p; is not
directly related to the correlation between C; and X7, an attack based
on the deviation of this probability from one-half is conventionally re-
ferred to as a ‘correlation attack’. Note that

p; = P(Y, = X]IM; = 0)P(M, = 0) + P(Y # X{|M, = )P(M; = 1)

(1)
Since Y; and X7 are both independent of M;, we have the simplification

i = qipo + (1 — g5)(1 = po) (2)

where g; = P(Y; = X}).
Consider the random sequence

Z_f — 1 j.'E Ci = Xij,

! 0 ifC;#£X].
It can be deduced that Z] is a Bernoulli random variable and
N
gl{l — Z{) ~ Bin{N,1-p,). Thus, for large N, the empirical measure
of concurrence between £ and Xf given by

N
a;=N-2Y{(1-2Z), 1<j<m (3)

il

is approximately normally distributed with mesn and variance

Mher, N(zpj - 1)1

4
ﬂ'gj 4ij{1—jlj}. ( )

For all known codes of the plaintext, the probability py is generally
different from (.5. Hence, p; = 0.5 if and only if ¢; = 0.5. This
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happens to be the case when the combining function is first order cor-
relation immune i.e., if the functlon is f{X;, X,,...,X,,), then P{f =
X:y=1vi=1,...,n. We shall not discuss the attacks for correlation
immune functions; the reader is referred to Palit and Roy [7] for infor-
mation on strategies in this case, If p; is different from 0.5, then o; is
different from 0. On the other hand, if an arbitrary trial sequence is
used in place of X7, then p; = 0.5, and consequently

N (5)

‘Thuas, the question of deiermining the correctness of a candidate i.c. of
the jth LFSR reduces to a test of the null hypothesis Ho : ma, = 0
againgt the altermative hypothesis H, : m,, # 0. Note that the
sequence X7, ..., X% needed for computing the test statistic, o, is
uniquely determined by the candidate i.c., once the connection polyno-
mial ig kmown_

Let us assume, without loss of generality, that p; > 0 for a particular
i.c. of the jth LFSR. I the cut-off used for the test statistic a; is T,
then the probability of false alarm is

Fig
4

T,

il

Pla > T|Hy) =1 - ${T/VN),

while the probability of smiss is

P(a < T{H) = $((T - (N(2p; — 1)))/2y/Nps(1 - p;)),

where #(.) is the standard Normal distribution function. Slegenthaler
(6], [24]) recommends setting the threshold T to ensure a predeter-
mined maximum probability of miss, If several candidate i.c.s exceed
the threshold, then all of these should be used to try and decode the
ciphertext. If no candidate i.c. is found to exceed the threshold, then
a different connection polynomial may be tried out.
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3.2 A modification of Siegenthaler’s approach

The above approach can fail in two ways: (a) the corvect initial condi-
tion may be missed, or (b} there may be too many false alarms. The
twin objective of the decision-making process is $o restrict the chances
of both types of failures. However, a precise definition of success is nec-
essary in order to examine the feasibility of breaking a code with a given
cipherlength. A reasonable approach would be to define ‘success’ as the
situation when the correct initial condition belongs to the selected list
of solutiona aleng with k& wrong initial conditions. The number k has to
be chosen before any analysis of performance. A high value of & would
mean that a large number of candidate solutions have to he examined
by actually generating the ‘deciphered’ texts — a prospect which can
hardly be described as ‘success’. Thus, & has to be a reasonably small
number. The choice & = 0 was made in {7] and implicitly by Roy [8].
Of course, all the calculations can be generalized for k > 0. This choice
of k implies that ‘success’ is defined as the case when the shortlist of
selected inttial conditions contains only the correct one.

Let us assume that pyp > 0.5, Let f;. be the observed fraction
of coincidences, ¥ Z;/N, when the chogen initial condition is correct.
Suppose that f, is the largest value of T, Z;/N when a wrong initial
condition is used. Siegenthaler’s method wonld be successful {in the
sense described ahove) if

Fouw < (TN + 1)/2 < fie.

However, fi can be larger than fi,, even if both of these are on the same
side of the threshold. A correct determination of the initial condition is
possible in such a case, by modifying Siegenthaler’s approach as follows.
Let f; be the fraction of coincidences between the ciphertext and the
ith input. One may check for the maximum of f; over all possibie initial
conditions, In the modified approach, the maximizer is identified as the
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correct initial condition of the ith input.

If pp < 0.5, the minimizer of f; over all possible initial conditions
should be identified as the correct initial condition.

A theoretical analysis [7] showed that this modified algorithm re-

quires a smaller cipherlength for correct determination of the initial
conditions.

4 Estimation of the combining function

Let us now consider the situation when the combining function is
unknown and non-correlation fmmune. Wa initially assnme that the
LFSR i.c.’s have been correctly identified. Identifying the combining
function amounts to determining the 2™ binary output values in the
corresponding truth table. We treat these numbers, denoted here by
Yo, Y1y« » « y Pom—1, 83 unknown parameters. These paramsters coniro! the
digtribution of the cipher siream. Using the knowledge of the inputs
and the cipherstream, we proceed to obtain the maxinoum likelihood
estimate of these parameters.

As mentioned earlier, for all practical coding schemes, pg # 0.5.
Given that ¥; = y;, the ith bit C; of the ciphertext has the following
probability mass function:

o, - [1 with probability. 1 — py + (20 — L,
i=10 with probability pe — (2p — 1y,

This can be written in a more compact form as
P(C; = o|Y: = y) = [1—po+(2p0—1)us]" [Po— (20— 105" %, ¢ =0, 1.

Let Iy, Iy, ..., Fam_q be the sets of indices of the bitstream that corre
spond to the 2™ different input combinations, respectively. [Note that
these input combinations corregpond ke phe outputs o, t,. .., tem_1,
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respectively) The sizes of these pets, Ny, Vi, ..., Nam_;, have a multino-
mial probability distribution with eqnal probabilities for each of the 2™
calls, The joint distribution of the ciphertext given the input streams,
assuming independence of the bits of the ciphertext, ia

=1
I1 [IP(Ci=clY¥s=y)
y=0 el
g _
B E:{I! [ — o + (280 ~ D] « [po — (2p0 — 1)y

'Thus, the likelithood of yg,%1, - . ., om_y given the input streams and the
ciphertext i
g1

t{yﬂi Vise- oy Wpmoy) = H H [1—1‘0*‘{21’0*1]#3]0‘-{?0*(%—l]yj]“c‘_

J=lb iEIj

It may be noted that the parts thal depend on each y; appear as fac-
tors of the overall likelihood. Thus, we can work with one ‘likelihood
function’ for sach y;, 7 =0,1,.._,2™ — 1:

£5(w5) = J1{1 — po + {2po — 1)5]% - {0 — (20 - D]~
el

Therefore, the MLE of g, is

[0 ifg0)/8(1)> 1

=11 otherwise
The condition £;(0)/£;(1) > 1 reduces to [(1 - po)/m] =524 5 1.
When py > .5, as is the case for the Murray code, this further simplifies
to BﬁEfj C;‘ <, N:,;‘Z.

In summary, the MLE of y; is

{ﬂ i.f EiEfj Ci < Njfﬁ,
¥ =

§i=01,...,2" -1,
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In the unlikely event when ¥, C; = N;/2, both 0 and 1 are MLE,
and one can sssign one or the other without loss of generality.

It is shown in [7] thet the cipherlength requirement can be obtained
by setting a specified value to the probability

P{The entire m-input truth table is correctly identified)

(£ 2" (0w )

When the initial conditions aa well aa the combining function are
unknown, we can use the i.c. which maximizes |a;| a3 the correct i.c.
for the jth LFSR, and proceed with the above procedure for estimation
f the combining function. It can be shown that the probability (7}
remains unchanged, and is much larger in comparison to

P(All i.c.s are correctly identified) |
_ E 5 (1: )p}'u — gy {2@ (%ﬁi{) - 1}2&:4' .®

Thus, the additional cipherlength needed for correct decryption in the
absence of knowledge of the combining function is only marginal.

5 The fast correlation attack of Meier and
Staffeibach

The correlation attacks deseribed so far are based on carrying out an
exhaugtive search over possible initial conditions. Fast correlation at-
tacks, however, attempt to reconstruct the entire LFSR sequence in an
tterative fashion. This section presents the first algorithm of this kind,
proposed by Meier and Staffelbach [9].
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8.1 The basic theory

As in the last section we assume that the LFSR sequence is given by
(1}. The stream cipher system i3 viewed a8 a binary noisy channel
with the LFSR outpuf at its input. Iis output is the ciphertext. The
analysis is performed for a single LFSR, though a number of LFSRs
can be analyzed similarly. (Consequently we drop the index j.) The
channel is asgsumed to be such that

p=PlCi=X)>05 (9)

We consider only Boolean functions implying that the coefficients of
the polynomial are either 0 or 1. The number of non-zero coefficients
anl=1,2,...,d give the number of taps or feedback connections. We
assume the existence of ¢ such taps. Then, (1} can be rewritten as:

Y Xy=0 (10)

0<i<d =1
having ¢ + 1 terma. Nofe that a particular bit, say X; can be placed
in any of the ¢t 4+ 1 positions of (1}. This implies that X; simultane-
ously satisfies ¢ +-1 equations of the form (1} or (2). Another important
abservation is that polynomial multiples of a{X) generate linear rela-
tionships satisfied by X and in particular, powers of the form e{X),
i=2 i=1,2,--., for which (X} = a{X7). Thus, by repeated
shifting of the sequence and ‘squaring’ of the polynomial, s large num-
‘ber of linear relations with the same number of taps are generated, all

of which are satisfied by the bit X
For example, consider the polynomial 142+ z* and assume that the
cipherlength available is ¥ = 65. Then, listed below are the resulting
polynomials produced by raising 1 + z + z* to §, where j = 2, i =

1,2,3, -
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(1+z + z%)?
=1+2*+2° + 22 + 22° 4+ ed(mod?) =1+ 2* + 2°
(1+z+ 2%

=1+ % + 2 + 227 + 209 + 278 (mod2) = 1 4 2 + 21
(1+z+42%°

=1+z*+ 28 + 22? + 221 + 2*(mod2) = 1 + 24 + 2
(1+z+z%)'°

=1+ 2% + 2™ + 22% 4 2% + 22%*(mod?) = 1 + 2* + ¥
(14 2+ )™

=1+2z!% + 2% 4 2219 + 27% 4 2% (mod?) = 1 4 28 + ™

Note that the order of the last polynomial is 64 i.e. the corresponding
LFSR will have a 64 delay units {the LFSR equation will be: (X, =
Xn—18 + Xn-s4). Since the length of the data is only 65, generation
of any further polynomials by this method will not be of any use. In
general, the *squaring” is continued till 2°d < N.

From (9} we know that @ particular bit of the ciphertext equals
the corresponding bit of the LFSR sequence with some probability.
The underlying idea of this fast correlation attack is to reconstruct
the entire LFSR sequence bit-by-bit, iteratively. For this purpose, a
particular bit of the ciphertext is chosen. If, upon examination of all
the linear relations involving the bit at this location, it is found that the
observed bit satisfies ‘most’ of them, then it can be reasonably assnmed
to equal the LFSR hit at that location.

5.2 The underlying statistical model

‘The number of linear relations that can be generated for a particular
bit X, = §;, say, will naturally be restricted by the cipherlength N
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svailable. Each squaring of the polynomial doubles its length and will
continue as long as the quantity 24 is less than ¥V i.e. till{ < llog.(&)].
In other words, the total number of relations obtained

Jog,{ N/ d) N

T = ; (N — 2'd) = Nlogy( ) +d (11)

Since every relation is satisfied by all ¢ + 1 bits, the average number of
relations per bit equals

m= T g (P4 1) (12)

Consider the ith bit X;. These relations may be expressed in the form:
Li=X;+u=10 [=1,---,m, (13)

where 1, tepresents a sum of exactly ¢ different remaining terms with
A; in one of the ¢ + 1 positions in (2) and also its multiples.
Congider now a bit of the cipherstream, C; instead of X; in (13)
with
Li=Ci+x I=1,----,m {14)

with z; representing a sum of exactly ¢ different remaining terms with
C, in one of the £ 4 1 positions in (13) and its multiples.

Io this case, I; may not be equal to zero.

Now, leb wp = wy +wp+ - +wpeand 5 =2y + 25+ + 21
where, wy; and 2y, § = 1,.+,f are binary variabies, all independent
and identically distributed with equal probability of being 0 or 1. Note
that P{X; = G;} == P(w;j = 31_1'}.

Then, 2(t) = P(wi = z) can be recursively computed as follows:

s{l) = p
s(f) = psG—-V+{1-p)i-s(i—-1)) JF=2,---,¢ (15}
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Observe that, for a particular ciphertext bit to satisfy the Ith relation
e i =Ci+2z =0, either C; = X; and w; = 2 or C; ¥ X; and
wr # 7z . Hence

P(Ly=-=Ly=0Lpp1=+=Lp=1) = ps"(l -9
b (- P -t

where & = 5(¢). Purther

P(C‘ :thLI — =Lﬁ-=u;=Lh+1 == s =L1"= 1)
_ psh(1 — )"
ML - 8)™h 4 (1 - p)(1 — g)ram—h

PC# Xy = =Ly=0=Lypy =+ - =Ly =1)
_ (1 - p}(1 — s)*s™"
—psM(1 — sy b (1 — )1 — s)bsm-R

The basic strategy of the attack is as follows. For a bit C}, we start
with an o priori probability p = P(C; = X;) > 0.5 . We count the
number h of indices { for which I, = 0. We then alter the o priord
probability p = P(C; = X;) to & new value p* using (16). It is to be
expected that if {; = X; I8 true then p* must increase and vice-versa.
This can be verified by computing the expected value of * in the two
cAses.

E(Pilci == X,)

- m i m psi’l(l _ s]m-j.. -
- Eﬂ ("‘)W"fl ~ s)m—* 4 (1 — p){1 - E}hsm—hah(l — g)™h
E(p"|C; # X,)

_ m fm p&h{l H_E)m—h o
-2 (e o 09
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5.3 The Algorithms
Let

{

P(c, = »,, and c, satisfies at least h of m relations),
= Pfcn satisfies at least A out of m relations),
= P(ey = Tnlen satisfies at least h of m relations).

Then, using (16)

MO o

Q= 2( ){ps*(l G+ (L—p)l—sfe™)  (17)

R=3 (T)ps*{l -™ T=R/Q (18)
=R

The quantity 2/m which is the minimum fraction of equations that a
bit of the cipherstream must satisfy, shall be henceforth, referred to as
the upper threshold.

Further, lot
V = P(cq = xn,and c, satisfies at most k of m relations),
W = P(ty # x.,and ¢, satisfies at most k of m relations),
L' = P{e, satisfies at most h out of m relations),
E

= Ple, # zn/c, satisfies at most h of m relations)

Then, using (16)
DY (T)osta -t a-pa-stemy oo

=l
5 (o o

W=y, (T)(l —p)s*{l - )™, E=W/D (21)
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The maximum fraction of equationsa h/m, that a bit can satisfy in order
ta be designated as wrong shall be called the lower threshold. Note that
the value of Ak for the upper threshold is different from that of A for the
lower threshold.

Meier and Staffelbach {9] give two algorithms based on these com-
puiations. One ia an exponential-time attack which is non-iterative in
nature. It has limited scope as it has been seen that for ¢ > 10 and
p < (.75, this algorithm holds no advantage over an exhaustive search
of the initial conditions.

The other algorithm is polynomial time. It starts with a value of
h such that the relative increase of correct bits, given by W — V is
maximum and a threshold N = U which is the expected number of
bits with p* < Pureshois. The value of p* is calculated from which the
number of bits with p* less than a threshold, i.e. N, is counted. If this
is greater than N wshoid, 00y the bits with p* less than the threshold
are complemented and the procedure continued till all the bits equal
those of the cipherstream. However, if N, is less than the threshold,
the algorithm must restart with & new a priori probability.

It is seen that the polynomial time algorithm stabilizes in only a
few iterations.

5.4 A modification of the Meier-Staffelbach algo-
rithm

We now consider an algorithm that uses the relationships derived in the
last section to obtain some bits of the LFSH sequence, Once a sufficient
nuraber of bits have been correctly determined (slightly more than the
length of the LFSR), the initial conditions of the corresponding LFSR.
are obtained by constructing and sclving a system of linear equations.

Simulations show that as the upper threshold is increased, the prob-
ability of correctly determining the bita increases while the number of
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bits correctly determined decreases. The reverse situation occurs as
the lower threshold is increased, the probaebility that a bit 18 wrong
decreases while the number of wrong bits increases. It can hence be
concluded that the thresholds must be chosen with a trade-off in mind,
that of ensuring a particular probability of correct determination of the
bits and at the same timme, obtaining some required number of them,

The algorithm can now be summarized as follows. Using (17) and
(18), obtain the upper threshold such that the probability of correct
determination is at least 0.95 and the number of bits correctly deter-
mined is at least equal to 4, the length of the LFSR. Using (21) and
(11), obtain the lower threshold such that the probability of wrongful
determination is at least 0.94%. Complement these bits. Express the bits
thus determined in terms of the initial conditions of the LFSR and solve
the resultant linear system in order to recover the initial conditions.

Let us consider an exemple to illustrate the approach. Consider,
once again, the polynomial 1 4+ = + z*. Let the LFSR sequence be
Xo, X1, Xa, X3, Xy, +-+. Note that X, X5, X5 and X; represent the ini-
tial conditions of the LFSRs. Suppose that we have been able 1o deter-
mine the bits X, Xg, Xj0, X172. Then, expressing each of thetn in terms
of the initial conditions, we have the following system of equations:

X, 1001\ {Xo
Xa | _(ou1 || X
X |~ 010t | { X,
X1z 1100/ \ Xz

Since the left-hand-slde vector is completely kmown, determining the
vector on the right-hand-side can be achieved using standard algo
rithins.

Do this for all combinations of the identified bits, taken d at a time.
Note that the system may not always be solvable in which case that
particular combination of bits must be rejected. From a plot of the
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frequency distribution of the occurrence of the initial conditions deter-
mined in the above step, locate the set/sets occurring most frequently.
When this yields only one set, it can be sefely assumed that this is
the correct imitial condition. If there are multiple sets, the Hamming
distance between the LFSR output corresponding to each of these and
the cipherstream must be computed. The set with the lowest Hamming
distance will be the desired initial condition.

This approach has the chief advantage of being simple yet, produces
satisfactory results. It performs well even for smaller cipherlengths
though the number of taps must be amall.

6 Other fast correlation attacks

After the pioneering work of Meier and Staffelbach, various algorithms
~ for fast correlation attacks have been published. All of them have two
basic components: a method of obtaining low-density (small number
of tape) parity checks, and secondly, an iterative srror-correction algo-
tithm. Described here is one such algorithm, which was proposed in [21]
and improved in [22]. During each iteration, parity-checks are calcu-
lated bit-by-bit at first. This is followed by employing Bayesian bit-by-
bit error correction based on the estimation of the relevant posterior
probabilities obtained uwsing posterior probabilities from the previous
iteration.as the prior probabilities in the current one.

A parity-check is any linear relationship satisfied by an LFSR, se-
quence. Apart from the technique used by Meier and Staffelbach {[9),
[25]) in Section 2, techniques using polynomisl residues [22], or dis-
crete log computations [10]. A set of polynomial multiples such that
no power polynomial appears in more than one polynomial multiple is
called a set of orthogonal parity-check polynotnials.

Let [T, = mf(i),é = 1,2,...,|TI;|, where |[I;| denotes the cardi-
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nality of [[;, be a set of orthogonal parity-checks related to the ith
bit, generated through polynomial multiples of c(z). Let w = £ -1
where £ ig the number of taps. Let a parity-check value be defined a5
ax(t) = Lier, ) Ci- Let

p=P (E; =1|{cEHk' = {“(‘}}Inir)

& 1LY (700 - g

T s = a0+ - T (1 - ¢ TOq()
(22)

where p; and q; are the posterior and prior probabilities for the current
iteration, Tj(Z) = 1 — i), (i) = (1 — [T {1l — 20,))/2 and {m.}}2,
denotes the set of indices of the bits involved in the parity-check (i),
foranyl=12,.. ,/[L|andi=1,2,...,N.

The algorithm staris by calculation of the parity-checks of each
bit of the cipher stream. The posterior probabilities py are calculated
using (22). The algorithm complements the bit if p; exceeds 0.5. The
posterior probabilities of the current iteration are used as the prior
probabilities of the next one. If the empirical error rate exceeds s
preset tolerance, the slgorithm must be restarted with fresh parity-
checks. The algorithm terminates when all parity-checks are satisfied.

A number of fast correlation attacks can be found in [10, 11, 12, 13,
15, 16, 17, 18, 19, 20].

7 The Decimation Attack

This approach [23] of determining the LFSR initial conditions through
a decimated version of the ciphertext can be very useful provided the
appropriate decimated lengths can be obtained.

Consider a decimation of the LFSR output sequence X;,
t=1,2,..., N by a factor of r resulting in the sequence Xp, i.e. Xp =
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X[r]. Then the simulated LFSR or the LFSR producing Xp, has the
properties:

1. The feedback polynomial C* of the simulated LFSR is the mini-
mumm polynomial of 57 in GF(¢?).

2. The period T of C*(z) equals E%:ﬁ
3. The degree &' of (™ (z) equals the multiplicative order of ¢ in Z7.

Further, all 4 € F;, where Fy = k, kg, kg*, - -modTp stands for the
cyclofomic coset of kmoduloT,, give rise to the same simulated LFSR,
though with different initial conditions. Every sequence produced by
the simulated LFSR equals Xp for some set of initial conditions of the
original LFSR.

Let C;|r] be the decimated ciphertext. Then the simulated LFSR
producing this can be determined using Siegenthaler’s approach, requir-
ing 2% — 1 searches. Now, a d*-bit. candidate can be used to generate d
bits of the decimated sequence. Each bit of this sequence also satisfies
the undecimated sequence X. Hence a system of d equations can be
constructed involving the known d4* bits. This system will have rank
d - & which can be further expressed in terms of a different set of
d* bits. An exhaustive search over these d* parameters, using the ci-
phertext and Siegenthaler's approach, determines the correct 4 length
initial conditions of the actual LFSR.

8 Function estimation for nonlinear com-
biners with memory

In order to overcome the trade-off between the linear complexity and
correlation immunity of combining functions [24], the use of combin-
ers with memory was sugpgested [J] and analysed extensively im [25,
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26]. This makes decryption extremely difficult particularly when the
combining function is unknown.
Let the output of the combiner be

H=f{xi:}.:i—1}3 i=21‘3l"'lN' {23}

where X; = (X}, X2, ..., X™), is the vector of outputs of the rn LFSRs.
It is assumed that the LEFSR polynomials as well as the initial conditions
are known, but the binary combining function f 13 unknown. Since the
LFSR outputs are completely known, we exclnde it from the notations
of the following analysis which is conditional on these. The task of
determining the combining function amounts to choosing the right truth
table of the function f from among the possible 2™+ truth tables.
The likelihood of the observed cipher-text is

N
P{CNn,CN-1,...,01) = P(Cy) [] P(Ci|Cit, .-, CY)
e=d

When the combining function is unknown but memeoryless, we approx-
imated P{C;|C;1,...,C1) by P(C;) (see Section 4). This amounts to
ignoring the weak dependence of the ciphertext bits which may re-
sult from the dependence of the plaintext bits. In the present case
however, successive bits may be dependent because of the memory
of the combiner. Therefore, we use the more realistic approximation

P(Ci|Cicr, - .., C1) = P(CL{C;.y), that is,
N
P(C,Cnoa,...,C1) = P(C) ][ P(GiICs). (24)
i=2

A justification of this approximation is given by Palit and Dasgupta
(27], who show that the ciphertext is a first order Markov process if the
coded plaintext bits are independent.

It can be seen. that

. , —_ {1 - I’D}C'_l +p-;1(1 — ﬂf-—l) if H—l — []=
PY:|Ciy) = {pu(I_l F-po){1—Coy) f¥iq=1, (25)
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P(CYin1) = [1—po+ (2pp — 1)f( X, i)
[P0 — (2po — 1) f(X,, ¥y )] % {26)

Substituting in the expression P(C;|C;_;) = & P{Ci|Yi_1)P(Yi1|Cisy),
=1

and plugging into (2), we have the approximate likelihood

ﬁgp(cﬂﬂ-l}

=TT I {t~s+@p— )i, 00
=04 X, = o

[p— - 1F.0)"% . [{1-p)Cics +poll — Cia)]
+[1— po + (2p0 — ) f(=?, DI - [po — (2pg — 1) f(=?, 1))
[PoCic1 + (1 — po} (2 — Cis\)]}, (27)

where 2%, .., 27" 1 are the 2™ possible values of the X;5. The advan-
tage of this approximate likelihood is that the factor corresponding to
each 27 can be maximized separately. This factor has to be maximized
simultaneously with respect to binary perameters f{x?,0) and f (a4, 1).
Let Z; be the value of this factor for f(2?,0) = k and f(a/,1) =
k,!=0,1. Then we have

Go = I {Q-p% "% [0 -0)Ciy +p(1 - Ci_y)]
T::x.; =/
+H1 = p)% "% [pCis + (1 - p){(1 = Ci1))}
- [1 _ p}leﬂ'l'lel .pN::'m+N_m1, (23]

where, Ny is the number of bits {4) for which X; = @, C; = k and
Cioy =1, k,1=0,1 Similarly we have the simplifications

bim = [p* + (1~ p)*| etz [2p(1 — p)Mior+Hin0, (29)
biw = [2p(1 — p)]" et [P 4 (1 — )Mo+, (30)
Ejll — pleﬂ'l'Nj'll _ (1 _ F')ij-l-ij' {31‘}
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If £;x.1, is the largest of the £;8 for k,! = 0,1, then the approximate
maximum likelihood estimator of f{®*,0} and f(x?,1) are k, and i,
respectively.

A theoretical performance analysis can be don along the following
lines. Note that logarithms of the {548 are linear functions of Ny,
Njor, Njo and Ny, We shall argue that the joint distribution of these
variables is approximately normal. Let Ny, be the number of bita (3)
such that X; = %’ and ¥;_; = n. It is clear that

Nin = Nion + Nioin + Npon + Njaa,

where Ny, is the number of bits () such that X; = &%, C; = k,
Ciy=land Yy, =n. Since Y,_, is not observable, none of the counts
mentioned in the above equation is observable. However, the counts

Nig =N+ N, k=01, I=0,1, ij=0,1,...,2"-1,

are observable.

Given Ny, the allocation to its constituent parts follows a distri-
bution which i approximately multinomial, and can be further ap-
proximated by a normal distribution with matching mean vector and
covariance matrix. The same can be said about the constituents of IVj,,
which are conditionally independent of the components of Nj. Thus,
the conditional distribution of Ny, Nyo:, Npo and Njp; given Ny and
N; is appraximately multivariate normal. This should in principle pro-
vide a way of obtaining approximate expressions for the probability of
correct identification of f(x?,0) and f(27,1). However, the expressions
will depend on the true values of these binary parsmeters. Therefore,

we need to consider four special cases corresponding to the possible
values of this pair of parameters.

Case I: f{29,0) =0, f(=%,1) = 0.
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Correct identification in this case corresponds to the event

= lﬂgtjm -_ lﬂg fﬂ] = 0,
= logéme—loglng > 0,
= logée—logém > 0.

£ & 8

a7

(32)
(33)
(34)

Note that 2400, bno and Cop are linear functions of Nm, Njﬂh Nﬂu and
N}n- Specifically, (ﬂm : bpg : f-‘m}T = Qm[ij : N_fnl : N}m : Nfll)T:

log £ log lo
Quu=(hﬂ ii'? E;’E’ hl;:g;?;l): (35}
P

where

log log
logl’  logf  logh
where ¢ = 1 — p. In this case, we have for given Ny,

ﬁm v
Bl 37 | Wo]=Na| 2 1.

N300 Wio # | pa

Njnw ¢

On the other hand,
P(Ci=0,Cry =0lYir1 =0) = p?,
P{Ci=0,Cea =1Yie1 =0) = pyg,
PC;=1,C1=0lY;_;=0) = pg,
P(C;=1,C1=1|¥;5=0) = &,
s0 that the conditional variance-covariance matrix is

Niono P 0 0 O
Njﬂlﬂ _ U o ﬂ D
Ni1o 0o 0 0 ¢
Likewise, for given N;;, we have
Ny ?
Njou
E J Nal=N.
leﬂl | i1 Jl 2

g
N q

B BN
>
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and
Ny 1 0 P 0 0|_ o |1 p?
el N L Il DRI e R
Nun 0 0 0 pg Pa/ \Drq

In order to compute the parameters of the normal approximation
of the _]ﬂl]lt distribution of Njﬁu, Njﬂ;, ij and Nju conditional on Njﬂ
and NV, we need to combine the above results. The mean vector is

Nijoo Njor? + leﬂg
Nim ar U | Noopg 4+ Njyp

E M]ﬂ lNJﬂ: hr:il — Nm_l_leqz '
Nj1y Niog* + Nppg

The corresponding covariance matrix is

{ Niop* + Niipg - ,-up“q ~ jﬂpﬂq —~Npp*d® )

—N;.-'ull" — Njﬂl’z '12 -lepa aq —leﬂqa - leEE'E
~Nop'q  Npopg+ Npp'  —Nypp?e? ~Nypg®
~Nnp'q  —Nup’q® ~ Npp*  —Nuplq? —Nup'q
~Njop®q - Njop*q® Nipg + quﬂ _Nﬂma
™ ﬂPQE —NﬂP: "f — ,-.mi‘a'*r‘k'f;rE - ij‘ - jlpqa
~Nuop* gt — Nsopyg® —Niopg® N + Njpg

N —~Npp'd -lepaﬁ' —Nﬁm“ ~Nug* — ijgqﬂﬁ

The probability of correct identification of f{=?,0) and f{z7,1) is the
Jjomt probabiiity of the events {32 - 34), which may be computed from
(35) and the distribution of (Nyoq : Njp1 : Njio : Ny )T described above.

In order to get a better understanding of the probability of cor-
rect estimation, let us consider the special case Ny, = 2~™ N fur
n=01...,2" and n = 0,1. In this case, the covariance matrix of
(Njoo : Njor : Njo @ Njuu)T simplifies farther and can be factored as
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2-m-ANBBT where

1 0 2Yp
o0 1 -2
- 12 2
B = (pq) [—1 0 23 |-
0

-1 -2

N (Pplosp + 2qlogq — log(Zpa(y + 4’})
et | 2Plogp + 2qlog g — log(2pg(p® +4%))
2(p—g}log 2

Q00
Cov (bm) = 27" N(QuB)(QuB)".
Coa |
and Qoo B simplifies to
log —lgZE  2/(p-
0B = {W}lﬁ (-lug lng%i _EIH{P q}logg-f)
log —lngg 0

Consider the further special case where p = 0.5 + § where § i3 a

small number compared to 1. Then we hava the sapproximations

gg N 442 oo N B&? 88 164°
€00 Cg0 166 166 3247

It can be seen that agy and by are almost uncorrelated and coy =
2000 A 2bpp. Hence, the probability of correct estimation of f{a’,0)
and f(x?,1) is approximately

Pflego > 0,500 > 0,00 > 0) = Plage > 0) = $(F2™2NW),  (36)
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The analyses for the other three cases are done in a similar faghion, by
Palit and Dasgupta |27] using a series of approximations and supporting
sunmlations. The results show that the cipherlength required to achieve
a given probability of correct estimation of the pair f(@?,0) and f(z?,1)
it of the order of [pp — 1/2|N*? when f(x?,0) = f{=?, 1) and of the
order of lpp - 1/2*N'/2 when f(27,0) # f(=/,1). The latter expression
clearly explains why a very large cipherlengih may be needed when the
unknown combiner has memory. Also provided in [27) is an alternative
approach based on the fact that P(M; = M;._,) is generally different
from one-half for most coded plaintext messages. This algorithm seems
to perform az well ag the one described above.

9 Conclusion

Cryptanalysis of stream cipher model where the combining function has
memory of more than one bit seems quite complicated and cumbersome.
An elegant statistical approach is looked for from statisticians. Also dif-
ferent statistical methods may he adopted to reduce the computational
complexity of the cryptanalysis. Besides the siream cipher model de-
scribed in this paper, there are plenty of other models. Some of them
have beeen or are being cryptanalyzed; as the basic tool is statistics

for such analysis. This area demands the attention from the statistics
community.
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