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Abstraci

In the preseat paper we consider a class of unequally replicatad designs having concurrence range 2 and
spectrum of the form w4 {(ts) “"3153. Maw, Jacroux’s [Some sufficient copditions For the type I optimaliny of
block designs, J, Statist, Flann. Inference 11 {1985) 385-396) Proposition 2.4 says that a desipn with spectrum
of the xove form, if satisfies some further condidions, is type 1 nptimal. Unforrunately, this pruposition dees
not apply to our designs since they have a poor status regarding E-optimality. Yot we are able to prove the
A-optimality (in the general class) of these designs using majorisation technique. A method of construgtion
of an infinita seties of our A-oplimal dezigng has also been given.

The first and only known infinite series of examples of designs satisfying Jactoux's conditions appears
ko be the first one in Section 4.1 of Morgan ged Stivastay [On the Type-1 optimality of neary balanced
incomplete block designs with small concurrence range, Statist. Sinica 10 (20060} 1091-1116) - hitherto
refecred to as {MS), In this paper. we use majorisstion technigoe lo prove sironger optimality properties
of the above mentioned designs of [MS] as well as to preseni simpler proof of another optimality result in
[M5].
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1. Introduction

In the present paper, we continue the seerch for optimal block destpns. It is well known
that the *best” design (BIBIY) must be binary and must have replication pumbers as well as
the concurrences all equal. It is also well known that these equalities require cestain divisibility
conditions, which are often not met. So, the following questions arise in one’s mind, {a) “what
is the best design in a set up where the divisibility conditions are not satisfied?", (b) “if the
divisibility conditions are satisfied, but a BIBD does not exist, then what is the best design?” We
take & glimpse at the status of our knowledge regarding question (a). For (b) we refer to [12,14],

It is reasonable to believe that in the situations when equal replication is possible but all the
concurrences cannot be equal, a binary equireplicate design with concurrences differing by at most
one would be optimal. This was conjectured by John and Mitchell [10], who coined the name
“regular graph designs” (RGD) for such candidates. While this conjecture has heen disproved
regarding E-criterion (see [2,3], for instance} it is widely believes] to be que for A- and D-criteria.
In fact, many RGD¥s have been proved to satisfy peneral optimality (see {5,7,17).

Now suppose equal replication is not possible. Then a likely candidate for optimality is a binary
design with replication pumbers as well as concurrences differing by at most one. These were
termed as semi-RGDs in [%], whers many sufficient conditions for the optimality of RGDs and
semni-RGODs were provided.

Nexl, let us consider the sitations when neither RGD nor semi-RGD can exist. Morgan
and Srivastav [12] considered these. They defined nearly balanced incomplete block designs
NBBD(m)}, which arc tinary designs with replication numbers differing by at most once and
concurrences differing by at most #i. They provided sufficient conditions for the optimality of
NRED({2)'s, using which they proved optimality of certain ¢lasses of NBBD{2}'s.

The two classes of NBBD(2)'s (say di. d7) considered in Section 4.1 of Morgan and Srivastay
[12] canght the attention of the present author for many reasons. Both aye uasqually replicated,
but the spectra of their C-matrices are “very good”. OF these dy has spectrum (g} 2pg and
it turned ont to be, not surprisingly, generalised optimal of type 1 like the most balanced group
divisible designs (MBGDD} of type 1 {see [51). On the other hand, &) has spectrum jtq (a2 3.
Mow, in view of Proposition 2.4 of Jacroux {9] many researchers in this ares, including ihe present
author, believe that a design with spectrum like this is must be optimal but no example was known,
dr seams ta be the first example satisfying the hypothesis of above proposition and indeed it is
optirnal! This observation was so exciting that finding another example like this and vetifying its
optimality seemed to be very urgent. That led 1o the bizth of the present paper. The design d [see
after {4.1)] may be thonght of “opposite”™ of d).

In Secton 3, we bandle existing optimality results: extend one and provide simpler proof of
another, both using mgjorisation technigque. In Section 4, we prove A-optimality of 4* in the
generil ¢lass and present a mettiod of constrection of it in Section S.

2. Preliminaries
Notation 2.1. Consider a vector x = (x), X2, .... X0 € B

{a) x + and x | will denole the vecters obtained by rearranging the coordinates of x in the
increasing and decreasing order, respechvely.

(b} Suppose r has m distinct entries (s < n), Then x will be denoted by JT5
multiplicity #;, f = 1,....m, ¥ o Hi =R

11, if 2 has
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Definition 2.1 {11). For x, y € K", x is said to be weakly majorised from abave by y (in symbols,
x <% y)if

k k
+ t -
;I[ ;EJ’I' k*lil---'n. (211}

Tt is clear that <™ is reflexive and transitive.
We begin with a trivial bet useful result.

Theorem 2.1. Consider an n x 1vectorx. Let £ = (Y]_, x;) /n. Then
L
<" Hx,-.
i=1

We zhall now state Tomic’s theorem and derive a few resolts from it. For the proof of this
theorem and other results on weak majorisation see [11].

Theorem 2.2 (Tomic). x <% v if and only if

pILETPIN (A

Jor every convex decreasing functiong : R = R

Theorem 2.3. Suppose ', y1 are m x t and xD | ¥ are n x 1 vectors suck that
PARE LT O S S I )

Then,
x = () ¥y (0,2,

Here (plq) is the fuxtaposition of the vectors p and g.

Theovem 2.4, For ar n x 1 vector x, let (1) denote the t x 1 vector (X1, x2,...., %) [ &0

Consider two n % | veciors x and y with entries arvanged in ascending order and satisfying the
Joliowing conditions:

R H
@ Y u<Yw
i=l

=]

and
(i) X)) <™ ${#), forsomet < n.

Then, each of the following is a sufficient condition for x <™ y:

@ 141 =242 = =
b} 2141 = 3z = = Yh=%: ¥u 2 X5 — EE':] X+ Z?-] -
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Proof. (2} Take #0 = 3(1), 3@ = (g1, ..., gx). ¢ = x or y. By assumption,

[ I

i=1 i= .
If equality helds in the above relation, then we are done by Theorams 2.1 and 2.3. So, we assume
strict inequality, Let & = 3.1, & — 370 w. Clearly x%* is not majotised by ¥'%, We define 2
vector ¥* as follows. ¥ = y; + 8, 7| = ¥+1 — & ¥ = yi,i % 1,1 + 1. Then, clearly,

[ u
Zy;=2yh w=tn
=1 i=1

]
Thos, by Theorem 2.3
x <"yt
But it iz clear from the definition of »* that * <*' y_Hence, the result follows from the transitivity
of =<,
(b} is proved by applying (a) on Z{n — 1} and ¥(n — 1). []

Notation 2.2. Consider an n x » real symmetric matrix A.

{a) The principal submatrix bordered by the set of rows £, j,...,! of A will be dengted by

A, jo.. 0
(b} p(A) will denote the vector of cigenvalues of A, amanged in ascending order. If A is
nonnegtive definite, then g (A) will denote the vector of positive eigenvalues of A.

We now present a few inequalities on the eigenvalues of real symmetric matrices. The first one
15 a well-known result catled Ky Fan's maximam principle {sce Problem 1.6.15 of Bhatia [4], for
instance), from which the others can be derived easily.

Theorem 2.5, Consider a symmerric matrix A of order n. Suppose x1. %2, . ... xx {k < n} are
orthonormal vectors € B*, Then,

& k k
Yl <3 xfAx; <Y ujiA). 22)

j=1 =1 J=l
Theorem 2.6, Conslder a symmetric marrix A af order n and constant row sum s. If the average
row sum af a principal submatrix B of onder t is p then

ul(A) < (np ~ 15)/(n — 1) < pf{A).

Proof. Wlg., let B = A(1, 2,..., ). Let x denote the normalised version of the vector {n — ¢)'.
(—2)"=%. Now apply Theorem 2.5 withk = 1. O

Putting 5 = 0 and 7 = | in the theorem above we get the following well-known (see [B], for
mstance) and very nseful result.

Corollary 2.1. for a symmerric matrix A of order n with row sums zero the following equation
holds for everyi, 1 < < n:

u?(ﬂ} £ (nfin = 1)day; £ ui’(.«t],
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Camsider 2 nonnegative definite matrix 4 with each row sum zero. Let B, 0 <7 < m, pe
disjoint principal submatrices of A; ; denotes the order of B, For every 1, | < § < 1, let there
exist am integer &, 1 £ 5; < » and 8 set i1, ¥i2. ..., Yine Of orthonormal veciors in BY | each o
which i5 orthogonal to the all-one vecior in RY, Alse, let 7; € BY be a vecror with nonnegalive
antries in the inereasing order, 1 < ¢ < -m_Further, let 2y = np/{(n — ), where p is the BVErage
roaw sum of By. Pinelly, letz = (%0 | 21| -+~ | Z) € R where b = L4317, u;. Forsuch a dag
set, we have the following result.

Thewrem 2.7

(a) Suppose the following inegueiities are soxlsfied:
! i
Yl <Yy, 1<I€uw, 15igm (2.3
i=1 J=1
Then we can say the following about the eigenvalues of A:
! !
Y <Y g, 1<I<h 24

(6 I > holds in place of < in (2.3). then the following hold:

i i
YoapzY g 1<i<h @5

Jml j=1

Theorem 2.8 Consider a v x v malrix A. For some m, 1, ;i + R < v, suppose there aie real
mambers i, | i < mandw;, | 21 < &, such thar

) 2.4) kolds with ik = m,
) 2N holds withn forhand w; forz;, f =1,2,....,nand
() F%mn 2 + oy wy < tw(A).

Then
™ ]
[Tac- @ T w; < nta.

i=l i=l
Here: = (1]'{.4) — E?_l zj— E?:l wit/ (v —m—n)

Letus now consider a block design set up. All designs in this paper are connected block designs
wilh cotstant Mock size. We present a set of notations, which are commwnly nsed.

Notation 2.3

(i) 2 = Py ., denotes the class of all cornected block designs with v treatments and b blocks
of size k vach.
(i) B, , denotes the class of binary designs in Dy 4 ,.
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(iii} r:=[Bk/v]. ) = [r(k — 1}/{v — D)]. Here [x] is the smallest inteper = .

{iv) The replication number of the /th treatment in a design 4 € & will be denoted by ra
{1 £i € v). R(d) will denote the diagonai matzix diag(ra, ..., ray).

{(v) For adesign d € 2, N(d) 15 the usual (v x &) treaiment-block incidence matrix of 4. C{d)
will denete the information matrix of d | C{d) = R(d) — k- N{dN ()", u(d) will denote
the vector of positive cigenvalues of kC (d). 2, ; will denote the (¢, )th entry of N ()N ()T,

We shall drop 4 from the notations in (iv) and {v) when there is no scope of confiesion as o
which design is meant.

Next, we present a few known definitions.

Deefinition 2.2 [1]. A design 4y € 2 33 said to be betrer than another design d € & in the sense
of majortisation (in short M-better) if

) <¥ puidy).

" € &y v 19 s8id 10 be optimal in the sense of majorisation in a subclass of #; 4 » (or, in shot,
d* is M-optimal in this subclass) if it is M-better than every member of thiy subclass,

Definition 2.3 [3]. Let M be a number larger than all the eigenvalees of C{d) for all & € 2, Then,
a thrice differentiable function f : (0, M) — [ is said to a (generalised) aptimality criterion of
type 1 (respectively, type 2) if (i) f(0H) = oo, (1) 7 < 0, (Y £ > 0,{iv) ™ < D{respectively,
F* = 0).1f £ is such a function, then define %5 : @ — Rby ¥r(d) = TX, Flud), d € 2,
We say that the design o is better than the design dz with respect to the critedion f (in short
F-betien if Wy{d1) < Frldz). A design d* is =aid to be gype 1 {respectively, type 2) optimal in
a subclass of P if itis f-benter than 211 the designs in this subclass for all type § {respectively,
type 2) optimality critena f.

Definition 24. A design d* is said to be E-optimal in & if u{d*}} > u(h! va e 2.

Deefinitlon 2.5. A design 4™ is said to be A-optimal in & if ?=_1l ad* N~ £ E}‘;I"[p.i @n-t
Yd € &.

Extending the notion of A-optimality criterion tu vectors, we define the following.

Definition 2.6. An » > 1 vector x is said to be A-better than another i % 1 vector y if
" 13
Vey=2 ¥ =2 x>0 (2.6)
=1 =]

Remark 1. As nated in Remark 3.1 of Bagchi and Bagchi [1], if o) is M-better than ds, then ) is
A-better tham o, apart trom being better with regard to many other {convex) eptimality criteria.
In view of this, we have the following resuit.

Coroliary 2.2. Suppose the C-matrix of a design d satisfies Theorem 2.8 for certain z'sand w's.
If further [ [jmy 20(2)" ™" [T w; 5 A-worse than pi(d"), then d is A-worse than d*,
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3. A review of kmown resuls

We shall refer to fhe paper Morgan and Srivastav [12] as M§ througbout this paper.
First we present a result which is a direct consequence of Proposition 2.4 of Jacroux [9).

Theoren 3.1. Suppose @* is a design in 3L, | satisfying the following properties:

(i} C3 kas specirum of the form p1{p2)* I ua,
(i} &* is E-optimal in B, »
(i) 2* minimises t{{C4)% over d € 2§, .

Then d* is type 1 aptimal in BF,, .
Next, we state a well-known result of Cheng [6),

3.2, Supposed”® isadesignin DE , | such thar C e has spectrum of the form g, (ug)' 2
and further, d* satisfies Property (iii) of Theorem 3.1, Then d* is type t optimad in BE, .

We row consider two serics of optimal NBBD(2)'s of MS. Using majorisation lechniqua we
now prowe stronger optimality property for onc series. For the other series, we provide a simpier
frroof for the known result. The parameters of hoth the series satisfy

k=3, v=2(mod3), r{k—1)/(v— 1)isaninteger {which is, of course, 1), (3.1)
Here r, A are as defined ia Notetion 2 3(iii}.
At first, we consider the set up satisfying bk = wr + 1. More precisely, the parameters are
v=3t+2 i=2 apdhencedb=3*+H+land r=v—1 (3.2)
Here ¢ i3 an integer 2 1. )

An NBBD{2} ¢ and a non-binary design 41 with completely symametric C-matrix co-exist
in this set up. Both of them are optimal with regard to some optimal criteria or ather. (For the
description, constuction and other details sce MS and [15].)

Let us define
g=rik—1)+A. 3.3
We ot that in a set op where » (£ — 1)/(v — 1) is an integer (which is the case here},
= pi. {3.4)
Now, we express the spactrumns of kCy and kC; in terms of a:
spectram{kC;, 1 = (0 — Ha*a + 3), (3.3)
spectrumn(kCy | = o~ (3.6}

Morgar and Uddin [13] proved that d; is E-optimal in & s . Here we show that
Theorem 3.3, | is E-optimal in By, ,\ 41},

Throughout the remaining part of the paper, d will denote a competing design. Further, we
follow the notations below.
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Motation 3.1

(i) A =2Cy, p = pid)
(iiy While using Theorem 2.7, the vector y;; is the rormalised vetsion of the vector x;; presented.
For instance, yy1 of Lemma 4.4 is (1//(6)x11 = (1//10)(2, -1, -1)T.

Proof of Theorem 3.3. Consider a design d in @y +..\{4;).

Case 1t a;; < r{k — 1) for some i, say § = 1.

In this case, ayy & r{k ~ 1) — 2 and so applying (a) of Theorem 2.7 with B = A(1), we get
p.; <a-—1,
Case 2: a;; =£{k—1}fﬂl‘mr}'l'.

Since & ¥ 41, A0, J), such that &; ; < A — 1. 8o, taking B = A4, j) and applying (b) of
Theorem 2.7 we get 2] < a — 1 and the proof is complete. [

In fact 4y satisfies stronger optimality as it is shown below,
Theorem 3.4. 4, is

(a) type 1 optimal in ﬂfl k,v e
(b) M-better than every non-binary design in Dy x ,, other than di.

Proof. (z) follows from the fact that 4; satisfies all the conditions of Theorem 3.1.

(b) Let @ be an arbitrily fixed non-binary design other than &;. By (b) of Theorems 2.4 and 3.3
it is snough to show that

pt 2 a. | an

Loty = max{aiy, | £ < vl

Cage 1z u > r(k — 1).
In this case, di suchthatg;; > r(k - 15 + 2, somatu‘} = a + 2. Hence we are done.

Case 2: u < rik— 1)

Case 2.1: gy = r{k — 1) forall i.
Since d % 4,3, j),such that &; ; = A + 1. So, taking B = A(, §) and applying (b) of The-
nramz.?wegﬂtnf ZFa+1.

Case 2.2: a;; < r{k — 1} for at least one {.
Let m be the number of £7s such that ai; < vk — 1), 1e., @ < r(k — 1) — 2, Then,

r—1
i vork—1) = 2m = (v - Da—2m. (3.8
=l

Camedla:m=1y,

In this case p; s @ — 2 ¥ and we are done.
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Cage 2.2b: m = v,
¥n this case, 3, such that ay; = r(k — 1). Thus, u¥ >a. [J

As an imsnediate corollary, we have
Corallary 3.1. 4, is fype 1 optimal in Dy 5.\ Id1).

We now consider another set up satisiying (3.1) and having 5% = vr + 2. This was first cop-
sideted by Roy and Shah [15] who provided the first example of a type 1 optimal unequally
replicated design, referred to & here. & is an NEBD{2), according to the definition of MS, The
set up of Roy and Shah [15] is of the following nature:

v=imedf), r=0-1)/2 A=1 {39
In M8, a very similar set up is considered. This has
ps2{(mod3), r=20u-1), A=2 (3.10)

MS constructed an NBBIN2) having the form of C-matrix as well as its spectrum similar to
that of da and proved the same optimality property. They also found a non-binary design, termed
s here, which do not seem to satisfy any optimality property like d1. Itis not known whether a
d&signmrmspundmgtodzﬂustsm the set up {3.9). The spectrums of these are as follows:

spectrum[dy] = a¥~%(z + 4), (3.1H)
spectrum[d’}] =a* I, {3.12)
Here a is as in (3.3}. Looking at the spectrums, the following resnlt is clear.

Theorem 3.5, o3 is M-better than &1.

In MS, the optimality property of 4> has been derived from general lemmas. However, if we
restrict to this particalar set up and also vse majorisation techniques, then the proofs becomes
considerably simpler and transpareni. This 35 what i3 done below. Henceforth, dz would refer to
both the designs of MS and [15]. We shall also refer to 4>, which may be n hypothetical design
in the set up (3.9).

Let us first state a well-known result,

Lemma 3.1. Suppose x;, 1 < < n are integers satisfyving 3 i_| % = a. Let u be the greatest
integer < a/n and g = a — nu. Then 31_,(x;)® is mininmm if x;'s are “as nearly equal as
possible”. More precisely,

{a} E{x;]z g)t:l2 +gla+ 1?2 =miuy say.

(b} Fm:ther ng"’_,{.:c.} > m(u}, then Y 0 (x:3° = m(e) +2.

Now we present a proof of the crucial property of da.
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Lemwa 3.2. &y minimises w{(Cy)"] overd € ¥, .
Proof. Fix anarbitrary designd € 27, . Now, r[(C)?] = ¥, (cuij)? = Ti(d) + 2T(d), where

L'
Ti(d) = (k — 1)? [Z(ﬁ‘){l and Ty(dy = g’ (3.13)
i=1 ief

Since E;_,:j Ai g = (1/2yv{v — 137 + 2, applying Lemnma 3.1 on A;, ;s we find that m(A) =
1/2v{v — DO + 44 + 2 = Tu(ds) — 2.

From this and the expression for 71{d), it is clear that if the replication vector of d is differents
from that of db, then w[{C4)¥?] > tr{(C,)%). Hence, we assume

ri=n l€igev=-2, n=r=r+1,

In view of (b) of Lemma 3.1, all we have to show is Tz(d) > m{(i}. But to show that it is

enough to show the following.

Claim. The expression for Ty (d) always contain at least a rerm (& — )2,

Proof of the claim. Racali that

EJ’L;‘J = rifk — 1}. (3.14)
Jefi
So, E#u-"-i.j =(v—-1)A+2,7€{v,v~1}. So, Z#H(lu,j}z is miaimum if A, = Apy =
% + 1 for sgpe m, { < v and for all other s, A, ; = A. Clearly, one of m, Zhasto be v — 2,
Wlg. fet/ =1 Then, &) » = A + 1,30 that 3 such that X; , = A — 1. This completes the proof
of the claim and hence the procf of the lemma, [

A direct congequence of the preceding lemma, in view of Theorem 3.2, is the following.
Corollary 3.2. dy iv type | optimal ind & ﬁ'ﬁ .

We shali now consider the general class and prove the following result.
Theorem 3.6. & 1s type 1 oprimalind € Dy .
Proof. Fix an arbitrary son-binary design d € @y 1 . In view of Corollary 3.2, it is enough to

show that d; is M-better thar 4.

Case 1: d has at least iwo non-binary blocks.
In this case, &[Cy] € tr[ﬂd-ij [for the description of d; see Section 4 of MSE}. Since CJ: is

completely symunetric, o is M-worse than d; and hence M-worse than dz by Theorem 3.5.

Case 2 ¢ has exactly one non-binary block.

Let A denote the non-binary block. Since & == 3, ondy one reatment (5ay i) ¢an appear more
than once in B. Since g is the only non-binary block, »; ; £ A ¥i £ ip, ¥ j.

W.lg., let v # ip. Applying (a) of Theorem 2.7 with 4 = kCy, B = A{v), p = p(A), we
get it 2 vir + D& — 1)/(v — 1) 2 a + 2. Therefore, 77 a1 < (v — 2)a. Hence the result
fellows from (b) of Theorem 2.4, O
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4. A new optimality resuit

We consider a set up where & = 3 and bk -+ 1 is divisible by v. Thus, bk = vr — 1. We furthe,
asstmne r = {v — 1)/2, so that A = 1. Thus, the parameters are of the following form;

v=06s+5 r=3s+2 and hence b = 65> + 95 + 3. (4.1}

Here s is an integer = 1,
Let 4* denote the design with the following parameters. ry =7 — Lr; =r,2 < < Uik g =
A—=1= 11.3-11‘3 =i+1. -]"I'.j = J.fma]]mher{i,j)’s.

Lemma d.L. The spectrum of kCg is as follows:
w(d) = (@ - Ha*a + 1. (4.2

Proof. By straightforward verification we find that the spectrum of £C« in terms of & is as above.
[Recall (3.3)] C

Remark 2. Even though 2 happens to be eqqual to v in the present set up [see (3.4)}, we prefer 1o
comtipue with the symbol a, so that the magnitudes of the eigenvalues are not mixed up with the
mmltiplicities,

Reypark 3. It is easy to verify that d* satisfies conditions (i) 2rd (iii) of Theorem 3.1. Bur it
appears that it does not satisfy condition (ii), although we have nat yet found a design B-better
than d*. Because of this, Theorem 3.1 could not be applied and general optimality of d* could
1ot be proved. We believe that 4* is also D-optimal, but the proof would be more involved.

We now present our main result.

Theoremn 4.1. d* is A-optimal in Doy withb k. vasin(4.1) provided a = 11.
We prove this in two steps. First, we show that

Theorem 4.2, 4* is A-better than ary non-binary design in Dy kv, whenever a = 11.
Next, we prove

Theorem 4.3, 4* is A-optimal in @f.k.u if the parameters satisfv a 32 11.

An outline of the proofs of Theorems 4.2 and 4.3: We fix an arbitrary design d: a non-binary
design in @5 ;o for the former and a design in DE, , far the later theorem with &, k, v gs in
(4.1). We nead 1o show that i is A-worse than d* whenever a 2= 11. To do this, we proceed 4s
follows. In the Appendix, we have listed vectors i, 1 % i £ 12 and proved in Theorems A4 and
A5 that each of them is A-worse than v = wld™y, if @ = 11. Therefore by Carollary 2.2, it is
enoogh to show that u(d) is A-worse than vf for some i, 1 < i < 12 This is what is done here.
Now the proof for Theorem 4.3 is quite involved. We first rule out the possibility of 4 having the
replication vector different from d*, [See Theorem 4 4.] Next we take up A;;'s. We show that
if these are too small or 10 big, then 2 is A-worse than ¢+, Explicitly, we find that A; ;s must
satisty (4.8) and (4.10). Thus, there are two possibilities for A3 3: & or A — 1. These two cases are
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handled in Theorems 4.5 and 4.6, respectively. For proving each of these theorems, we have io
kandle several cases separately. Usually, to. show that s(d) is A-worse than some vf, we apply
Theorem 2.6 ot 2.7 on submatrices of A = k. We shall also use the result of Corollary A3 of
Appendix often.

Proof of Theorem 4.2, Consider a non-binary design d € 2y 4 . Let

d = max ;.
legdegn

Claim. [fé < r(k — 1), then d is M-worse thon d*.

Proof of the claim. Soppose the hypothesis is true, Then, a;; < r(k — 1) — 2, for each i. This
implies the following statements.

{ay r(A) < (v — 1){g — 2) and
(b) 3(i, 7) sach thak Jl.jhj S A-—1

Now, (a) implies

p2
> u Sv-2a-2). (43)

i=l1

Furthet, in view of (b), applying (2) of Theorem 2.7 with B = A(i, j), we get u] < 5 — 3. This,
together with (4.3) and (¢) of Theorem 2.4 proves the claim.

So, we assume § = r(k — 1). This means a;; 2 r{k — 1) 4 2, for some i. Thus, by Corollary
2.1,;&‘11' 2 dg.Again,asn £ —1, p:'{ < a — 2, by the same corollary, These, in view of Theorem
2.8 implies that x4 is M-worse than the vecior v12 of Appendix. Hence, the proof is complete by
Lemma A5 and Corollary 2.2.  (J

Before poing to the proof of Theorem 4.3, we oblain a few useful results, the first of which is
trivial,
Lemma d.2. Consider a design d. Fix a treatment |.
@) If r; < r, then either A; ; < A — 2 for some j £ i, or there exist j1, j2, such that A; ;, <

A—lLu=12
{b) If ri =7, and 4;; > (respectively, <) A for some J., then there exists I such that A;; <

(respectively, =3 A,

Lemma 4.3, For any d, ,u.i' Za-+ 1

Proof. W.l.g., let us assutne that the replication numbers of J are in the increasing order.

Case 1; The replication vector of £ is differeat from that of d*.
Then, ry, > r, thatis r, = v + 1. Now applying Corollary 2.1 withi = u,wegct,u;f a4 2,
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Case: 2 (Remaining case); The replication vector of J is same as that of 4*.

By (a3 of Lemma 4.2, A1,j < Aforsome j. W.lg., let / = 2. Then, by (b) of Lemma 4.2, there
exist J, such that Az; 2 A 4 L. Now we apply (a) of Theorem 2.7 with B as A2, 1) and get the
required resplt. [

Corollary 4.1. }fﬂI < a — 3, then d is M-worse than d*.
Proof, By (c) of Theorem 2.4. [

Thearem 4.4, if the replication vectar of d is not the same as that of &* then d is A-worse than
d*.

Proof. It is enough to show that if ry +r2 < 2r - 2, then d is A-worse than 4*.

Casal:ry 5<r =2 .
In this case, applying Corollary 2.1 with i = 1, we get u; < a — 4 and 5o the resuit fallows
frem Corollary 4.1,

Case2iri=rp=r — 1. Clearly, r, = r + 1.

First we take B) = A(l, 2). Applying (a) of Theorem 2.7 if &1 > < 4 — 1 and ¢a) of the same
theorem if Ay 7.2 A + 1, we get 41 < o — 3 and we are done by Corollary 4.1. Hence, we assume
Az =A

Now, we take { = v and apply Corollary 2.1. We gat

,u,f za+2uf{iv-1) (4.4)

Again, by Lemma 4.2, there exist f 2£ 1,2,7 & 1, 2 sach thatd) ; SA—landaz; < A—~1,
We choose By = A(l, /). Bz = A(2, ). Now applying Theorent 2.7(a} and using (4.4} we find
that vl <™ w(d). DO

In view of the preceding theopem, heaceforth we assume that & has the same replication vector
as d”.
Next we obtain bounds on 2;,;7s.

Lemuna 4.4. If one of the following conditions holds, then d is M-worse then d*:

(@) [X; — Al 2 3, for some (i, /).1, 7 > 1.
(B) A~ Al =2, forsome j > 1.
() AL =A =A—1, 7 =2 forsomel, j = 1.

Proof. In view of Coroliary 4.1, it is enough to show that 1] < 2 — 3.

Suppose condition (a) holds. Taking B, (respectively, Bg) = A¢, J) if A; j < (respectively, >)
A and applying (a) (respectively, (b)) of Theorem 2.7, we get the required condition.

Now suppose condition (b) holds. Recall that ry =+ — 1, so that @y, | = r(k — 1) = 2. Pro-
ceeding on the line as above with A(1, §) instead of A{i, j), we get the result, _

Fipally, assume condition (). We take B = A(l, 7, 1), 311 = (2, —1, —1}7. Now, applying
(a) of Theotem 2.7 we get the required result, [
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In view of our findings above and Lemma 4.2, we can assume wl.g., that :
AMz2=A1a=i—1, Az3<A. {4.5)
Wlg let f =21 = 3. Then,

Lemma 4.5. If |A; ; - | = 2, for some (i, j). 1, j = |, then d is A-worse than d*,

Proof. We shall show that if the condition holds then, p(d) is M-worse than v1, Now, suppose
the condition holds. Then, by Lemmad.4,3; ; = A ~2o0rk + 2.

Case L: Jl.,i.j =\-2
Applying (b) of Theorem 2.7 on C = A(i, j) we get

uh 2 a+ 2/ 2. (4.6)
In view of Lemma A4, it is enough to show

!
Y onikta-2), I=1,2 “n
J=1
Case L.1: {i, j} = {2, 3.
Then we choose By = A(1,2,3), x11 = (2. =1, - 1)T and x1 3 = (0, 1, —=13T. Applying (a)
of Theorem 2.7 we get (4.7).
Case L.2: {i, 7} and [2, 3} are disjoint. Ther take [ to be anyone int {2, 31
Case 1L.3: {{, f] and {2, 3] has cne element in common. Take ! to be the element of {2, 3} which
is notin {4, j).
In both Cases 1.2 and 1.3 we take By = A{(, j) and 8, = A(1,!). Clearly, By and B; are
disjoint. Now taking x; | = x2.3 = {}, — )T and appying (a) of Theorem 2.7 on By, Bz, we find
that {4.7) holds in these cases also, So, the proof for Case 1 is complete.

Case 2: A; ; = A+ 2. I {i, j} = {2, 3], then we are done by Lemma 4.4, So, agsume [, j} +
{2, 3}

We take Cases 2.2 and 2.3 exactly like 1.2 and 1.3, respectively, and chose [ as there. Let m be
the other element of {2, 3}. Taking Bo = A(i, j), By = A(1, 1}, x1.1 = (I, —1)¥ and applying (b)
of Theorem 2.7 on By, By, we {ind that (4.7} holds. Again, (a} of Theorem 2.7 on By = Afi, j)
yiglds (4.6). Hence, we are doee in this case also. O

In view of the above, we azsume the following.
Fori#j, i.j>1. Aje@a-1Lr+1}L (4.8)
Using this, we are able to extend Lemma 4.2 as follows.

Lemmia 4.6, Fixi 22 LetS=[jFi:d;j=r~1landT = (j i 4;; =L+ 1). Thenthe
sizes of S and T agre equal.

For X ;'s, we ¢an say more as shown below.
Lemimad.7. Let S = [{ : Ais =4 — 1). ffthe size of 8§ is 2 3 then d {s A-worse than d*.

Proof. Suppose |§| > 3. Wilg.. let § = {2,3,4,.. ). 1A, ; = A + I, for some {, j € S then we
are done by Lemma 4.4. So, assume A; ; < A. Further, replace S by its subset = {2, 3, 4}. Let s be
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the number of pair (i; j) suchthathy; = A — i, Then, s =0,1,2, or3. We take B, = A(1,2,3 4
and apply Theorem 2.6. We get

,u,:’ =da+ 14572, {4.9)

Now, we consider the different values of s. In each case we apply (a) of Theorem 2.7 with By as

above and #, = 1 or 2 mutually erthogonal vectors among which x; = (3, —1, —1, —1)T is one

Thus, for every s, '
l-\‘-;r & a—3+s5/6.

50, in view of Corollary 4.1, if 5 = 0 then we are done. If 5 = 3, then the inequality above together

with (4.9) vields that ge{d) is M-worse than v2,

Now we comsider the cases s = | and g = 2, We agsume, w.lg., thatdiz g = 2 — L whens = |
and Ag3 =Aza=A—1whens =2 Letxy = (0,2, -1, ~1)T, 23 = (0,0, 1, ~1)7. Now we
apply Theorem 2.7, with the vectors x;, x3 if s = 1 and xy, x2 if ¥ = 2. We find that pid) is
M-worse than v4 if ¥ = 1 and o7 if ¥ = 2. S0, our proof is complete. []

In view of the lemma above, we assume the foltowing:
Apg=Aa3=Ah—L A=k j2d da=doci-1. (4.10)

Thenrem 4.5, a7 3 = ) then d is A-worse than d*.

Prool. By Lemma 4.2, 3y, jzsuchthat 4y ; = As 7, =4 + L.

Case 1: j; = j». Wlg. let j; = 4

By Lemmia 4.2, 3)3, ja such that A4 ; = A4 j, =X ~ 1. Wlg, let js = 3, j; = 6. Bui then
Af suchthatAs r = A+ 1.
Case 1a: j = 2.
Case Ja.l: Azs =4 — 1. We ke B, = A(1,2,3, 4, 5), xt1 =4, -1, -1, -1}, —nT, X3 =
©,0, -1, -1,2)T;: By = A(2, 4. S)and x3| = (2, -1, —1)T. Now, applying () of Theorem 2.7
on By and (b) of the same theorem on B; we get the following inequalities:

! i
Z ﬂ}r L Z i
=

=1

@-‘.l = a+ 5/3.

Herel =1,2, 2y = a —5/2 and 73 = a — 5/3. 50, by Theorem 2.8, v3 <% (d) and this case
i= settied.
Case 1a.2: 33 5 = A In this case we take By asin Case la.1, xyy = (8,-3,-—3,-1, - ])T-II,?J =
(0,0,0,— L, )T, 8 = A(2,3.4,5), %2, = (1. 1, —1, —=1)T. Now, proceeding as before, we get
vT <% n(d) and we are done with Case 1a.
Case I'h: j > 2. This means j > 5.

We take B = A(1,2,3), Bx = A(4,5,6) and xy t = x3, = (2, —1, —1)T. [n view of Cor-
ollary A3, we assume x5 5 = A, w.l.g. Now, applying (a) of Theorem 2.7 on B;, B2 we get the
following inequalities:

: :
Sul<d> a 1=12 411

i=l1 i=1

Herezj =a — 8/3, 22 = a — 4/3.



§. Bagcfi / Linear Algebr and its Applicaiions 417 (2066} 8-30 23

Furiher, we take B3 = A(2,3,4), x3,1 = (—1, —1, )T, By = A(5, j). Now, applying (b} of
Theorem 2.7 on By, By we get

Zj’ th m=112, .12

i=l

where wy = a +4/3 and wy = @ + 1. Thus, by Thearem 2.8, vb <* pi{d). Hence Case 11is
sertled.

Case 2: j| # jo. Wlg,, we asssume jy =4, jz = 5,

If 434 = A + 1, then we are reduced to Case 1. So, let Aa g = A or A — 1, wl.g. Similarly
Aas=AOrA—L
Case 2a: Alleastone of hasand Asqis A — 1. Wlg, letAyy = A — 1.

Caseln.l:iy s =4+ 1. Wetake B;, B) and x),; some asin Case 122, butx) 3 = (1, =1, 1, — )T
and x3 1 = (1, =1, =1, )T, Then, proceeding along the same lines we get the same mult as in
Case la2.

Case 2a.2: iy 5 € b We take By as in the preceding case, x1 ) = (2, -1, —1,0,0)T X1 =
1, 1,1, —TL. Applying (a) of Theoremm 1.7 on B) we get an equations like {4.11) with
1=1,2 the same z; but 23 = a — 3/2.

Fu:thf:r, we take By = A(2,4), By = A(3, j). Now, applying (b) of Theoremn 2.7 on Bs, B4
we gel two equations like (4,32} with wy = ws = a + 1. Thus, by Theorem 2.8, v <" pid).
Hence Case 2a is seitled.

Case2b: do5 = A3 4 = 4.
Case 2b.l; Ays =L+ 1.

ji. jasuchthat s 5, = As j, =4 — L.

Wetake B) = A(L, 2, 3), By = A{S, j|. j2).Inview of Corollary A3, we may assume 3., » =
A w.l.e. ﬁppl}rmgthesamn:argmmas m Case 1h get the same system of two inequalities. Nc-w we
wke By = A(2,3,4, 5),x3) = (1, =1, =1, )7 and apply (b) of Theorem 2.7. We get it} 2 3/2.
Now, using Theorem 2.8, we have v3 <™ p(d).

Case 2b.2: 0,5 =i — L.

We take B) = A(1,2,3,4,5), x1,; = 2,- 1,=L,0,0T, x(2 =@ 1,—1,1, -7, B =
A(2.3,4,5), xra) = (1,1, =1, =1)7. Then, applying Theorem 2.7: (a) on By ard (b) on By
we find v5 <% u{d),

Case 2b.3; M4 5 = A. We take By, xy 1 as in case 1b. Now, by Lemma 4.6, 3§, ! such that 4 ; =
A—landds;=24—1.

If j =1, wetake By = A(4,5, j), xo1 = (1,1, =2)T.IF j £ I, we take By = A&, j), Ba =
A(S, ). We apply (a) uf Theorem 2.7 on By, B; in the former cake and 8, Ra, Bs in the later
casc. We obtain (4,11) with the same 71, In the former case we have the same range for{ and z; =
a—4/3 Inthelater.f = 1.2, 3,70 = 73 = a — |. Next, we take B4, A asin Case 22.2 and get the
saIne equations. Combining these, we see that v9 <" w{d) il j =1 and 910 <* u(d) otherwise.

The proof of tius theorem is now complete. O

Now we consider the remaining possibility in the next theorem.
Theorem 4.6. Ifh2 3 = A — | then d is A-worse than d*.

Proof. By Lemma 4.6,3)), fa, j3, jasuchthat by ; = Az, =Aa ;= d3j, =A-+ 1
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Case 1; Ome element is comnton between { fy, jzland {3, jal. Wilg. et jy = h = dand j = 5.
By Lemma 4.6, 37 such that A5 ; = A — L

Case la: j > 5. Take B) = A(1,2,3,4), 111 = (3, ~1, -1, _”Tva-’fl.l = (0,1, =1,)T, By =
A5, ), Ba = A(2,4) md By = A(3, 5). Applying (a) of Thearem 2.7 on By, By we sec thy
(4.11) is satisfied with = 1,2, 3, z;1 = 0 - 8/3, 22 = 23 =@ — 1. Further, applying (b) of the
same theorem on B3, By we find that {4.12) is satisfied with the same values of wq, w1, Thus,
V9 <" p{d). Hence this case is settled.

Case 1b: j < 5. This means j = 2. We take By = A(1,2,3,4,5), x,1 = {4, -1, -2, ~1.0T,
x12 = (0,2, 1,0, —1)T. Applying (e) of Theorem 2.7 on By we see that (4.11) is satisfied
with! = 1,2, z1 =a = 29/11 <a —5/2, 22 = 2 — 5/3. Again, taking B; = A(2,3,4), x; ; =
(1,1, ~2)T and applying (b) of the same theorem, we get (4.12) withm = 1 and wy = a + 573,
Hence, v3 <Y (4 and this case 11 alsa settled,

Case 21 No ¢loment is common between {f1, 2} and {4, ja). Wlg., we assume j) =4, j, =5,
hA=6Ja=7

In this case, we must have
Aaj X, JEIGT], {4.13)
a5 otherwise it will be same as case 1.
Sicnilariy,
Ay €2, Jjel4,5)L (4.14)

Now, we take By = A(2.4.3) and B2 = (3,6, 7). In view of Corollary A3 we can assume
3.4'5 = 15_1 = A. Then, appl:nng Theorsm 2.7 on By, X1,1 = {2, —1, -I}T; Bi, X311 =X, We
get the following equation;

m
3wl zm@+4/3; m=1,2. {4.15)

i=l1

Case 2.1; 1314 =41
Case 2lat Age =21 + 1.

Appling Lerima 4.6oni = 6 we find that 3f, i such that Ag; = Agpe = A — 1. Wig., we may
assume that ! £ 2.

We take Bs = A{1.2,3,4), x5, ={3,-1,—1, - )T, x32 =0, 1, -2, DT; By = A(6. D).
x41 =1L, 13T, Now, applying (a) of Theotemn 2.7 on B3, B4 we get eguations similar to
@1y withI <3, 21 =a—-7/3,22=a — 5/3, 23 = a — 1. These, combined with (4.15) gives
v10 <" p(d). Hence this cass is settled.

Case 2.1b: Jg 5 < A,

We take B3 = A(1,2,3,4,6), x31 = (2,1, 1T, x32 = (1, —1. 1. —1)T. Application of
(a) of Theorem 2.7 on B3 yields inequalities similar to (41N withi =1, 2. z1 =a— Tl =
a — 2. [Recall that A2 ¢ < A.] This with (4.15) says v11 ~® u{d). Hence this case is also settled.
Case 2.L 431 4 = A [In view of (4.19), this is the Iemaining case.}

Case 220l =141,

We take By = A(1,2,3. 4, 6}, A3l = 4, —1,-1, -1, -I}T! X372 = {0, 2, -1, '_IJT we
get (4.11) with ! £ 2, 2y =a — 13/5, z3 = a — 7/5. Now, using the fact that {a - 7/3.2~
5/3) <* (@ — 13/5, @ — 7/5) wgether with (4,15), we see that v10 <" ;(d) and the proof is
complete for this case.
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Case 2.2b Ja 6 < A

let? = A —dg6. 50,7 =00r 1. Wetake By and 13,1 as in Case 2.2a and x3 2 = (0,1, —1,
1, —1)T. Then, procteding in the same way as that case and using the fact that (g — 7/3, 2 —
5/3) <% (@ —35/2,a — 3/2), we find that if ¢ =0, v10 <" uid). T ¢ = i, then wll <¥ uid).
Thus this case ia settled and hence the proof of the theorsm is complets. [0 .

5, Constriuction

In this section we present an infimte series of designs d* [see the statement following (4.1)]
with 4 = 1.

Notation 5.1
fa} pisanodd mteger, say p = 25 + 1. P is the setis the aet of integers moduolo p. P* = P\{0}.
i I=100,1,2).
iy Vo=1 x P,
{d) ¥ = Vo LI lor, B} is the sa1 of treatments.

We first constict a Steiner tiple (d} on the treatment set ¥ as follows.

letf={B:1e Pl B = {0 (0, —1), (1,0} and € = [0, 0), (1, 0), {2, M}, Clearly,
1B = § - d will consist of blocks of two types. The biocks of type one are generated by adding
(i, /3 o each member of B and those of type two by adding {0, j) to €. Here the addition is
mod 3 for the first and mod p 10 the second ce-ordinate, Thas, 4 has 3sp blocks of type one and
p blacks of type two and hence alingether b =35p+ p = Gs? + 55 + | blocks.

Theorem 5.1, * with ). = | exists for ali 5, whenever P* defined above can be partitioned into
wa sets Q, R Such by |Q = |R| = sandforeveryu € O, 2u € R.

Proof. Let us assume the condition on . We constnet * from o as follows, We take a certain
subclass cansisting of p — 1 blocks of type one and all the p hlucks of type two. We replace each
ane of these 2p — 1 blogks by two blacks. Finally, we add the block

{{1,4,(2, 0, =],
Thus, we get #* = b +2p — 1 + 1 = 657 + 95 + 3 blocks. We now describe the proceduse

tor replacement
For j € P, the block (0, j), (L, /), (2, /)] of type twa is replaced by the pair of blocks

{0, 3. (1, f), «f and [(Q, /). (2, 7). B), if je QU{O}
and
((3, /3,12, f), e} and [0, f), (L, ), B}, . ifj€R.
Now, let us consider the following set L of p — 1 (= 2s) blocks of type 1 of 4.
L={L;,'te P L:={(1,00.(1,2), (2 1}
We replace L, by two blocks, say D, and E;, which are az tollows:

Dy = {(h,0), (1,1, (2.0}, t€Py

E — [{lrz‘t}r{ﬂﬁrjl II] ifr Q,
=1 (L20. 2.0, 8] ifre R
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It is easy to venly that

(i} gvery pair of treatments of Vg appear together exactly once,
Y & ocours twice with (1, 0) onee with all other reatments of 1,
(i) B does not oecur with (1,00 and it occurs with all other tcatments of Vy exactly once,

(iv) e, B do not oceur together,

These completes the proof of cur theorem. [

Bemark 4. Begarding the partitioning of F* in Theorem 3.1, we observe the following, Suppose

P15 a prime or d prime power.

Case 1. 2 is not a gnadratic residue Je.g.: p = 11,13, 191, then we may take ¢ as the sef of
quadratic. residnes,

Case Z; —2is a primitive element {e.3., p = 19, 23). Then, @ = {Le, ..., (o) 12} o - 9

satisties the condinon.

We have also checked that the required partiton exist for other odd imegers p < 23, 2xcepi

for p =1,

Wenow present d* for s = L. Thishas v = 11,6 = 18, r = 5, k =3, & = 1. The tseatment

setis |00, f). 1, j =0, 1, 2} L {=, B} Blocks arc a3 follows:

. 1)
(0; 2)
(0,
(1, 1}
(1.0}
(1.2)
(L0}
(1,1
(2,1}
{2,2)
2,0
0,09
(0, 0)
©,1)
(0. 1)
0.2
0.2
{1,

0, 2)
URY
)
{1, 2)
(1, 1)
(2, 1
(1.2
2.
(2.2)
(2,0}
(2,1}
(L, 0)
2,00
{11
(2. 1)
(1,2}
(2, 2)
(2,0}

(1.0
(1,1
(1,2)
(2, 0
{2, 1)
o

(2,2)
B

(0. 0)
. 1)
(0,2

R R R R

Remark 5. The design presented above is A-optima) by virtue of 'Theorem 4.1.

3.4. Concluding remoark

So, far we have secn two series of designs with specaum and w(C ) satisfyving Jacroux's [2]

conditions (sec Thevrem 3.1). These ure gy of MS and J*
spectrim of one i3 the “oppasite” of the other:

ol this paper. It is interesting that (he
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spectrumiiC; | = (a — Da"(a +3), (5.1}
spectrimikCae | = (@ — 3a” (g + 1), {5.2)

dy hias a comparatively bigger value of its minimum eigenvalue and consequently satisfes

general optimality (within the binary class) while 4" dpes not seem 10 be likely 10 satisfy gemeral
aptimality.

Now, does there exist 8 design with spectrum
(@ —2)a"(a +2)7
If it does, then it is very fikely to be type 1 optimal as the proofs of this paper indicate.
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Appendix A

Consider two non-pell » = 1 vectors x, ¥ To show x is A-worse than v, we need 10 show
¥r.y > 0. [Recall (2.6).] So, we express w, y in the following form:

R
Yoy = E npep{ )",
=1

Here Dp = [-’-‘p:r’p}"!.i-'p = ¥p — Xp und .y, is the mmmber of terms in 4, , of the form (xp}‘l -
(3p)" . Note that we are using the same notation: for expressing different ¥, s since it will be

clear from the context. Moreover, Dp’s are arranged in ascending order excepl in Lemmas Al
and A2.

Lemma Al. Suppose | is an integer, € = -£1 and #1, & are positive real mambers satisfying
(f+ ey =1 +2/3, :
IFa>4and ny, 12 € 1/12 then x = (a — (@ -- ey)! is A-worse than y = (a — 4¢/3)(a —

Proof, We note that ¢ = 3¢, W IhDif(a — €)(g — eiy) = (e)P[{2 = 36)(1 = 1y ){q —
4¢13) — (4/3 — £2)(a — ei1)] which is > 0 under the given condjtions. O

Lemma A2, Let i, € ard {1, 12 be as in Lemma Al except for the relation between ] and &, #
which is as follows:

4+ 1 =1In —2/3
Ifaz Sthenx = (a — )2 {a + en) is A-worse than y = (a — 4¢/3)la + er)’ .

Proof. We nole that o* = 3y , Dy DaDa/f{a — €)@ + et} = (2 + )] + 1) (a — 4¢/3) —
{4/3 + t5){a + 7). T is easy o see that this is = 0, under the given conditions. {7
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Consider a neal symnetric matrix 4 of order » with constant diagonal element 2 and of the
Tolowing form:

a4 € f
Ay 4]
4 = - = .
[fBl}T Az]' 4 I:E T E]
wheree x4l andt = O or £1.

Coroliary A3. Suppose the matrix A described above satisfies the following conditions:

(@) A et m w1 veeror 2. m £ 0 — 3 and an integer b < m such that the eigenvatues of A,

satisfles the following inegualities:
4 I

Y c) o 1€5<h

i=] J=i

and

! 4
Y oufadz Y . 1SiSm-h
f=I =
M Lets, =Y m.8i=5+2(@a—e)—a(im—2) and &y =5, + (g — e/ —a(m - 1)
satisfy the conditions given below:

(1) & amd & has the same sign and
(i) max(lé | 8z € /12, wherel = —m = 2.

Then p{A} isr A-bestift =0,

Proof. Let 1) = {2, —1, —=D)T and x3 = (0, 1, —1)7. Now we apply Theorem 2.7 on B [(a) or
() depending on the sign of €], the corresponding vector(s) being xy if t =0 or —¢ and ¥y, x»
if r = e. 1t follows from Theorem 2.8 that i the former case x¥ <™ u(A)Y and in the later case,
y* <" u(A), where x* = (x|z), y* = (y|z). Here z is as in (a)} and the vectors x, y are as in
Lepwna A1 (respectively, Lemma A2}, if the sign of §; is the same as (respectively, different
from} «.

Now the result follows from Lemmas Al and A2, O

Now, we list a few » % 1 vectors vi = (vij, #iz, ..., vig) +, 1 € € 12 [see Notation 2.1).
Onr aim here is to show that if @ is not too small, each vi is A-worse than v0 which is the same a3
pu{d"), when r = v — 1. [Recall Definition Z.6.] We shall use the notation ¥, ; in place of ¥,y
when x = of and y = vj.

Notstion
(0) 90 = p(d*) =@ =3 a"2(a + 1)
(1) v1 = (@ — 2Xa + " Ha +2n/(n — 1)), where (n — 3 =8 =2/(n —1}.
(®) u? = (a — 5/2a — 1Y%a" a4+ 5/2).
(3) v3 = (g — 5/2¥a — 5/3a + H" (@ + 5/3), where (n = 3}t = 1/2.
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() vd = (a — 17/6)a — 1)(a + D™ 3{a + 3/2), where (# — 3)r = 1/3.
(5) v5 = {a — 8/3a — 4/34a + " 3(a + 3/2), where (8 — 3r = 1/2.
(6) v6 = (a — 5/3)a — 4/3)(a — )" *(a + L}(a +4/3), where (m — 4% = 173,
(1) vT = (a — 8/3Ha — Dig — 2" 3a +2), where (n — 3)t = 1/2.
(8) v8 = (a — 8/3)(a — 3/ (a + 1) Ha + 112, where (n ~ 4% = 1/6.
(@ 19 = (@ — 8/3Ha — 1%z + 1" (a + 1)2, where {(n — 5)t = 2/3.
(10) v10 = (a —~ 7/ — 5/D(a — Vg +1"3(a + 4/9%, where (n — 5)1 = 1/3.
(1) w1l ={a —~ /N — Dla — " Ha+ 4/3)2, where (n — 43t = 1/3.
(D v12=(a —2)a— 2a,where (n — 2t =g 2 2. .

Theorem Ad. v0 is A-better than vl if either of the following corditions are satisfied: (a3 12,
ija=n+13 10

Proof. yi.0 = D;' — D' — (D7 — D71, where Dy =(a-2a—-3), Dr=ala-2),
D3 = ala ~ 1), Dy = (@ + 1t + 2 + 5). From this, afier simplification, we get vy oD D2 D3/
(a — 2} = Za? — 22a — 12 + &(a + 1}(a — 6), which iz clearly > 0 ender condition (i}. Under
condition (i), §(a + 1) = 2 and together with ¢ = 10 makes the expression above = 0. Hance
the result. O

Remark 6. In the application, a = v =x5 — ] [see (4.2}], so that condition (ii} is enough. We
have presented the lemma in the form above to shaw that the resnlt holds even when there is no
telation between a and », provided a is hig enough.

Theorem AS, Ifa = 11, then vQ is A-betfer than vi, 2 <01 < 12,
Proof. We prove the rasults in four steps:

{a) v0is A-betterthan vi, 2 £ I < 5, i = 9andi = |2 whenevera = 11.
(b) vS is A-betler then wi, 6 < § < B, whenevera = 7.

{e) 1913 A-better than »10, whenever ¢ = I

(d) vb is A-better than vll, whenevera = 7.

(a) Take i = 2. We find that w* = 2y nh DalDy = MDDy — Do) Dy ~ (D — 04)D4, where
Dy=@a-—3Na-5/2), Dy =afa—1), Dy=(a+ a+5/2). Now, since, D — Dy >
9q/2 > D — D, ¢* = 9aila® — 10z + 10), which is > 0, whenever 2 3 9.

Next, we observe that ¢; gis T ine, i = 3,4, 5, 9, Thus, ¥; ¢ = ¥y 0ff =0} and w.lg, we can
putf =0in o6 =3,.4.5.9 _

Now we compare v3 with v0. We observe that 6yrs pI) D D5 = ¥* = —3IR(Dy — Dy) +
Dy — Doy + 4(Dy — D) Dy, where Dy = (a —3)a — 5/2), Da = ala — 5/3), D5 =42,
Dy =f(a+ 13a+5/3).

On simplification, y* = 85a° — 2% + B0 4 S0 which is > 0.ifa 2 7.

Next we take up vd. We define * = & 0D D2 D3 Dy, where I = (a — 3a — 17/6),
e =ala—1), Dy =a2, Dy = (a4 Dia+3/2).

On simplification * becomes > I—fqaj — 67a?, which is > 0 whenevera = 9.

Mext member is v5, We find that ¥* = Ovrs g D1 IR0 IRy > %aj — 9z + %gaE' + 10622 +
48z, which is > [, whenevera 2 L.
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Now. we look at 9. Here y* = Syp 0 D1 D225 Ds = 0’ - 400* + 18243 1 1602 which s
>{), whenever, ¢ > 11.

Finally, we consider v12. We see that ¥* = ¥12,0D10; > 2Dh — Da, whichis= a2 - {10 —
Haz + 6and 5015 == 0ifa > 10. Hence, the proof of {a) is complets,

(b) In the comparison between v with u5, wetake fy lobe ¢ of Wl i = 6,7, 8and #y = { of
L3, Since ¥; ¢ is increaging in #; foreachi = 6,7. 8, wecanput 12 = 0, wlg

First we compare vf with v3. We define % = g 501 D2 D3 where Dy = (a0 ~¢)a; 1 =
(@ + 1a; D3 = {a + 4/3)(c + 3/2). [tis easy to chack that ¥* > 0, whenevera 2 Q.

Next, v7 with v5, We define ¢* = Gy s Dh D Dy,

1t is easy to check that the coefficient of # in " is always = 0. The part of y* fres from 1 is
Bal(a — 7)+ 132" — ¥a + 15 which is > O, whenevera > 7.

Finally, we comparc »8 with v5. Since s ure in ascending order, 6yy sD{ Dy > ¢~ =
(D2 ~ DAy + 3(03 — Dy Dy +(By — D3) D Da.

On simplification, ¥* > (4/3 — 28))a — 11/2. Since 1y < 1/6,4* = D, whenever ¢ > 6.

(¢) We.put t; = ¢ of w10 and t; = ¢ of v9. We define " = oD D I3 0,

Now, since 82 € 1, D1 < afa -+ 1}, so that Dy — Dy < 6(g — 1}. Again, Dy — D, =
Ja — 143,

Simplifying the expression for y* using the relations above, we see that ¥/ (2a(a + 1)) >
2a® — 1942, which is > 0 whenever a 3= 10.

{d} On simplification we find that ¥* = O ¢ D D23 > 126% — 00 + 1024, which is
=»{) whenevera = 7. O
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