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INDICES OF GROWTH
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SOMMARY, In this paper an attempt la mede to eoneiruct an index of growth from 5
geries of obhzervatione on en aconomic variable. Foous is given to the axiomatio approsch baesed
o gome norms snd properties—ealled axioms—which a gopd index of growth should satiefy,
The statistical approach hesad on regression prineiples is also discusssd and the derived for.
mulae are compared with those gblgined from the axiomatic approach. Fuarther. the oase of
non-squidistant observadions is alao tackled through the axiometic approach and a genaralized
formula for ths index of growth has been derivad by invoking an azicm concerning time factor.

l. INTRODUCTION

One of the common measurement problems in sconomic analysis iz thot
of rate of the growth of an economic variable over a period of time. For
example, one may be interested in cxamining whether one state is in a better
position at a certain point of time compared to another state so far as the
growth of agrieultural production, eay, is concerned, considering the agri-
cultural production data for the past ten years (say} of the two states. To
angwer this type of questions what we need iz a snmmmary measure of growth
rate, The growth measures enable uz to oompare between two time series
data of different regions or of different time periods.

The purpose of this paper is to focus on the necessity of a rigorous analysia
towards congtruction of such a measure and to discuss different ways of arriving
at indices of growth which fulfil certain basic properties.

Tet © = {z), &y, ..., %,} denate a series of observations on a partioular
economic variable at time points 0, 1, ..., # respectively, considered in a
backward direction (i.e., #, is the observation at the present time point, x,

at the previcua time point and se on, the time points being assumed equidistant
for the time being),

If we forget the intermediate values my, &y, ..., 2,.,, then we ean think
of an index
r = (mpfa,)in—1, e (1)

which is essily established assuming that the growth rate is uniform during
this period, and then one gets

g = Ep(14-r)? e (2)

AMS (1980) subject elusaifieation : 90ALD.
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where r I8 the rate of growth. This is a highly simplistic way of finding
the rate of growth which does not consider the intermediate values. For
example, the sequences

{8,4, 2,1} and {8, 8, 8, 1}
should not be considered same so far as the hmplicit growth pattern is con-
cerned. This is becauss the first sequence shows a steady growth pattern

compared to the second one. The magnitude of growth rate, however, de-
pends on how one gives weights to the recent time points.

In what is discussed above we have used words like steady growth pattern
et¢., which are very difficult to define and hence call for a rigorous analysia.
The basis of ealeulating rate of growth through ratios of consecutive values

is, however, unambiguous ie., for two periods 0 and 1, we have no doubt
that the rate of growth will be

¥ = afit,— 1. .. {3)

Once we acoept this as our basis, we must first make ourselves mure that
Tos Xy, ...y ¥, are all positive and second, that the index lies in the interval
{—1, oo).

In the next section we diseuss the case of cquidistant time points and
derive an index of growth by utilizing some desirable axioms. Next two
sections extend thig formula to non-equidistant time points, Econometrio

estimates of growth index have also bheen found snd compsred with those
derived from the axiomatie approach.

2. THH GASK OF BQUIDISTANT TIME POINTS
Let E o= {®y, Ty vy £}
where z € N, the set of natural numbers, = is & typical element in R where
Ry} is the strictly positive orthant of the Eudlidean (n+1)—space Rw+l,
Consider .
D= ) R,
mrtii{l} -
For any function F : D'— R we denote the restriction of F to RV by Fat,
An index of agpregative growth ie a function I : D— {—1, m).
We ehall now state a number of propertiee which may be regarded as

intrinaio to the concept of & growth index. These properties seem to be appesl-
ing within a quite general framework,

(i) Normalisafion aziom : For all (n+1) e N—{1},
I {p1ai) — N {
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whers 741 ja the (n+1)-coordinated vector of ones-and ¢ > 0 is & scaler, 1.,
if the value of the sconomic variable concerned remaing same over the time
period, then we have a zero growth rate.

(i) Homogeneity of degree zerc or dimensionality axiom : For oll (n11)
¢ N—{1}, for all # ¢ B} and for all scalar A > 0,
oA ) = In¥{z), .. (5)

i.e,, if the values are multiplied by a positive constant then the index remaing
unchanged. In other words, the index is invariant under change of unit. This
axiom, essentially leads the growth index to a function of ratios of observations.

Sines the growth index is a funetion of observation ratios as implied by
the dimensionality axiom, we ean think of the index ss & fanetion of basic
indices. That is,

il wy o m,) = I T o T4 .. {6)

where Jy=1T {2;_,, 24} = #;_;fay—1. If these valuen are same for sll the periods,
{eay c), then the overall index should remain same a3 c—1. In other words

(iii) Identity extom: For any ¢ > 0 and for all {n+1}e N—{1},
Intifen, v, | g, 1) == c—1, e (M

ie., if the relative change in the values over time takes place along & ray of
constant proportion, then the index wvalue is equal to the proportionality
factor minus one.

We shall introduce another axiom which involves multiphication of two
geries,

(v} Multiplicative identity axiom: For all {n+1) e N—{1} and =, ' ¢ R,
g, 2, o 2o = (14A) (1A~ 1, e (8)

where A, = I+l fp, 2 .. =) and Ay = Int {5, ], ..., 2}. The motivation
behind this is simple. Consider only two points of time 0 and 1. Define

Ay = I{zg, 21} = Zofy—1

and r r ¥
Ay = Timg, ¥} = Tyfay 1,
then A == Ila 2, £}
_ Ty _)
s
= {1-+-Ay) (1-4+-Ag—1.

(o .. 144 = (142 {14 X,) . (9)
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I wo call 1--A the expension ratio, then expansion ratie of the sombined
gorfes ia the product of the expansion ratios of the individusal series, The
jdes becomes clear if we oomsider the following example :

Suppose the population in an economy inareases by an expansion ratio
¢, and the consumption expenditure of each person inereases by an expan-
gion ratio ¢, then the expansion ratio of total consumption expenditure
in the economy is the product of the two expansion ratios.

The following theorem gives the growth index formula which iz a direct
gonsequence of axiom (iv).

Theorem 1: The ondy non-trivialt growth index thal salizfles mudliplicative
ideniity axiom ta given by

H
142 ) = i 11 (aeyf) -1

= 3 ﬁ (14+2)%—1, e (10)

gl

where Ay = xi,f2i—1 and af's are given conglants,
Proof . Let, for a fized »n

fp)=0Dpp ....0}, p>0. e (1B
Now, by multiplicative identity, we have
1-Hf(pug) = (L-Hf(p)) {1 -Hf(pa))- e (12)
Defining 14-f(p) as gip), we have
gloape) = (1) §(wa)- e (18)
This is a well-known Canchy functional equation whoee solution is given by
gip) = " v (14)
for any constant my,
Thus, Intlin. p, ..., p} = o1, (18)
Again, define Ap)=I"{Lp, .5}
and g1(p) = 1+/\(p).

1 There sre two trivial growth indices satisfying axdom (iv), These are T = O or
f= —1. 7= is however, & special onse of {10} which can be verified by putting &1l a; velues
0 2era.
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We apply the same argument to get
Ml p Lo =p"—1 e (18)
By repesting the same arprment, we have,
{5, L, .., 0 =pt—1
611, ) = e
Now 1414 g, 2y, .., 2.}
== Yh T84 Ty, &g 2y faty, .o, 2o, g}
= [A- I8 g, 2, ., b LT ], 2y /oy, o, $T0}]

7o [L+To0 {1, myfa, 2920, g, ., Tl )

oy frey” 2, {2,

= SO I, ey ey frg I (L, 1, 2yl ..y 2]

= 2o ® (Zyforg) HA-LIVHL L, 1, mafay, .., %200
by repesting arguments
= ST ) © oo (FfTea)
Henoe FEARE L N .

]
= g 11 (wifagoy) —1
=l

i

% 1 a_
%‘El{mf-dm:} 1, e (A7)

where By = My, B = —my F 3> 0. QB.D.

Corollary 1: Awxéom (iv) fogether with mormalisation axiom (i) implies
-ﬂiﬂt ﬂn = ﬂ;

Proof: 14Isttir .., 2] = E“{mj:r}ﬂ‘ {:ufa:}g“. Hence, by axiom
(i}, &y = 0. QED,

Corollary 2 1 Axiom (iz), identity axviom (i) and normalisation™ &&om
together imply thal
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Proof : T#l {cd en-1, ¢, 1}

= ¢ Yerjon) Yor-jen-2)"8 (1)
=o 0 ¥ 1

Hence, by axiom (i) and (i),
T =1  QERD.
Corollary 3 : Aziom (iv) and axiom (i) imply axiom ().
Proof : Bince axiom {iv) and axiom (i} imlply that a, = 0, we have
oo, -1 g} = {o@ofozs) ™ . {62 1fo )
= {mﬂ.lm:l}nl ars {mﬂ'—“’#n]ﬂﬂ
= Iy, #g, .0, A} Q.E.D.
This can. also be proved in a direct manner.
14-Iemy, ey, ..., e2,} = [14+I{e, ¢, ..., o} [1 4+ {iy, 25 oous 2,}]
= 14+ oy, 2. ..., £, QED.

Let us now see what happens if we try to tackle the problem from a
statistical or rather an econometric angle. In the sfatistical approach we
may ssanme the simple relation

2y = (1) 2t 84,6 =1, .0, m e (18)
where A i3 the rate of growth to be estimated. This may be viewed as an
satoregressive model as described in Kendall and Stuart {1968) and Muth
(1960) if we assume E(z) = 0%+, In other words, they consider a time
gerfes which can not he explained by trend, seasonal or any other aystematio
factors. We have, instead, congidered the case where there is a clear trend
in the time series, what we ecall growth. Though fhere are different ways
to handle this type of models, we shall restrict ourselves to the least squares

(LS) and the weighted least sguares (WLS) solutions only., This in fact,
served ouwr purpose as illuglrations,

The LS solution of A of the equation (18) is

1:3,\{1{1‘, . flﬂ]
wy = #}{Z #2. Hence A is the weighted arithmetic average of the basic in-
dices, —reights being proportional to the square of she value of the variable.
Naturally, higher weight is given to the basic indices in the period with &
higher value of the variable, ‘This is not at all desirable so far as estimation
of rate of growth is concerned. According to the econpmic viewpoint, more

B 3~13
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woight should be given to the recent output. The weights should gradually
doorease fowards past values. We can use WLS goluticn to solve this prob-
lem, in which case, we get,

_ ZAaget
A=t
= ZAsb; Ty e (20)
where I = ad Dags,

Since the definition of growth rate involves ratio of two consecutive values,
a more realistic approach would be to take a multiplicative error medel of

type

g = (1-+A) 28 - (21)
and to take logarithms on both sides to get the WLS solution
A = (T (1+A0™ %, . (22)

Observe that, this index is same as the index given in (10) since o, = 0 and
Eay = 1l in equabion (10).

If we take the relation
xy = (1-+AMxedy e (23)

which is & differenat way of expreseing (21), we get tho WLS solution after
taking logarithms on both sides as

% = (Mol 5™ 1, e (28)

Theorem 2 : The colimators given by (22) and (24) are squivalent forms if
arul only if a; ie @ monolonic non-increasing function of ¥. t.e. @y > @y, for all i

Proof : A in (24) can be wrilten as

E £ By /5 42 By
{ =)
I 25y /) —L.
%
Henoe €y = ij iy and & = (@y—ap,)fH ... {20}

asguming that &, =0, Naturally 5 > 04 ¢ imply ap > 094 We
must have the restriction (ej—a;,,}/fi > 0¥ 4, or a4 > ey % 4. It only
remaing to show that
L2 by = Zay.
Now, 2 2% by = Yeyy—ay )8 from (285)
= {ty—tg} - Aag—ag)-t-... +{n—1}a, 4y —a. )+ Ha, —6,p)
= g sihce a ., = 0, Q.R.D.
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. THEE CAHE OF NON-BQUIDISTANT TIME POTNTS

To tackle the situation of varying time points, we muat revise our formula
acoordingly. Let ns aseume that the two series are

{0 Ty -l :t:-l} and {y,, ¥y, ...,yh}
taken af fime points |
(for bty -0 8, } 80 {15, £, 0 8 )

respectively, The primary requirement for comparison is that the time
apan. for the two series are the same. ie.,
tﬂl_tﬁ == tﬂg_tu'

Otherwise comparison becomer meaningless, The second requirement is

the ceteris paribus requirement along with conformity, i.e., the sifuation pre-

valling in the first place must he same as that of the second, so that we can

place {, and ¢, as comparable starting points and can put §, and &, as zero.

Naturally ¢ =+ . The consecutive points in each series however, meed
1 3

not be equidistant,

Assuming thet fhe relation between ap and xp_, is

Ty = ap {1+ )F 8-

in the ideal sase, whera A is the rate of growth ; we have the WLS solution,
after taking logarithma om both sides, as

X = {{mp_qfy) IR oo t® . (26)

This ia & generalisation of our formula in theorem (1) together with the im-
posed constraints @, — 0 and Xgy = 1 as implied by Corollary 1 and Corollary
2. 1t becomes clear if we {ake soms special oases as discussed below :

Casel: Mig—ipy=1%k=1,2,.., nthen
X = {T1 (zp_yfo) 5} 1501
which reduces 0 our originsl formula.
Case 2: Mhpy—ty =r3 k=1, .., n then
% = {IT (mpfoe)™ =1

= {13-2"pir—1,

where A* is the growth index that one would obtsin if the length of time
intervals are ignored.
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Comment 1 : The index given by theorem (1) is an agymmetric funetion
of xy's. It becomes symmeliric when ¢y values are all equal. In auch 2 case
the index ignores all the intermediate values and becomes a funotion of
extreme two valued only {sse Rudra, 1982, 317-320).

Comment 2 : The theorem does not also say anything regarding the
choice of the weights «;"s. There are various weighta which have appeared in
the econometric literature on distributed lag models and gemeral forocasting,
Binee & planner will naturally put more stress on the recent periods an obvious
choice is to take the sequence {a;} 8a a decreasing function of 5, If it is linear,
One May ARUmMe

a4 = 2{n—i{-Dfiam+1)), =12, ..,n e [28)
There can be other choices among non-linear functions of ¢ for specific situs-
tions. Exponential weight ia one of them.

In the other model where

¢
g = (14-2}7 2y ¢y, e (20)
We have the WLS solution after taking logarithms on both sides, as
b
A= {P(x,;m,) j’-"’}“' By .. (300

Theorem 3 : The formula (28) and (30) are equinodent if and only if

(B—ty ey > () Gay
forall i =1,2, .., 0, where fg =0 and a,,, = 0.

Proof : The proof goes in a similar way as given in the proof of Theorem
3. Here the relations between a/s and b,’s are as follows -

L - |
{(—t_3 )0y =¢E; bdi, 1=1,2,...,n;
and -

Also, by = b du—la—tdadfty, j=12 .., %

Ihti= E‘ {‘!{‘f—IJ~1]“:1_‘1(‘J+1—91*3$+1}

= bt —to)ey — & {f—t )y
TEalta—to)ag—ta(ts—fylag

= ;i {fi—it_ﬂﬂ 2y

Eiﬂﬂ-ﬂ, tI} = (} and Gt = 0. QRED,
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4, CHOIOR OF WRIGAT yUROTIONS

The choice of weight functions for ay's and by's are quite subjective except
that by's and ay's must be positive and

Bty 2 Uy —Hay,,
for all 5. Wo can improve the weight function to make it more deterministic
by introducing an axiom. In fact we get an explicit form of b; or rather ¥
as & function of {£. The function however, involves a parameter which intro-

duees some amount of subjectivity. For this purposs we reformulate our
model as follows :

In cur new formulation we view the weight function b; as a function of
3 and not as a function of § only and write it as f(§;). Similarly, instead of
z5, We wrile By

Heneco

n

2 1y flty) log (wofer, )
log (1+%) = ~IZ* -
Z 1 fiag)

ful

Suppose after time ¢ we get & value x_,. Now, this becores our recent value.
Hence, we have

(31)

2 (y+0) flts+o) log (o_ofs, )
log (1+4%) = ¢ . .. (82)
=

(E5+-c) fits+c)

Aziom {v) 1 log (143" =log (14+-N), if 2_, = 1+AF o,
Theorem 4 : Axiom {¥) émplics thal

flt)= % g ot

where @ 18 @ constand.

Proof : Seo Appendix.

By virtue of Theorem 4, we can wrike
T 108 {Fo/zy)
By & .

Further, impossing the restriction that f{2) is & monotonic non-increasing
fanotion of #, we get @ » 0. The restriction

(—t_yyo—{l— )G 2 0,

o (89)

log (14+3) =
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to prove the equivalence, iz satisfied for any non-negative ‘o’, once we define

(—t—y) @y = E flt, 3= 1,2,

Oase 3: a =0, Here, ay = ?:::jl and log {(14+3) can equivalently be
-1
written as
log IT (ay_, fa)n—F4L
log (1-+3 0 1 Wy
8 UHN = S+ D—t)

If, further, #;—#&_; = 1, we have
log {(142) = log IT {zy_ foy#tn—3+0intn+0)

whioch i3 same a8 the growth rate formmla defined for the equidistant eage
when the weight function is chosen ag in (28).

Case 4: When g— o, log [1-!-?1}—} log (myfz, ), ie., it ignores all
the previous observations except the la.atr.

8, CoroLuDING REMABKS

A few remarks on the axiomatic index of growth that we have developed
here ig 1 order. Firat, it may be noted the index of growth as expreseed in
ita final form by formuls (33) ie nofi deterministic in the sense that the value
of the index depends on the subjective choice of the weight function implicit
in the meagurement. We have, however, sncceeded in restricting the weight
function in such s manner that it depends on a single parameter, viz., ‘a’.
Although the range of ‘g’ is wide (and hence it is difficult to choose a specifio
valne of a without inviting criticism}, it gives applied economists a freedom
of being anywhers between most conservative (i.e., when ¢ = 0 is chosen)
to most sceptical about the past values beyond the immediate past (i.e., when
@ = o). Uze of more than one obaervation in the eomputation of the index
is wnavoidable as is evident from the definition itself. BSurprisingly, the
conventional measnre of rate of growth, viz., {z,/x )'P—1 is not consistent as
this does not correspond to any non-negative choice of ‘a’. and this is due fio
the assumption that a4's are non-inereasing,

Next, it is possible to have measure of rate of growth by our proposed
index in cases of missing ohservations as well. In the case of equidistant
observations, one can either treat the missing observations, say, By s Ly 2om Ty,

a8 unknown paramefers end minimize the WLS function with respect
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to Aand &, ..., %, or else we can use the general set up in which consecutive

oheervations need not be equidistant. In either case, at can be demonatrabed,
that the resulting estimator A will be identical, namely

2 byiylog ey

log (1+A) =‘HE""“1:,?”""l o (34)
Z b
4=l
Joty faoanu T
Finally, it may be noted that in developing the index of growth here,
we have congidered a series of obaervations on an economiec ‘flow’ variable
comprising the periodwise values of the variable measured at the end of each
period. In case of economic ‘stock’ variables like the population of an area
or cepital stock, say, the values measured at the end of each period would
be the value of the stock up to that time and not the incremental value for
the period. In such a case, the interprefation of the index of growth would
be somewhat different.

Appendix
Proof of Theorem 4 :

log (14+3%) = ’i (g-Felf(ty-+e) Jog {(1+A)° zy/z, ) '33: (+e)f(ty+o)

E (y-+olfty--o) hog (sofz )+ I ely+)fly-+) log (142
2 (-+o)t o)

log (1+3) by axiom (v).

Henoe,  log (+M] T (6ol fly+o) — = ctrtolfi o))

)

I

=~ 2 (4-0) fltr+-0) logleal,)

2 (ty-+e)f(ty-+o) log (aly)
2 g0y-+0) fltrto

ar, log (1-43) =

Xty fleg) log (mofy)  Bllyto) fyto)log (ol )
5 TEiE - SHurafete
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This is true for any %y, &, .-, T - Hence, we can put @, # %, %, =z,

for =1,....,n and § £+
bif(} log (wofay)  (het-e}flbetelloglefz,)

o TEE | E4roftro
i) te)flte)
o ZBft) ~ EhiGtoftto
I 8f6) _ T Gltelftte)
o, £k (ste)f{li+-c)
Subtracting #; from both sides and inverting, we get,
s +ﬂb°(3{-l- 0)
= £ ~+e)HEs+c
; ﬂﬁﬂ 1) #ﬁq‘:{@ br-+-c)
or, gty gt where gif) = t(O)
pX =t
Mﬁﬂﬂﬂ H:ﬁ‘iﬂﬁﬂl
, ltito) _ gm0
’ gile} jEi b glts)
Rince, RHS does not involve &, we can wriie it as a function of ¢ only,
or gits-+e) = glty) k). o (26)

The solution of (36) iz well-known as
gt} = e = %, (3ny)

Henoe, 16) = 5 e .. (36)

where ‘a’ is & constant. Q.B.D.
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