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ON THE NEAR OPTIMUM CONTINUOUS SAMPLING
PLAN CSP-2 (WITH % = i) TO MINIMISE THE
AMOUNT OF INSPECTION AND ITS
PERFORMANCE, AS COMPARED
TO OPTIMUM CSP-i PLAN

By D T. GHOSH
Indsan Stolistical Inshilufe

SUMMARY. ¥or both the continnous sempling plan C8P-1 introduced by Dodge and ite
later madifteation CSP-2 several combinations of (#.f) are possible thab will ensure the sama
AOQL. Ghosh (1888} worked out the optimnin C3D-1 plan and the unigue combination of 4.5}
thyt would minimiss the amount of ingpection when the inooning quality ¢ is known to follow
a opo, two or threa point Dipomisl distribution er any comtinuoms dietribution which san be
approzipated by disorets probabilities for seme finite nomber of values of . In the pressmt
paper we work out the near optimum CBP-2 plac with £=7 and the unique sorubination (£,f) that
peeks to minimise the ataount of inspection under similar sexzrmptions of dieteibution for incoming
quality p. The performanses of the optimurn CIP-1 end near optimum CHP-2 plan are alsp
compared with reapect to both average emount of inspection and averags outgomg quality ADQ.

In the present paper we have also oblained an algebruie relation to find f for & given
% whioch will ensnra a desired AQQL for C8P-2 type of sampling mspection.

1. INTRODTOTION

Dodge (1943) introduced a random order continuous sampling plan (SP-1
and there after Dodge and Torrey (1949) offered additional continuous sampling
plans CSP-2 and CSP-3. The CSPE-1 plan provides for corrective inspection
with & view t0 having & limiting average outgoing quality’ AOQL which
will not he exceeded no matter what quality is submitted. The plan visualized
two phases of inspection. At the outset 1009, of the units produced con-
secutively are inspected till ¢ units in succession are found clear of defects.
Then only a fraction f of the unifs, chosen at random, are inspected. If a
sample unit is found to be defective immediately 100%, inspection is Teseited
to until agein ¢ wnits in succession are found clear of defects.

Plan CSP-2 differs from plan CSP-1 in that ohce sampling insperfson
is started, 100%, inspection is not invoked when & defeot iz found bLut is

AMS {1980) subjert cloasificadion 1 BENID,
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involred only if & second defect ocours in the next & or less sample unifa. In
other worda if two defects obsorved during sampling are separated by k or
less good inspected items, 1009 inspection is reintroduced otherwise sampling
inspection is econtinued.,

The factor ¥ may be theoretioally assigned any value, However the
anthors studied elaborately only the OSP-2 plan with k¥ = i and for several
cuwbingtions of (s, f) for a desired value of AOQL. By comparing the per-
formances of CSP-1 and CSP-2 (% = i) the authors reported as follows :

i+ is increased for given values of AOQL and f; for example for
AOQL = 3% and f= 5%, ¢{ = &) is 64 for plan CSP-2 whereas i = 50 for
plan U5P-1. A larger proportion of total products i accepted on a sampling
basis by CSP-2 plans when the incoming percentage defective is approximately
less than 1.5 times AOQL. Likewise the average fraction of total preduct
nnits inspeeted 1 the long run, including both sampling inspection and 100%,
mnspection is somewhat less for OSP-2 plans than for corresponding CSP-1
plang when the incoming percent defective is loss than some multipie of AOQL
which vartes with f; for example the multiple is approximately 2.0 for f =
.20 and 1.5 for f = .06, For higher levels of p, plan CSP-2 requires more
inspecetion than plan CSP-1".

In view of the deasign of the CSP-2 plan the p; (%) is not & unique value
ag in the ease of (8P-1, The authors recommended the comparison of max-
mum p; (%) for O8P-2 with the unigque p, (%) for CSP-1. Tt is seon that
2t (%) for plan C8P-2 may be eonsiderably higher than that for plan CSP-1
for the same value of f in both cases.

H the choice of one of the {either of two types of CSP plan or one out of
many possible for either type) plans is not judiciously made one may have
to undertake unneccssary extra inspection even at the risk of higher m; (%),
Howsver no clearcut guidelines are available for such a choice. It is also nob
clear why f° of the CSP-1 and (SP-2 should be kept same., What would
be the effect of following CSP-1 and CSP-2 plans having the aame value of ¢ ?
Eren after agreeing to same value of f for both CSP-1 and CSP-2 we are not
sure which level of f ie the most pragmatic choice. In other words we do nob

we any objective oriterion for gelecting 2 particular type and & unique {5, f).

‘ihosgh (1988) developed a procedure for selecting sn optimum CSP-1
Plan with a unique corabination of (i, f) that would achieve the AOQL and also
minimise the amount of inspection when the process average 7 is known. In
faot the procedure can be employed even if the incoming quality p follows o

B 3-14
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one, two or three point Binomial ¢r any continnous distribution which ean be
approximated by discrete probabilities for some finite number of values of p.

In the present paper we attempted to develop optimum C3P-2 plan
under similar asstumptions about the distribution of #. However, it ia very
diffionlt to get the optimum solution as the mathematical expressions hecome
intractable. Nevertheless by making some apyroximations it is possible to
obtain a nesr optimum plan relatively easily. The sensitivity of this approxi-
mate plan was found to be good enough for most practical situations. To
achieve the same AQQL one can now choose one of the optimum CSP-1 or
the near optimum CSP-2 plan afier comparing the expected performances
of the two plana,

Both CSP-1 and USP-2 provide an expression for average outgoing quality
AQQ) in terms of 4, f and p. In C8P-1 it is possible to find analytically f for
s given choice of ¢ for a required AQOQL. However, in C3P-2, Dodge and
Torrey obtained the (3, f) combination by a fedious triel and error procedure.
Howoever, in this paper we have obtained an analytical relation connecting
4, f, and AOQL, =0 that for a given ¢ and AOQL, f can be determined. The
solution procedure is also iterative in this case bub straightforward.

2. NOTATIONS

Throughout the paper we retain the symbols introduced by Dodge and
Torrey and malke use of the varicus results obtained by them. For the sake
of easy reference they are listed below :

The symbol p; denctes AOQL,
4 average oubgoing quality AQQ,
p, the quality level for which AQQL is reached
F the process average
p the incoming proportion defective,
and ¢ =— 1—op.
¢ denoties the numher of defect free consecutive items which will direct a change
from cent per cent inspection to sampling inspection. % denotes the minimwm
spacing between two defects in the sampling phase of inspection which will
permit sampling inspection to continue. f denotes the sampling fraetion,
% stands for the expected number of ifems inspected on a 1009 inspeotion
basis. v stands for expected numhber of items that will be pussed during
sampling inspection. Thiz includes the sampling units produced hetween
guccessive sampled unifs,
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In CSP type of plany, if there is a sudden deterioration of incoming gue-
ity » during sampling phase of inspection it will take some time to switch
back to 100%, inspection and consequently the items accepted by that time
will eontain more defectives than the usual case, Thus with each CSP plan
having & particular (if} combination is associated a spotty quality 2d%4)
Dodge has defined p; (%) as the percent defective in a conseoutive run of

N = 1000 units for which the probebility of acceptance under sampling phase
ia .10,

From the results of Dodge and Torrey we have

U= ]L;Tg%—' wee (1)
_1, ¢ 41 1_ kg
fr=ptig (p+k)+1n 1—¢%
= s . @
l—gt | 2—g*
Famount of inspection) = ii‘f’ = Eh_;t._i_i: [;:g:) . {8)
and pgt - fp(l—q¥)
Ps = p(1—F). e {4)

3. THE (¢, f) OOMBINATION WHICH WILL: ENSCRE A DESIRED AOQL UNDER CHP-2
{k = {) BCHEME OF INSPROTION

Kzact velation : For %k =4, it follows from (3) that

(=g P+2—4")¢
fi—gyHe—ag . (B)
fw“{}-ﬂ‘}

R T v )

24 =2\~ fam—y | v {8)

)
Henca L= i*-’:[l'* fH=f (1-—p)H2—(1—p)) ]
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where p, is the value of p for which AOQL is reached. To determine p; we
differentiate (6} with respect to p, equabe it to zero and after mbstituting »,
for p we gob

1_ A-—_f%[ﬂ—l—f}‘] 0

where A = 41— H—p R~ (—p))
B = (1—f)y —i (1—p)tHe—(l—py)¥)
O = (1—f) (L—py =il ).~ 1
D = {f+0—f) —pHe—(—p)}*

or y A2 —di i f0—i (2 —2q1) _
{HH0—Hae—d)p
or FAHf1—f) dd@—aD)+Hip JO—) i (2—2g0)
= A (1-fd¥ C—aP+2f(—f) ¢ (2—ab)
which implies that |
a@—al) , 1—f q2—g)
f‘f"l_' 3_ EQ‘; -+ .,f * 2___2&5 . iba {T}

Writing 2—2g} as 3 and 2—g} = r we have

. .
;- 1_13::;1 =1+Tf. (l—jll}‘?' . (ﬂ'}
or 1= r f
i s FHI-HO-—p)r
=y o . F
or O A N e N
Ii follows from (8) that
. . _ b
(fe-tr) py—r = “.’PJ.[ 1 FH+A=H0-p)r ]
= isp,, . (B)
and '535'5'!‘?
arnee Py == " e (10)
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From (8) we have

S iptp—l = -f—f (1—py )t -

pfiatr)—r  1-—f

or e = = (L=py)f-r

or Ll 7i (I—py 1 r {from (5)]

or fipg = = (1=HU—p}+ ¢

or fipy = gittor

snd hence F— f‘lﬂ . . (1)
ipy —+gi

Thus for & given ¢ and p,, p, can be obtained by solving equation (10} numeri-
cally. The iterative procedure can be initisted by taking p, = Q’%_il—l Onoo
P4 18 determined f can be obfained from (11). The (Z, f) combination will meet
the AOQL requirement no matier what quality p is submitted for inspection.

Approximate relation. Since it iz intractable to get an expression for
F and to study it for extremum value using these exsct relations we make
approximations p} and f* to p, and f respectively. Replacing % which is less
than but very nearly equal to 1 for moderately large values of ¢ by 1 we have,

g = Buil - (2)
12 g}
e P = i gy - )

It can be easily shown that p > pl,f > f* and F > F*. In order o
study the error due to approximation the values of {f*, f), (10@%(n)), 40Q(p,))
and {F;I,ij were obhtained for some selected values of pr covering the



308 D. T, GHOSH

range of our wsual working and for some pelected walues of 4. ‘The results
are shown in Table 1,

TABLE 1. ERROR DUE TO APPROXIMATION

] OTTOT In
e 7 f 40Q(p,) F
.01 l 5 0185 G023 L0115
il 20 Q02 MG
15 A28 D0 L L0016
00 5 080 00 0023
1d L0018 JAH02 01T
13 JGE 0001 M HINTH
A0 7] 0602 L0004 LOOLT
10 02 .01 . 05
L& -0001 - (X . (W3

T4 can be geen thas for ¢ 2» 10 actual and approximate values are in good agres-
ment for all values of p;. For higher values of pr, even for { as small as 5,
the two figures metch well. It will be seen later that for near optimal C5P-2
plans lower values of pz requires larger values of 4 if $ is small. 'When p is
moderats, { s also moderate and the approximation holds good. Hence the
near optimal plans developed here can be considered adequate for any practi-
cal gituation,

4, 0ON THBRE NATURE OF F*

We now obtain an expresgion Fi(i} for the amount of inspection for
given u and for {3, f*) combination that will ensure a given py, under the above
aspproximations.

From (13),
1
I g+ 2—gt')
; 1 1 *
= i{m g A [ using (12) ]
GO SRR
{,,_|_1}¢+1 1

I

1
EE g _(__:_j
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Henoe using (6) we get,

Fyi) = ————
1+(f—.—1)g‘(2—qﬂ

1

G+1PH pr 1 g 2—g

14 -
g, J ( )‘ Vi
i1
We nofe that the amount of inspection required to ensure a pgiven AOQL does
nok involve p, end can be expressed in terms of { end p only. The present form
may be compared with Fg(:) for CBP-1 as given by equadion (8) in Ghosh (1988).

For the sake of convenience in future we will write Fy (i) a8 F (%) where

I

(14)

1

g - 1b
=) = 1L cﬁ‘“ (x4 1) 2—(ab)* (15)
g 2__( 5
x--1
= 1—pr, ¢ = PL_ and b= l_pm congtants for a given p and py.
1—pg 1—pr

We note that b << 1 for p > p; and & < 1. For the purpose of comparison
of CO8P-2 with CSP-1 plan we will denote the amount of inspecéion in

CSP-1 plan by F(x).

n, order to study the nature of F*(x) in relation 0 F{z) we make wse of
the following lemmas.

Lemma 1 : F*(zx) & F{x) aecording aa & S o, where

Eq

i 0
. 2—(zb¥
Proof : Tt is easy to sea that ﬁlmmrdmgaa ﬁﬁfnrn
()
given @,
aad F(z) hae the form
1
ranyEil eqn. (9) of Ghosh (1888)
14eb® S

Hence the result follows.
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Lemina 2: F%x) is decreasing of & = x, where — L = b.

g1
Proof : Lot us dofine (o) = cpe TTUTT, 2@
A~ (E-.lﬁ)
and $(x) = log Pz
Then ) = log c+w log b-F{w{-1) log {2+ 1)—2 log{z)

+ Tog {2—(abe}—log {2—(251")

¢'(x) = log b+log(z-}-1)— log £ [?J:{E}:a
aw ¥ ar 1
+(m) { l“gm-l—l Tm_H}
—( 22.)
x-=1
i 1 ' D)« B
Sice  Fe) = gy end @) E( mii‘;’g
ib follows that
wr eFla) . {ﬂ!})ﬂ:log "
™'(x) = (=T 1)8 [(lﬂg E—T—T_lﬂg b J_1. T b
ar | ° e )
-("‘+1) {lﬂg 711 ¥l }] (16)
ax |7
i (=I=+—1 )
A:l.'l :!:=g;ﬂ
g )
P = g RS
(ﬂﬂﬂnl e Eﬁ(gﬁ)’“
<. 0
and hence the result,

Lemma 8: If there exists o © for which F™(x) becomes minimum Hhen
T > X
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Proof: For all x <, F*(#) > Flz) snd Fa) = Flx) at =z, Sinocs
P(x) is minimum at 2, {see Ghosh (1988} F*(z) at =, is smaller than F%g)
for all < 1, At 2, () is decreasing and hence the result,

Lemma 4 : Lel 2, be such fhat & = Yo Phen

2y+1
(1)
fog (ad) > "ope !oﬂx_l_lfm'nﬂm:nmn

for the vaual range of & (0 < a < 1),

Proof ©+ We define E={ e L note that for 2,

o .l
b{z:+11} Tog -

Z = log nb.
Now
dZ x & ax 1 oz 1
{b(m+1}} {I"E ba1) 8 s 1T 21T Bz Tal T 1}}.

1 1 aim 1 g
M <y = e Ny e B T < am ) [m+1}l°gm+1f“r"“u”

and aince for x > x,,

L F
Wrt1) ~

s ul
lﬂgb{—-_i_——l}lﬂg —|—1{ ngix—l—l}hg furallm:::-xu

If we can show that
= a 1 & 1
p7een ) Scan s L Fas 4 cES)

then the lemma will be true for all @ < 1,
We note that if b is large and consequently x, is large, then for 2 > 2.

< 0 for all 2> xz,

A =

< ()} a8

() log -|-1}1“g +1 Wz+1 -;-1}

1

fb}m

logm{ﬂ

1
B 3-17
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Bo, we consider onlymallva.luesafb gAYy ;, g, 13— £ eto, and study the
1

behaviowr of soromyy+ n:+1 log:s-]—l

for some selected values of & < 1,

1 1 e =

TABLE 2. VALUES OF TT TaTi Iugm

oF

\ .99 y:]. .09 985 1.0

[

1 0.1007 0.12%8 0. 1478 0. 156D 0.1584
2 ~=0.0038 0.0144 0.0281 0.0298 0.0815
3 —0.0148 =0.0014 0. 0088 0.0E22 0.0114
4 - 0.0167 —0. 00483 4. 0038 0. 0044 0. 0064
5 ~=0.0140 —0.0058 0.0013 0.0021 0, 0020
6 - (.0133 —0.0085 0.0008 0.0011 0. 0016
7 ~0.0130 —0.0082 —{.0001 0, 0005 0.0014
8 —0.0109 —0._0040 —0.0003 0.0002 0.000%
B ~0.0010 —0,0045 —10, 0004 (. 000X 0.0006
10 w0 0009 —0.0042 —{. 0004 —0,0003 .0004

The validity of the lemma is verified for

B> = 90 for o 995
B

b}?z.ﬁﬂfur e < .99
2

and for b > 5 = 60 for a < 90

Since o represent 1—py, it is clear from the above that the result is true for
b 9 for pp 5» 005,

: 1 2 &
Wo calrolate for ¢ = 1 the values of ( *HJ a:+11g'T1+lﬂgb{:r+1]
2 3 4 5 6 T B 9
hg#fﬂf'ﬁﬂ‘mtvﬂuﬁﬂﬂfbmﬂhﬂﬁ_— T3 B ' TR’ D Eﬂd"{ﬁ-
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TABLE 8. VALUES QF

2{x +1] #-l-lhgn:»i-l +103b{:|:-[—1} IDE fl‘.'l! e ]

N 3
T 3 T
X

4

& B ] 8 L
T 3 T k3 ) 10
1 15
2 —.0% .03
3 — . 1i — .02 0114
4 — 0D -.03 — 009 JO05E
B —.00 — {3 — 0163 — .05 0029
i — .08 — .03 —.0188 —.0088 - 1MB 0014
7 —. 0783 —.03 —.0181 —.MOo5 —.0050 ~.0018 0015
8 —.0870 —.03 —.0192 —.0118 - .0088 —.05 —.0011 N
9 —~.0813 —.0310 —.0186 —.0118 —.007% —.0D48 —.0023 —.0000 . (M8
10 — 0585 —.0291 —.0173 —.0117 —.00T8 —.0082 ~.0032 ~.0017 - .000G

I+ is clear from Teble 3 that for b < .9 the expreasion A is negative for all
x>, and for alt @ & 1. Similar caleulations for a large number of 53> .9

and 995 < a < 1 also gave A negative ag it was expected. This can be veri-
fied easily by extending Table 2 and Table 3.

Though ne completely analytical proof could be given a large number
of numerical examples showed that the lemma is true for all b < 1 and for

all ¢ < 1 and in pactioular for o < 895 ie. for pz » 006, which incidentally
is the most commeonly wsed range of pz.

Lemma 5: Forall x > %, log (ab) >

(=2 +1) loy a—{ab))

Proof : Einmfmm}mm%}

A

Thus, (i)

@r (=)
(:ui—:"i)#{ 3—(ab)s.
) Y
- (75)
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(_“” )ﬂ log 2%
s M ] S
(ab)y* '
Now, use of Lemma 4 completes the proof.

snd (i)

(22" —tog (am)
(ﬂg:ﬁ::g]{;ﬁ- ¢ greater than ¢+1)( - ]m fm'ﬂﬂir}%
9_

41

Lemma 6 ;

and for all ¢ and b Tess then 1.
Proof : 'Thia follows immedistely from the Lemmas 4 and 5.

Thoorem 1: There existe o unigue (> xy) for which F'(x) attoins ifs
minimum value,

Proof: From Lemuman 2,8 4,5 and 6 we have for 2 T Xy

@) log —Ty—~log >0

ar 1* Lf o
I@F (@
241
(2= )e. ]
ahd (i) — z+1 ﬂ:tl > 0 bub tends to zero for large .
(=)
z+1

Henee it follows from equation (18} that there exista & @ = x, for which
F*(z) = O and afterwards F*'(x) becomes positive. Hence the result follows.

N.B. 1: Our experience shows that » for for whick F*{z) Is minimum
is vsnally one or fwo more than %, which minimises F(z) of CSP-—1.

5. THE CFIQUE COMBINATION (i, ) vHAT MINiMIgRs F*,
THE AMOUNT OF TNEPECTION FOR 4 GIVEN PROCESS
AVEBAGR P AND A DESIRED PL

The algorithm may be stated as followa :

; 1— .
Step 1. Solve . = lh-pj:, and take 4, — [§].

Step 2. Compute Fy () for i;-i,--3, ..., tHl] an 3 is obtained for which
Ty (1) > Fy §).
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Step 8. Take this ¢ as ¢* and compute the corresponding f* using
equation {13).

N.B. 2: This ia an approximate plan but can be taken fo be good
enough for all practical purposes if &* » 10. If ¢* <2 10 and the value of
pr, 18 low then the approximate plan may be replaced by the exact one. TFor
this we find the exact value of (i, f) by solving numerically eqn. {10) andt hen
nsing eqn. {11}, The optimum {i, f} is then obtained by evaluating F; (2) in
the vicinity of 4%,

NB.3: I p<pp there iz no positive integer 4, for which
*.E;I-LI = Il:ji anid hence we can not fing any optimum plan as F;[z'] ia an
ever decreasing funetion of ¢ and the amount of inspection goes on decreasing
as 1 increases.

The approximate opbimum inspection plan for a wide renge of
ADQL and process average ¥ 13 given in appendix 1. The plan gives
(@* f* Fi(i)). For p < py. it is recommended hat the plan for ¥ which is
just greater that pp in the table should be used. TFor the sake of comparison,
(6, f. F{i) for optimum GSP-1 plan iy also incorporated in appendix 1.

6. THE oPTIMUM (+, f*} WHEN THE INCOMING QUALITY p FOLLOWY
A TWO POINT BINOMIAL DISTRIBUTION FOE A GIVEN pr,

It will be quite logical and practical too to agsame that the incoming
quality is controlled most of the time at p,, and oceasionslly at py, rather
than at » single process average 3.

We will werkont the approximate optimum C8P-2 plan under the assump-
tion that the incoming quality iz p,, with probability w, and is p, with
probability w, so that O < pr < py < Py << 1 and w,twy, = 1. Under
the situation the average amount of inspection will be

e Po(i) = wy Foli)--anyFy)

. 1 .
Fo) = e __ - g g —— L a=L2 .., (19
) _t_f‘!-*'l'l]""'l“__-?&_(ﬂ'{h) .. 2'_9'{.?’} ’ 9
2t

20 95 a_ (; —El )‘ﬁ
The optimum i iz obtained by solving the equation
dF* ()
—r =
The optimum plan is based on the following lemmes and theorem,
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Lemma 7 : Fyfi} és alicaye greater than Fi(5) for all 0 < py, < ppy < 1
and for alf positive i,

Proof : poy < P = @b > ¢ ond ¢y (2—g(n) 18 @ decreasing function
of p.

Hence the result.

Lemma 8: Lef ¢, and iy be the optimum veluszs of ¢ wn relation fo
Py and D) respectively for C8P-1 plan and 4] and i3 be the oplimum values
in relation to py, and P wnder near optimum CSP-2 plan. Lt d be mazimum
of i) and 43. Then d iz greater than both i, and 2,

Proof ; For ORP-1 we have

i 1P g8 1P (oo Ghosh (1988
i1 i—py ™ &1 ]"‘PL( (1988)

and Py < Prgy Henoe 4, > iy, > 4y = 8 > i, And i3 is always greater
than ¢, in view of Lemma 3. Hence the result.

Theoremn 2: There exists of least one iy such that &, & i, < d for which

Proof : We have F¥(5) = w, F'({) 410,82 {i). 1% is known that

) Fori < i, Fifi) > Fi{i)) and Fy(i) > F(is)
(i) Fori d, Fi(i) > Fi(i) and Fgd) > Fyfi)

(i} For i, < § < d, for some successive values of i, F'(f) <0 and
FY(i) << 0; there after F;'(3) << 0 and Fy(¢} > 0. For later values of 4 both
FI{i} > 0 and FZ'(i) > 0.

(iv) w; >0, wy > 0.
Hence there is at leagt one (i, < iy < d) for which #*{i) = 0 and F*{s} is
N.B. 4: Unless p,, and p,, are very close ) will be greater than & and
hence d == i} and the search will remain confined between (iz, ;).

7. TE® 0PTIMUM (', f*) WHEN THE LNOOMING QUALITY P FOLLOWS
A THRER FOINT BINOMIAL DIETRIBTEION OR ANY QONTINUOTUH

DIFTRIBUTION WHICH CAN BE BEEFPRESENTED BY DISCRETE
FPROHABILITIER AT S80ME ISOLATED POTNTE.

To mettle the thres point Binomial vase we make use of the following theorem.
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Theorermt 3: Lel the underlying distribution for sncoming qualily p be

4
By with probability wy; such that 0 < py) < Py < Bigy < 1 &ndiZI wy = L.

3
Then there exists al least one i) for which F*(i) = X wy Fy{i) is minimum pro-
Jeui

vided ench pyr) ia grealer than pr. Also thal i les in the range iy < i) < d where d
48 maximum of if, i3 and iy (the optimum choices for pn), Pioy and Py for C8P-2)
and iy is opiimum for py, for C8P-1,

Proof : The discussions in the proof of Theorem 2 can be extended eagily
to prove the above theorem.

Sinee 2y and By, usually are nob very close d is usually if and the search
for optimum ¢ can be made in the region (i3, 4;).

A trivial extension of Theorem 3 provides the basis for finding 4, in
the moat general case where p may follow a continupus distribution, Let
the distribution be approximated by probabilities wy for pyy, F = L,2,... %

A
such that X w; =1 and that ¢ << pr << pp < Py < Py << 1. Then &

Jml
liea between ¢, and maximum of {5}, ..., é3). Usually #; will be cbtained by
evaluaiing Fy, in the range (i}, 7} and teking that value i for which F.}, is
minimuwm.

Kemarks : (1) If the incoming ¢uality is lower than or equal to p in
Ohe or more cases in the disbribution of p then the search for i is to be widened
between i; and oo as some ¢{ may tend to infinity, It may also happen that
no optimum ¢ exist8 as F,}) may turn out to be an ever decreasing function of 1.

In such a situation the value of the relevant p 5, may be taken just greater
than py (az considered in Appendix 1). SBince all i3 (J = 1, 2, ..., »} are now
finite therc will exist at leash one finite #; for which the amount of inspection
for the modified situstion is minimum.

(2) It was possible to prove in the case of opbimum CSP-1 that the value
of + which minimises the amount of inspection when incoming quality p
follows a distribution is unigue. Though this stronger result counld not be
proved for OSP-2 i6 hes been found for the large number of cages studied that
iy 18 really & unique value,

{3) To study the effect of (i, f) in case of CSP-2 on the amount of ing-
pection, P}, under the stated approximation is shown graphically in Appendix
2 for some selected values of py, for the cases where incoming quality 2 exhibits
two or three point Binomial distribution.
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8 CouMrPABRISON OF NEAR OPTIMUM C8P—2 PLAN WiTH OFTIMDM OSP—1 PLAN

In order to compare the performance we sgtudy the AOQ curve and the
smount of inspection curve for different possible values of p in the range
{0, 1) for two pairs of CSP-1 and CSP-2 plans which are optimal for & = 0.08
and 0.09, each one enswring the same AOQL of 0.05. This is shown in
Appendix 3.

For a giver # near optimal CSP-2 needs somewhat lesser inspectioz.
Remembering that for exact optimam CSP-2 F = F*, the chaerved difference
with opttmum CSP-1 is too gmall to be of practical imporbance.

Ii can be seen that for smaller values of p, USP-1 needs lesser amount
of inspection.

Wo find that in onse case amount of inapeotion for C8P-2 is smaller than
that of CSP-1 for higher values of p.

But we also encounber an exemple where amount of inspection for CSP-2
is higher than that of C8P-1 for =ll values of p. This is contrary #o our

expoctation.

Dodge and Torrey expected that for same value ol f and AOQL, inspection
under CSP-2 will be less than that undor C8P-1 if p is less than some mulfiples
of AOQL and for higher levels of p inspoction will be more for C8P-2. Hven
though this observation may be generally true, it has not much significance
for comparisons arc to be made between two optimum plans. We note that
for optimum CSP-1 and 2 plans thoe values of ¢ are more or less same while
f mey vory widely. Thus at least one of the plana considered by Ddodge and
Torrey in their comparison was not optimal. Though the amount of ingpec-
tton for optimum CSP-2 is not smaller than the corresponding optimum OSP-1
plan the AQOQ curve iy better for optimum (SP-2 plan. It is also expected
from the relation py = p(1—F).

Another important eriterion will be to compare the »: (%) for both tiype
of plans to know the protection offered avaingt a sudden deterioration
in quality. The p, (2,) for C8P-1 ig a fixed valus and this is compared, as
recommended by Dodge and Torrey, with the magimum p,(9;) that may
result for CSP-2 type of inspuction. The maximum p;(2;) in a continuous
run of 1000 items that may result under CGSP-2 can be directly read from Fig. 2
of Dodge and Torrey (1951). The relevant figures fur two cases are shown
in Table 4,
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TABLE 4 OCOMPARIBON OF p; (%)

Py, = 0,05
index 7= .00 .19

CHP—1] GIP—2 CRP—1 CeP—32

i 23 24 9 10
' § .E3E . L1360 . 3180 . 41534
e (%) 2.7 4.0 0.7 a5

fince o (%) is alsc more for CSP-Z2 it sppesrs that the near optimum
end henes the optimum CSP-2 plan with ¢ = & has little more to offer than
optimal CSP-1 plan and a3 such CSP-1 appears to be the only choice.

It is, therefore, necessary to explore the properties of CSP-2 plan with
i 7= k 80 that we can identify the combination (%, f, k), if i% exists, for which
the optimum CSP-2 plan will have lesser amount of ingpeetion andfor greater
protection against spotty quality than the optimal CSP-1 plen.

Acknowledgement. The author is grateful to Dr, A. ¢, Mukbopadhyay,
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APPERDIX = 2
AMOUNT OF INSPECTION(%]FOR A GIVER Py FOR DIFFERENT

VALUES OF | WHEN IHEDHI;IIE QUALITY FOLLOWS A DISTRIBUTION
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