ON THE NEAR OPTIMUM CONTINUOUS SAMPLING PLAN CSP-2 (WITH k = i) TO MINIMISE THE AMOUNT OF INSPECTION AND ITS PERFORMANCE AS COMPARED TO OPTIMUM CSP-1 PLAN By D. T. GHOSH Indian Statistical Institute SUMMARY. For both the continuous sampling plan CSP-1 introduced by Dodge and its later modification CSP-2 several combinations of (i,f) are possible that will ensure the same AOQL. Ghosh (1988) worked out the optimum CSP-1 plan and the unique combination of (i,f) that would minimise the amount of inspection when the incoming quality p is known to follow a one, two or three point Binomial distribution or any continuous distribution which can be approximated by discrete probabilities for some finite number of values of p. In the present paper we work out the near optimum CSP-2 plan with k=i and the unique combination (i,f) that seeks to minimise the amount of inspection under similar assumptions of distribution for incoming quality p. The performances of the optimum CSP-1 and near optimum CSP-2 plan are also compared with respect to both average amount of inspection and average outgoing quality AOQ. In the present paper we have also obtained an algebraic relation to find f for a given i which will ensure a desired AOQL for CSP-2 type of sampling inspection. #### 1. Introduction Dodge (1943) introduced a random order continuous sampling plan CSP-1 and there after Dodge and Torrey (1949) offered additional continuous sampling plans CSP-2 and CSP-3. The CSP-1 plan provides for corrective inspection with a view to having a 'limiting average outgoing quality' AOQL which will not be exceeded no matter what quality is submitted. The plan visualised two phases of inspection. At the outset 100% of the units produced consecutively are inspected till i units in succession are found clear of defects. Then only a fraction f of the units, chosen at random, are inspected. If a sample unit is found to be defective immediately 100% inspection is reserted to until again i units in succession are found clear of defects. Plan CSP-2 differs from plan CSP-1 in that once sampling inspertson is started, 100% inspection is not invoked when a defect is found but is AMS (1980) subject classification: 62N10. Key words and phrases: Continuous sampling plan, Minimum amount of inspection, AOQ (p_A) , AOQL (p_L) , Process average (\bar{p}) , $(i.f^*)$ invoked only if a second defect occurs in the next k or less sample units. In other words if two defects observed during sampling are separated by k or less good inspected items, 100% inspection is reintroduced otherwise sampling inspection is continued. The factor k may be theoretically assigned any value. However the authors studied elaborately only the CSP-2 plan with k=i and for several combinations of (i,f) for a desired value of AOQL. By comparing the performances of CSP-1 and CSP-2 (k=i) the authors reported as follows: "i is increased for given values of AOQL and f; for example for AOQL = 3% and f = 5%, i (=k) is 64 for plan CSP-2 whereas i = 50 for plan CSP-1. A larger proportion of total products is accepted on a sampling basis by CSP-2 plans when the incoming percentage defective is approximately less than 1.5 times AOQL. Likewise the average fraction of total product units inspected in the long run, including both sampling inspection and 100% inspection is somewhat less for CSP-2 plans than for corresponding CSP-1 plans when the incoming percent defective is less than some multiple of AOQL which varies with f; for example the multiple is approximately 2.0 for f = .20 and 1.5 for f = .05. For higher levels of p, plan CSP-2 requires more inspection than plan CSP-1". In view of the design of the CSP-2 plan the p_t (%) is not a unique value as in the case of CSP-1. The authors recommended the comparison of maximum p_t (%) for CSP-2 with the unique p_t (%) for CSP-1. It is seen that p_t (%) for plan CSP-2 may be considerably higher than that for plan CSP-1 for the same value of f in both cases. If the choice of one of the (either of two types of CSP plan or one out of many possible for either type) plans is not judiciously made one may have to undertake unnecessary extra inspection even at the risk of higher p_t (%). However no clearcut guidelines are available for such a choice. It is also not clear why f of the CSP-1 and CSP-2 should be kept same. What would be the effect of following CSP-1 and CSP-2 plans having the same value of i? Even after agreeing to same value of f for both CSP-1 and CSP-2 we are not sure which level of f is the most pragmatic choice. In other words we do not we any objective criterion for selecting a particular type and a unique (i, f). Ghosh (1988) developed a procedure for selecting an optimum CSP-1 plan with a unique combination of (i, f) that would achieve the AOQL and also minimise the amount of inspection when the process average \bar{p} is known. In fact the procedure can be employed even if the incoming quality p follows a one, two or three point Binomial or any continuous distribution which can be approximated by discrete probabilities for some finite number of values of p. In the present paper we attempted to develop optimum CSP-2 plan under similar assumptions about the distribution of p. However, it is very difficult to get the optimum solution as the mathematical expressions become intractable. Nevertheless by making some approximations it is possible to obtain a near optimum plan relatively easily. The sensitivity of this approximate plan was found to be good enough for most practical situations. To achieve the same AOQL one can now choose one of the optimum CSP-1 or the near optimum CSP-2 plan after comparing the expected performances of the two plans. Both CSP-1 and CSP-2 provide an expression for average outgoing quality AOQ in terms of i, f and p. In CSP-1 it is possible to find analytically f for a given choice of i for a required AOQL. However, in CSP-2, Dodge and Torrey obtained the (i, f) combination by a tedious trial and error procedure. However, in this paper we have obtained an analytical relation connecting i, f, and AOQL, so that for a given i and AOQL, f can be determined. The solution procedure is also iterative in this case but straightforward. #### 2. NOTATIONS Throughout the paper we retain the symbols introduced by Dodge and Torrey and make use of the various results obtained by them. For the sake of easy reference they are listed below: The symbol p_L denotes AOQL, p_A average outgoing quality AOQ, p_1 the quality level for which AOQL is reached \bar{p} the process average p the incoming proportion defective, and q = 1-p. i denotes the number of defect free consecutive items which will direct a change from cent per cent inspection to sampling inspection. k denotes the minimum spacing between two defects in the sampling phase of inspection which will permit sampling inspection to continue. f denotes the sampling fraction. u stands for the expected number of items inspected on a 100% inspection basis. v stands for expected number of items that will be passed during sampling inspection. This includes the sampling units produced between successive sampled units. In CSP type of plans, if there is a sudden deterioration of incoming quality p during sampling phase of inspection it will take some time to switch back to 100% inspection and consequently the items accepted by that time will contain more defectives than the usual case. Thus with each CSP plan having a particular (i,f) combination is associated a spotty quality $p_i(\%)$. Dodge has defined $p_i(\%)$ as the percent defective in a consecutive run of N = 1000 units for which the probability of acceptance under sampling phase is .10. From the results of Dodge and Torrey we have $$u = \frac{1 - q^t}{pq^t} \qquad \dots \quad (1)$$ $$fv = \frac{1}{p} + \frac{q^k}{1-q^k} \left(\frac{1}{p} + k \right) + \frac{1}{p} - \frac{kq^k}{1-q^k}$$ $$= \frac{2 - q^k}{p(1 - q^k)} \qquad ... (2)$$ $$F(\text{amount of inspection}) = \frac{u + fv}{u + v} = \frac{\frac{1 - q^t}{pq^t} + \frac{2 - q^b}{p(1 - q^k)}}{\frac{1 - q^t}{pq^t} + \frac{2 - q^b}{fv(1 - q^k)}} \dots (3)$$ \mathbf{and} $$p_A = p(1-F). ... (4)$$ 3. The (i,f) combination which will ensure a desired acquided cap-2 (k=i) scheme of inspection Exact relation: For k = i, it follows from (3) that $$F = \frac{\frac{(1-q^{i})^{2}+(2-q^{i})q^{i}}{pq^{i}(1-q^{i})}}{\frac{f(1-q^{i})^{2}+(2-q^{i})q}{fpq^{i}(1-q^{i})}} \dots (5)$$ $$= \frac{f}{f+(1-f)q^{i}(2-q^{i})}$$ and $$p_A = p \left[1 - \frac{f}{f + (1 - f)q^i(2 - q^i)} \right]$$... (6) Hence $$p_L = p_1 \left[1 - \frac{f}{f + (1-f)(1-p_1)^i(2-(1-p_1)^i)} \right]$$ where p_1 is the value of p for which AOQL is reached. To determine p_L we differentiate (6) with respect to p, equate it to zero and after substituting p_1 for p we get $$1-\frac{A-fp_1(B+C)}{D}=0$$ where $$\begin{split} A &= f^t + f(1-f)(1-p_1)^t(2-(1-p_1)^t) \\ B &= (1-f) \cdot -i \cdot (1-p_1)^{t-1}(2-(1-p_1)^t) \\ C &= (1-f) \cdot (1-p_1)^t \cdot -i (1-p_1)^{t-1} \cdot -1 \\ D &= \{f + (1-f) \cdot (1-p_1)^t (2-(1-p_1)^t) \}^2 \end{split}$$ or $$1-\frac{f^2+f(1-f)q_1^i(2-q_1^i)+ip_1f(1-f)q_1^{i-1}(2-2q_1^i)}{\{f+(1-f)q_1^i(2-q_1^i)\}^2}=0$$ OĽ. $$\begin{split} f^2 + f(1-f) \ q_1^6(2-q_1^6) + i p_1 f(1-f) \ q_1^{6-1} \ (2-2q_1^6) \\ = f^2 + (1-f)^2 q_1^{26} \ (2-q_1^6)^2 + 2 f(1-f) \ q_1^6 \ (2-q_1^6) \end{split}$$ which implies that $$ip_1 = \frac{q_1(2-q_1^i)}{2-2q_1^i} + \frac{1-f}{f} \cdot \frac{q_1^{i+1}(2-q_1^i)^2}{2-2q_1^i}. \qquad ... (7)$$ Writing $2-2q_1^i$ as s and $2-q_1^i=r$ we have $$\frac{s}{r} \cdot \frac{ip_1}{1-p_1} = 1 + \frac{1-f}{f} \cdot (1-p_1)^i r \qquad ... (8)$$ or $$\frac{1-p_1}{ip_1} \cdot \frac{r}{s} = \frac{f}{f+(1-f)(1-p_1)^4 \cdot r}$$ or $$1 - \frac{1 - p_1}{i p_1} \cdot \frac{r}{s} = 1 - \frac{f}{f + (1 - f)(1 - p_1)^t r}$$ It follows from (6) that $$(is+r) p_1 - r = isp_1 \left[1 - \frac{f}{f + (1-f)(1-p_1)! r} \right]$$ $$= isp_L \qquad ... (9)$$ $$p_1 = \frac{ip_L + \frac{\tau}{s}}{i + \frac{r}{s}} \qquad \dots \tag{10}$$ 395 near optimum continuous sampling plan csp-2 (with $k{=}i$) From (8) we have or $$\frac{\frac{s}{r} \cdot ip_1 + p_1 - 1 = \frac{1 - f}{f} (1 - p_1)^{i+1} \cdot r}{\frac{p_1(is + r) - r}{r}} = \frac{1 - f}{f} (1 - p_1)^{i+1} \cdot r}$$ or $$\frac{isp_L}{r} = \frac{1 - f}{f} (1 - p_1)^{i+1} \cdot r \qquad [from (9)]$$ or $$fip_L \cdot \frac{s}{r} = (1-f)(1-p_1)^{i+1} \cdot r$$ or $$fip_L - \frac{s}{r} + fq_1^{i+1} r = q_1^{i+1} \cdot r$$ and hence $$f = \frac{q_1^{t+1}}{ip_L - \frac{\delta}{t^2} + q_1^{t+1}}$$... (11) Thus for a given i and p_L , p_1 can be obtained by solving equation (10) numerically. The iterative procedure can be initiated by taking $p_1 = \frac{ip_L + 1}{i + 1}$. Once p_1 is determined f can be obtained from (11). The (i, f) combination will meet the AOQL requirement no matter what quality p is submitted for inspection. Approximate relation. Since it is intractable to get an expression for F and to study it for extremum value using these exact relations we make approximations p_1^* and f^* to p_1 and f respectively. Replacing $\frac{s}{r}$ which is less than but very nearly equal to 1 for moderately large values of i by 1 we have, $$p_1^* = \frac{ip_L + 1}{i + 1}$$... (12) and $$f^* = \frac{q_1^{*i+1} (2 - q_1^{*i})}{i p_L + q_1^{*i+1} (2 - q_1^{*i})} \qquad \dots \quad (13)$$ It can be easily shown that $p_1 > p_1^*, f > f^*$ and $F > F^*$. In order to study the error due to approximation the values of $(f^*, f), (AOQ^*(p_1)), AOQ(p_1)$ and $(F_{p_1}^*, F_{p_1})$ were obtained for some selected values of p_L covering the range of our usual working and for some selected values of i. The results are shown in Table 1. | _ | i | | error in | | |------------|----|-------|------------|-------| | PL | | f | $AOQ(p_1)$ | F | | .01 | ď | .0197 | .0023 | .0115 | | | 10 | .0025 | .0002 | .0015 | | | 15 | .0028 | 10001 | .0016 | | 0 5 | 5 | .0080 | .0005 | .0022 | | | 10 | .0018 | .0002 | .0017 | | | 15 | .0008 | .0001 | .0010 | | 10 | б | .0002 | .0004 | .0017 | | | 10 | .0002 | .0001 | .0005 | | | 15 | .0001 | .0000 | .0002 | TABLE 1. ERROR DUE TO APPROXIMATION It can be seen that for $i \ge 10$ actual and approximate values are in good agreement for all values of p_L . For higher values of p_L even for i as small as 5, the two figures match well. It will be seen later that for near optimal CSP-2 plans lower values of p_L requires larger values of i if \bar{p} is small. When \bar{p} is moderate, i is also moderate and the approximation holds good. Hence the near optimal plans developed here can be considered adequate for any practical situation. ## 4. On the nature of F^* We now obtain an expression $F_p^*(i)$ for the amount of inspection for a given p and for (i, f^*) combination that will ensure a given p_L under the above approximations. From (13), $$\begin{split} \frac{1}{f^*} - 1 &= \frac{ip_L}{q_1^{*i+1}(2 - q_1^{*i})} \\ &= \frac{ip_L}{1} \cdot \frac{1}{i^{i+1}q_L^{i+1}} \cdot \frac{1}{2 - \frac{i^i q_L^i}{(i+1)^i}} \quad [\text{ using (12)}] \\ &= \frac{(i+1)^{i+1}}{i^i} \cdot \frac{p_L}{q_L} \cdot \frac{1}{q_L^i} \cdot \frac{1}{2 - \left(\frac{i}{i+1}\right)^i q_L^i} \end{split}$$ NEAR OPTIMUM CONTINUOUS SAMPLING PLAN CSP-2 (WITH k=i) 397 Hence using (5) we get, $$F_{p}^{*}(i) = \frac{1}{1 + \left(\frac{1}{f^{*}} - 1\right)q^{i}(2 - q^{i})}$$ $$= \frac{1}{1 + \frac{(i+1)^{i+1}}{i^{i}} \cdot \frac{p_{L}}{q_{L}} \left(\frac{q}{q_{L}}\right)^{i} \cdot \frac{2 - q^{i}}{2 - \left(\frac{i}{i+1}\right)^{i} q_{L}^{i}}} \dots (14)$$ We note that the amount of inspection required to ensure a given AOQL does not involve p_1 and can be expressed in terms of i and p only. The present form may be compared with $F_p(i)$ for CSP-1 as given by equation (8) in Ghosh (1988). For the sake of convenience in future we will write $F_p^*(i)$ as $F^*(x)$ where $$F^{*}(x) = \frac{1}{1 + cb^{x} \cdot \frac{(x+1)^{x+1}}{x^{x}} \cdot \frac{2 - (ab)^{x}}{2 - \left(\frac{ax}{x+1}\right)^{x}} \qquad \dots (15)$$ $a=1-p_L, c= rac{p_L}{1-p_L}$ and $b= rac{1-p}{1-p_L}$ are constants for a given p and p_L . We note that b<1 for $p>p_L$ and $a\leqslant 1$. For the purpose of comparison of CSP-2 with CSP-1 plan we will denote the amount of inspection in CSP-1 plan by F(x). In order to study the nature of $F^*(x)$ in relation to F(x) we make use of the following lemmas. Lemma 1: $F^*(x) \geq F(x)$ according as $x \leq x_0$ where $$\frac{x_0}{x_0+1} = b.$$ Proof: It is easy to see that $\frac{2-(ab)^x}{2-\left(\frac{ax}{x+1}\right)^x} \le 1$ according as $\frac{x}{x+1} \le b$ for a given a. and F(x) has the form $$\frac{1}{1+cb^{x}}\frac{(x+1)^{x+1}}{x^{x}}..., eqn. (9) of Ghosh (1988)$$ Hence the result follows. Lemma 2: $F^*(x)$ is decreasing at $x = x_0$ where $\frac{x_0}{x_0+1} = b$. Proof: Let us define $$\psi(x) = cb^x \frac{(x+1)^{x+1}}{x^x} \cdot \frac{2-(ab)^x}{2-\left(\frac{ax}{x+1}\right)^x}$$ and $$\phi(x) = \log \psi(x)$$ Then $$\phi(x) = \log c + x \log b + (x+1) \log (x+1) - x \log(x)$$ $$+ \log \{2 - (ab)^x\} - \log \left\{2 - \left(\frac{ax}{x+1}\right)^x\right\}$$ $$\phi'(x) = \log b + \log(x+1) - \log x - \frac{(ab)^x \log ab}{2 - (ab)^x}$$ $$+\frac{\left(\frac{ax}{x+1}\right)^{x}\cdot\left\{\log\frac{ax}{x+1}+\frac{1}{x+1}\right\}}{2-\left(\frac{ax}{x+1}\right)^{x}}$$ Since $$F^*(x) = \frac{1}{e^{\phi(x)} + 1}$$ and $F^{*'}(x) = -\frac{e^{\phi(x)} \cdot \phi'(x)}{(e^{\phi(x)} + 1)^2}$ it follows that $$F^{*\prime}(x) = \frac{e^{\phi(x)}}{(e^{\phi(x)}+1)^2} \left[\left(\log \frac{x}{x+1} - \log b \right) + \frac{(ab)^x \log ab}{2 - (ab)^x} \right]$$ $$-\frac{\left(\frac{ax}{x+1}\right)^{2}\left\{\log\frac{ax}{x+1} + \frac{1}{x+1}\right\}}{2 - \left(\frac{ax}{x+1}\right)^{2}} \qquad \dots (16)$$ $\mathbf{\acute{At}} \ \ \boldsymbol{x} = \boldsymbol{x_0}$ $$F^{*\prime}(x_0) = -\frac{e^{\phi(x_0)}}{(e^{\phi(x_0)} + 1)^{\frac{1}{2}}} \cdot \frac{(ab)^{x_0}}{2 - (ab)^{x_0}} \cdot \frac{1}{x_0 + 1}$$ $$< 0$$ and hence the result. Lemma 3: If there exists a x for which $F^*(x)$ becomes minimum then $x > x_*$. Proof: For all $x < x_0$, $F^*(x) > F(x)$ and $F^*(x) = F(x)$ at x_0 . Since F(x) is minimum at x_0 (see Ghosh (1988) $F^*(x)$ at x_0 is smaller than $F^*(x)$ for all $x < x_0$. At x_0 , $F^*(x)$ is decreasing and hence the result. Lemma 4: Let x_0 be such that $b = \frac{x_0}{x_0+1}$. Then $$log\left(ab ight)> rac{\left(rac{ax}{x+1} ight)^{x}}{\left(ab ight)^{x}}\cdot log rac{ax}{x+1} ext{ for all } x>x_{0}$$ for the usual range of a (0 < a < 1). *Proof*: We define $Z=\left\{\frac{x}{b(x+1)}\right\}^x\log\frac{ax}{x+1}$, we note that for x_0 , $Z=\log ab$. Now $$\frac{dZ}{dx} = \left\{ \frac{x}{b(x+1)} \right\}^{x} \left\{ \log \frac{x}{b(x+1)} \log \frac{ax}{x+1} + \frac{1}{x+1} \log \frac{ax}{x+1} + \frac{1}{x(x+1)} \right\}.$$ $$a_1 < a_2 \Rightarrow \frac{1}{x(x+1)} + \frac{1}{x+1} \log \frac{a_1 x}{x+1} < \frac{1}{x(x+1)} + \frac{1}{(x+1)} \log \frac{a_2 x}{x+1} \text{ for all } x$$ and since for $x>x_{\phi}, \frac{x}{b(x+1)}>1$ $$\log \frac{x}{b(x+1)} \log \frac{a_1x}{x+1} < \log \frac{x}{b(x+1)} \log \frac{a_2x}{x+1} \text{ for all } x > x_0.$$ If we can show that $$A = \log \frac{x}{b(x+1)} \log \frac{x}{x+1} + \frac{1}{x+1} \log \frac{x}{x+1} + \frac{1}{x(x+1)} < 0 \text{ for all } x > x_0$$ then the lemma will be true for all a < 1. We note that if b is large and consequently x_0 is large, then for $x > x_0$. (a) $$\log \frac{x}{b(x+1)} \log \frac{x}{x+1} < 0 \text{ as } \frac{x}{b(x+1)} > 1$$ (b) $$\frac{1}{x+1}\log\frac{x}{x+1} < 0$$ and (e) $$\frac{1}{x(x+1)} \to 0$$. So, we consider only small values of b, say $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$ etc. and study the behaviour of $\frac{1}{x(x+1)} + \frac{1}{x+1} \log \frac{ax}{x+1}$ for some selected values of $a \le 1$. TABLE 2. VALUES OF $\frac{1}{x(x+1)} + \frac{1}{x+1} \log \frac{\alpha x}{x+1}$ | G g | .90 | .95 | .99 | . 995 | 1.0 | |-----|---------|---------|---------|---------|--------| | 1 | 0.1007 | 0.1278 | 0.1478 | 0.1509 | 0.1534 | | 2 | 0.0028 | 0.0144 | 0.0281 | 0.0298 | 0.0315 | | 3 | -0.0149 | -0.0014 | 0.0089 | 0.0122 | 0.0114 | | 4 | -0.0157 | -0.0048 | 0.0088 | 0.0044 | 0.0054 | | 5 | -0.0146 | ~0.0058 | 0.0013 | 0.0021 | 0.0029 | | 6 | -0.0133 | -0.0055 | 0.0008 | 0.0011 | 0.0018 | | 7 | -0.0120 | -0.0052 | -0.6001 | 0.0005 | 0.0014 | | 8 | -0.0109 | -0.0049 | -0.0003 | 0.0002 | 0.0008 | | 9 | -0.0010 | -0.0045 | -0.0004 | 0.0001 | 0.0006 | | 10 | 0.0009 | -0.0042 | -0.0004 | -0.0003 | 0.0004 | The validity of the lemma is verified for $$b > \frac{9}{10} = .90 \text{ for } a \le .995$$ $$b \geqslant \frac{6}{7} = .86 \text{ for } a \leqslant .99$$ $$b \geqslant \frac{2}{3} = .67 \text{ for } a \leqslant .95$$ and for $$b > \frac{1}{2} = .50 \text{ for } a \le .90$$ Since a represent $1-p_L$ it is clear from the above that the result is true for $b \geqslant .9$ for $p_L \geqslant .005$. We calculate for $$a=1$$ the values of $\frac{1}{x(x+1)}+\frac{1}{x+1}\log\frac{x}{x+1}+\log\frac{x}{b(x+1)}$ log $\frac{x}{x+1}$ for different values of b such as $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$, $\frac{6}{7}$, $\frac{7}{8}$, $\frac{8}{9}$ and $\frac{9}{10}$. TABLE 8. VALUES OF $$\frac{1}{x(x+1)} + \frac{1}{x+1} \log \frac{ax}{x+1} + \log \frac{x}{b(x+1)} \log \frac{ax}{x+1}$$ for $a = 1$ | x | 1 2 | 2/3 | 3 4 | 4
5 | 5 6 | 6 7 | 7 8 | 8 | 9
10 | |----|---------------------|-------------|-------|--------|----------------|------------------|-------|-------|---------| | i | .15 | | | | | | | | | | 2 | 09 | .03 | | | | | | | | | 3 | 10 | 02 | .0114 | | | | | | | | 4 | 09 | 03 | 0090 | .0054 | | | | | | | B | , 09 | 03 | 0163 | 0045 | .0029 | | | | | | 6 | 08 | 03 | 0188 | 0088 | 1568 | .0018 | | | | | 7 | 0783 | 03 | 0191 | 0105 | 0050 | 0018 | .0015 | | | | 8 | 0670 | .03 | 0192 | 0116 | 0068 | . 00\$5 | 0011 | .0008 | | | 9 | 0613 | 0310 | 0186 | 0118 | . 0075 | 0048 | 0023 | 0007 | .0006 | | 10 | — . 056 5 | 0291 | 0179 | 0117 | 0079 | — . 0 052 | 0032 | 0017 | 0008 | It is clear from Table 3 that for $b \le .9$ the expression A is negative for all $x > x_0$ and for all $a \le 1$. Similar calculations for a large number of b > .9 and .995 < a < 1 also gave A negative as it was expected. This can be verified easily by extending Table 2 and Table 3. Though no completely analytical proof could be given a large number of numerical examples showed that the lemma is true for all b < 1 and for all a < 1 and in particular for $a \le .995$ i.e. for $p_L \ge .005$, which incidentally is the most commonly used range of p_L . Lemma 5: For all $$x > x_0$$, $\log (ab) > \frac{\left(\frac{ax}{x+1}\right)^x}{(ab)^x} \frac{\log \frac{ax}{x+1}(2-(ab)^x)}{\left\{2-\left(\frac{ax}{x+1}\right)^x\right\}}$ Proof: Since for $$x > x_0$$, $\frac{x}{x+1} > b$ $$2-\left(\frac{dx}{x+1}\right)^x < 2-(ab)^x$$. Thus, (i) $$\frac{2-(ab)^x}{2-\left(\frac{ax}{x+1}\right)^x} > 1,$$ and (ii) $$\frac{\left(\frac{ax}{x+1}\right)^x \log \frac{ax}{x+1}}{(ab)^x} < 0.$$ Now, use of Lemma 4 completes the proof. $$\text{Lemms 6: } \frac{(ab)^x \log ab}{2-(ab)^x} \text{ is greater than } \frac{\left(\frac{ax}{x+1}\right)^x - \log (ax)}{2-\left(\frac{ax}{x+1}\right)^x} \text{ for all } x>x_0$$ and for all a and b less than 1. Proof: This follows immediately from the Lemmas 4 and 5. Theorem 1: There exists a unique $x(>x_0)$ for which $F^*(x)$ attains its minimum value. **Proof:** From Lemmas 2, 3, 4, 5 and 6 we have for $x > x_0$ (i) $$\log \frac{x}{x+1} - \log b > 0$$ (ii) $$\frac{(ab)^x \log ab}{2 - (ab)^x} - \frac{\left(\frac{ax}{x+1}\right)^x \log \frac{ax}{x+1}}{2 - \left(\frac{ax}{x+1}\right)^x} > 0$$ and (iii) $$-\frac{\left(\frac{ax}{x+1}\right)^x \cdot \frac{1}{x+1}}{2-\left(\frac{ax}{x+1}\right)^x} > 0 \text{ but tends to zero for large } x.$$ Hence it follows from equation (16) that there exists a $x>x_0$ for which $F^{\bullet\prime}(x)=0$ and afterwards $F^{*\prime}(x)$ becomes positive. Hence the result follows. - N.B. 1: Our experience shows that x for for which $F^*(x)$ is minimum is usually one or two more than x_0 which minimises F(x) of CSP-1. - 5. THE UNIQUE COMBINATION (i^* , f^*) THAT MINIMISES F^* , THE AMOUNT OF INSPECTION FOR A GIVEN PROCESS AVERAGE \bar{p} AND A DESIRED p_L The algorithm may be stated as follows: Step 1. Solve $$\frac{i}{i+1} = \frac{1-\overline{p}}{1-p_L}$$ and take $i_0 = [i]$. Step 2. Compute $F_{\overline{p}}^*$ (i) for i_0 , i_0+1 , ..., till an i is obtained for which $F_{\overline{p}}^*$ (i+1) $> F_{\overline{p}}^*$ (i). Step 3. Take this i as i* and compute the corresponding f^* using equation (13). N.B. 2: This is an approximate plan but can be taken to be good enough for all practical purposes if $i^* \ge 10$. If $i^* < 10$ and the value of p_L is low then the approximate plan may be replaced by the exact one. For this we find the exact value of (i, f) by solving numerically eqn. (10) and then using eqn. (11). The optimum (i, f) is then obtained by evaluating $F_{\overline{p}}(i)$ in the vicinity of i^* . N.B. 3: If $\bar{p} < p_L$, there is no positive integer i_0 for which $\frac{i_0}{i_0+1} = \frac{1-\bar{p}}{1-p_L}$ and hence we can not find any optimum plan as $F_{\bar{p}}^*(i)$ is an ever decreasing function of i and the amount of inspection goes on decreasing as i increases. The approximate optimum inspection plan for a wide range of AOQL and process average \bar{p} is given in appendix 1. The plan gives $(i^*, f^*, F_{\bar{p}}^*(i))$. For $\bar{p} < p_L$, it is recommended that the plan for \bar{p} which is just greater than p_L in the table should be used. For the sake of comparison, $(i, f, F_{\bar{p}}(i))$ for optimum CSP-1 plan is also incorporated in appendix 1. # 6. The optimum (i^*, f^*) when the incoming quality p follows a two point binomial distribution for a given p_L It will be quite logical and practical too to assume that the incoming quality is controlled most of the time at $p_{(1)}$ and occasionally at $p_{(2)}$ rather than at a single process average \bar{p} . We will workout the approximate optimum CSP-2 plan under the assumption that the incoming quality is $p_{(1)}$ with probability w_1 and is $p_{(2)}$ with probability w_2 so that $0 < p_L < p_{(1)} < p_{(2)} < 1$ and $w_1 + w_2 = 1$. Under the situation the average amount of inspection will be $$F^{\bullet}(i) = w_1 F_1^{\bullet}(i) + w_2 F_2^{\bullet}(i)$$ where $$F_{j}^{*}(i) = \frac{1}{1 + \frac{(i+1)^{j+1}}{i!} \cdot \frac{p_{L}}{q_{L}} \left(\frac{q_{j}J_{j}}{q_{L}}\right)^{i} \cdot \frac{2 - q_{j}J_{j}}{2 - \left(\frac{i}{i+1}\right)^{i}q_{L}^{i}}}, \ j=1, 2 \dots (19)$$ The optimum i is obtained by solving the equation $$\frac{dF^*(i)}{di} = 0.$$ The optimum plan is based on the following lemmas and theorem, Lemma 7: $F_{g}^{*}(i)$ is always greater than $F_{1}^{*}(i)$ for all $0 < p_{(1)} < p_{(2)} < 1$ and for all positive i. $Proof: p_{(1)} < p_{(2)} \Rightarrow q_{(1)}^{i} > q_{(2)}^{i} \text{ and } q_{(J)}^{i} (2-q_{(J)}^{i}) \text{ is a decreasing function of } p.$ Hence the result. Lemma 8: Let i_1 and i_2 be the optimum values of i in relation to $p_{(1)}$ and $p_{(2)}$ respectively for CSP-1 plan and i_1^* and i_2^* be the optimum values in relation to $p_{(1)}$ and $p_{(2)}$ under near optimum CSP-2 plan. Let d be maximum of i_1^* and i_2^* . Then d is greater than both i_1 and i_2 . Proof: For CSP-1 we have $$\frac{i_1}{i_1+1} = \frac{1-p_{(1)}}{1-p_L}$$ and $\frac{i_2}{i_2+1} = \frac{1-p_{(2)}}{1-p_L}$ (see Ghosh (1988)) and $p_{(1)} < p_{(2)}$. Hence $i_1 > i_2$. $i_1 > i_3 \Rightarrow i_1^* > i_2$. And i_2^* is always greater than i_3 in view of Lemma 3. Hence the result. Theorem 2: There exists at least one i_0^* such that $i_2 \le i_0^* \le d$ for which the amount of inspection $F^*(i)$ is minimum provided $0 < p_L < p_{(1)} < p_{(2)} < 1$. Proof: We have $F^{**}(i) = w_1 F_1^{**}(i) + w_2 F_2^{**}(i)$. It is known that - (i) For $i \leqslant i_2$, $F_1^*(i) > F_1^*(i_1^*)$ and $F_2^*(i) > F_2^*(i_2^*)$ - (ii) For $i \geqslant d$, $F_1^*(i) > F_1^*(i_1^*)$ and $F_2^*(i) > F_2^*(i_2^*)$ - (iii) For $i_2 < i < d$, for some successive values of i, $F_1^{*'}(i) < 0$ and $F_2^{*'}(i) < 0$; there after $F_1^{*'}(i) < 0$ and $F_2^{*}(i) > 0$. For later values of i both $F_1^{*'}(i) > 0$ and $F_2^{*'}(i) > 0$. - (iv) $w_1 > 0, w_2 > 0.$ Hence there is at least one $i_0^*(i_2 < i_0^* < d)$ for which $F^{*'}(i) = 0$ and $F^{*}(i)$ is minimum. - N.B. 4: Unless $p_{(1)}$ and $p_{(2)}$ are very close i_1^* will be greater than i_2^* and hence $d = i_1^*$ and the search will remain confined between (i_2^*, i_1^*) . - 7. The optimum (i^*, f^*) when the incoming quality p follows a three point Binomial distribution or any continuous distribution which can be represented by discrete probabilities at some isolated points. To settle the three point Binomial case we make use of the following theorem. Theorem 3: Let the underlying distribution for incoming quality p be $p_{(J)}$ with probability w_J such that $0 < p_{(1)} < p_{(2)} < p_{(3)} < 1$ and $\sum_{i=1}^8 w_J = 1$. Then there exists at least one i_0^* for which $F^*(i) = \sum_{J=1}^8 w_J F_J^*(i)$ is minimum provided each $p_{(J)}$ is greater than p_L . Also that i_0^* lies in the range $i_3 < i_0^* < d$ where d is maximum of i_1^* , i_2^* and i_3^* (the optimum choices for $p_{(1)}$, $p_{(2)}$ and $p_{(3)}$ for CSP-2) and i_3 is optimum for $p_{(3)}$ for CSP-1. *Proof*: The discussions in the proof of Theorem 2 can be extended easily to prove the above theorem. Since $p_{(1)}$ and $p_{(2)}$ usually are not very close d is usually i_1^* and the search for optimum i can be made in the region (i_3^*, i_1^*) . A trivial extension of Theorem 3 provides the basis for finding i_0^* in the most general case where p may follow a continuous distribution. Let the distribution be approximated by probabilities w_J for $p_{(J)}$, J=1,2,...n such that $\sum_{J=1}^n w_J = 1$ and that $0 < p_L < p_{(1)} < p_{(2)} ... < p_{(n)} < 1$. Then i_0^* lies between i_n and maximum of $(i_1^*, ..., i_n^*)$. Usually i_0^* will be obtained by evaluating $F_{(i)}^*$ in the range (i_n^*, i_1^*) and taking that value i for which $F_{(i)}^*$ is minimum. Remarks: (I) If the incoming quality is lower than or equal to p in one or more cases in the distribution of p then the search for i_0^* is to be widened between i_j^* and ∞ as some i may tend to infinity. It may also happen that no optimum i exists as $F_{(i)}^*$ may turn out to be an ever decreasing function of i. In such a situation the value of the relevant $p_{(J)}$ may be taken just greater than p_L (as considered in Appendix 1). Since all i_J^* (J=1, 2, ..., n) are now finite there will exist at least one finite i_0^* for which the amount of inspection for the modified situation is minimum. - (2) It was possible to prove in the case of optimum CSP-1 that the value of i which minimises the amount of inspection when incoming quality p follows a distribution is unique. Though this stronger result could not be proved for CSP-2 it has been found for the large number of cases studied that i_0^* is really a unique value. - (3) To study the effect of (i, f) in case of CSP-2 on the amount of inspection, $F_{(i)}^{\bullet}$ under the stated approximation is shown graphically in Appendix 2 for some selected values of p_L for the cases where incoming quality p exhibits two or three point Binomial distribution. ### 8 COMPARISON OF NEAR OPTIMUM CSP-2 PLAN WITH OPTIMUM CSP-1 PLAN In order to compare the performance we study the AOQ curve and the amount of inspection curve for different possible values of p in the range (0, 1) for two pairs of CSP-1 and CSP-2 plans which are optimal for $\bar{p}=0.06$ and 0.09, each one ensuring the same AOQL of 0.05. This is shown in Appendix 3. For a given \bar{p} near optimal CSP-2 needs somewhat lesser inspection. Remembering that for exact optimum CSP-2 $F > F^*$, the observed difference with optimum CSP-1 is too small to be of practical importance. It can be seen that for smaller values of p, CSP-1 needs lesser amount of inspection. We find that in one case amount of inspection for CSP-2 is smaller than that of CSP-1 for higher values of p. But we also encounter an example where amount of inspection for CSP-2 is higher than that of CSP-1 for all values of p. This is contrary to our expectation. Dodge and Torrey expected that for same value of f and AOQL, inspection under CSP-2 will be less than that under CSP-1 if p is less than some multiples of AOQL and for higher levels of p inspection will be more for CSP-2. Even though this observation may be generally true, it has not much significance for comparisons are to be made between two optimum plans. We note that for optimum CSP-1 and 2 plans the values of i are more or less same while f may very widely. Thus at least one of the plans considered by Dodge and Torrey in their comparison was not optimal. Though the amount of inspection for optimum CSP-2 is not smaller than the corresponding optimum CSP-1 plan the AOQ curve is better for optimum CSP-2 plan. It is also expected from the relation $p_A = p(1-F)$. Another important criterion will be to compare the p_t (%) for both type of plans to know the protection offered against a sudden deterioration in quality. The p_t (%) for CSP-1 is a fixed value and this is compared, as recommended by Dodge and Torrey, with the maximum p_t (%) that may result for CSP-2 type of inspection. The maximum p_t (%) in a continuous run of 1000 items that may result under CSP-2 can be directly read from Fig. 2 of Dodge and Torrey (1951). The relevant figures for two cases are shown in Table 4. nhar optimum continuous sampling plan csp-2 (with k=i) 407 Table 4. Comparison of p_k (%) | | | p_L = | 0.05 | | |--------|----------------|---------|----------|-------| | index | - - | .09 | <u> </u> | .19 | | | CSP—1 | CSP—2 | CSP—1 | CSP—2 | | i | 23 | 24 | 9 | 10 | | f | .0838 | .1860 | .8169 | .4136 | | ps (%) | 2.7 | 4.0 | 0.7 | 2.5 | Since p_t (%) is also more for CSP-2 it appears that the near optimum and hence the optimum CSP-2 plan with i = k has little more to offer than optimal CSP-1 plan and as such CSP-1 appears to be the only choice. It is, therefore, necessary to explore the properties of CSP-2 plan with $i \neq k$ so that we can identify the combination (i, f, k), if it exists, for which the optimum CSP-2 plan will have lesser amount of inspection and/or greater protection against spotty quality than the optimal CSP-1 plan. Acknowledgement. The author is grateful to Dr. A. C. Mukhopadhyay, Head, Computer Science Unit for the discussions he had with him... Appendix-1 VALUES OF \$, f (**, f*) AND AMOUNT OF INSPECTION FOR CSP 1 (CSP 2 &==*) PLANS FOR GIVEN VALUES OF AOQL (%) AND PROCESS AVERAGE 100p | Transmire | | | | | Ą | AOQL (%) | | | | | |-----------|----------------------|------------------------|-----------------------|----------------------|------------------------------|----------------------|-----------------------|----------------------|----------------------|----------------------| | process | 1. | 1.0 | 2.0 | 0 | 3.0 | 0 | 4.0 | 0 | 6.0 | 0 | | | OSP1 | OSP2 | CSP1 | CSP2 | CSP1 | CSP3 | CEPI | CSP2 | OSP1 | dg. | | 1.0 | 98
.1213
27.20 | 101
.1952
29.02 | | | | | | | | | | 2.0 | 98
.1213
50.00 | 101
. 1952
49.96 | 97
.0253
15.60 | 99
.0456
15.93 | | | | | | | | 3.0 | 48
.3167
66.67 | 68
.4159
66.52 | 97
.0263
99.33 | 99
.0458
33.88 | 97
.00 63
10.87 | 97
.0124
11.04 | | | | | | 4.0 | 32
.4482
75.00 | 38
.5473
74.81 | 48
.1235
56.00 | 51
.1891
49.94 | 97
,0063
25.00 | 97
.0124
25.00 | 96
.0019
8.40 | 95
.0088
8.51 | | | | 8.0 | 24
.5887
80.00 | 27
.6888
79.81 | 32
. 2262
60.00 | 36
.8126
59.89 | 48
.0538
40.00 | 49
.0938
39.98 | 95
.0019
20.00 | 95
.0038
20.00 | 64
.0006
6.90 | 94
.0012
8.90 | | 6.0 | 19
.6068
83.23 | 22
.6879
83.14 | 24
.3118
66.70 | 26
.4171
66.51 | 81
.1281
50.00 | 33
,1949
40.64 | 47
.0268
88.88 | 48
.0478
88.88 | 94
.0006
16.70 | 94
.0012
16.67 | | 7.0 | 16
.6527
85.72 | 18
.7345
85.53 | 19
.3864
71.40 | 21
.4903
71,26 | 23
,2008
57,10 | 25
.2844
57.04 | \$1
.0733
42.90 | 32
.1226
42.83 | 46
.0140
28.60 | 47
-0253
28.57 | | | | | | | | | | | | | N.B. In the absence of an optimum plan for $\bar{p} \leqslant p_L$, the plan for \bar{p} , which is just greater than p_L , is recommended, Appendix-1 (contd.) VALUES OF 4, f (4*, f*) AND AMOUNT OF INSPECTION FOR CSP 1 (CSP 2 k=4) PLANS FOR GIVEN VALUES OF AOQL (%) AND PROCESS AVERAGE 100p | - | | | | | AOG | 40QL (%) | | | | | |----------|----------------------------|------------------------|-----------------------|----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|----------------------| | process | 1.0 | - | 2.0 | | 9.0 | 0 | 4.0 | 0 | 100 | 5.0 | | - AGERIA | C8P1 | CSP2 | CSP1 | CSP2 | CSP1 | CSP2 | CSP1 | CSP2 | OSP1 | CSP2 | | 8.0 | 13
.7030
87.50 | 16
.7591
87.33 | 15
.4621
75.00 | 18
.6406
14.81 | 18
.2709
62.60 | 20
.3616
62.37 | 28
.1281
50.00 | 25
.1888
49.94 | 31
.0433
37.50 | 33
.0748
87.48 | | 0.6 | 11
.7393
88.90 | 14
.7848
88.73 | 18
.5067
77.80 | 15
.5963
77.57 | 15
.3271
66.70 | 17
,4182
66.51 | 18
.1863
55.60 | 20
.2587
55.46 | 23
.0838
44.46 | 24
.1361
44,40 | | . 0.01 | 10
7588
90.00 | 12
.8110
89.84 | 11
.5586
80.00 | 13
.6367
79.80 | 13
.8723
70.00 | 15
.4610
69.84 | 15
,2360
60.00 | 16
,8842
59.69 | 18
.1305
50.00 | 19
.2008
49.93 | | ij,0 | 9
7780
80.80 | 11
7898
90.76 | 10
.5839
81.80 | 12
,6580
81.63 | 11
.4253
79.70 | 18
.508\$
72.64 | 13
.2779
63.60 | 14
.3804
63.49 | 15
.1728
64.65 | 16
.2647
84.46 | | 12,0 | 8
798 <u>9</u>
91.67 | . 10
.8382
81.58 | 9 6128
88.80 | 10
.7028
83.14 | 10
.4662
75.00 | 11
.5608
74.80 | 11
.3289
66.70 | 12
.4882
66.51 | 13
2100
58,85 | 14
.2990
68.23 | | 13.0. | 7
8182
92.30 | 9.8522
92.18 | 8
84.60 | . 7263
64.43 | 9.4878
78.90 | 10
.5892
76.72 | 10
.3587
68.20 | 11
.4624
69.05 | 11
.2670
61.54 | 12
.3514
01.40 | | 14.0 | 7
.8192
92.30 | 8686
92.73 | . 7
.6763
86.70 | 8
.7507
86,54 | 8
.6233
78.60 | 9.6189
78.86 | 9
.3917
71.60 | 10
.4937.
71.24 | 10
.2851
64.31 | 11
.3812
64.14 | W.B. In the sheeres of an optimum plan for $\bar{p} < p_L$, the plan for \bar{p} , which is just greater than p_L is recommended. Appendix-1 (contd.) VALUES OF 4, for AND AMOUNT OF INSPECTION FOR CSP 1 (CSP 2 k=0) PLANS FOR GIVEN VALUES OF A0QL (%) AND PROCESS AVERAGE 100p | | | | | A O(| AOQL (%) | | | | | | |---------|----------------------|---------------------|----------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------| | process | 1.0 | | 8.0 | <u>.</u> | 8.0 | | 4.0 | | 5.0 | | | werage | CSP1 | CRP2 | CSP1 | CSP2 | CSP1 | CSP2 | CSF1 | CSP2 | CSP1 | CSP2 | | 15.0 | 6
.8408
93.30 | 7
.8810
93.20 | 7
.6762
88.70 | 8
.7507
86.50 | 7
.5619
80.00 | 8
.6503
79.80 | 8
.4285
73.30 | 9
.5272
73.14 | 9
.3169
66.70 | 10
.4186
66.52 | | 16.0 | 6
.8408
93.80 | 7
.8810
93.68 | 6
.7109
87,50 | 7
.7760
87.31 | 6
.6041
81.20 | 8
.6503
81.07 | 7
,4898
75.00 | 8
.6631
74.79 | 8
,3531
68.77 | 9
.4489
68,68 | | 17.0 | \$
.8631
94.10 | 6
.8957
94.01 | 6 .7109
88.30 | 7 .7760
80.07 | 6
.6041
82.30 | 7
.6833
82.14 | 6
.5186
76.50 | 7
.6014
76.29 | 7
.8944
70.69 | 8
.4873
70.40 | | 18.0 | 5
.8631
\$4.40 | 6
.8957
94.34 | 5 7479
88.90 | 6
, 8021
88, 72 | 6.6503
83.40 | 6 .7181
83.17 | 6
5156
77.70 | 7.6014 | 6
.4417
72.24 | 7
.6292
72.03 | | 19.0 | . 8631
94.80 | . 8957
94.66 | \$
.7479
89.50 | 6
.8021
89.31 | 5
.6503
84.20 | 6
.7181
84.00 | 5
.5672
79.00 | 6
-6426
78.75 | 6
4417
73.69 | 7
.5292
78.60 | | 20.0 | .8862
95.00 | 5
.9107
94.90 | 4
.7873
90.00 | 5
.8292
89.88 | .6503
85.00 | 6 .7181
84.83 | 5
.6672
80.00 | 6
.6426
79.78 | 5
.4962
75.00 | 6
.5748
74.79 | In the absence of an optimum plan for $\vec{r} < p_L$, the plan for p, which is just greater than p_L , is recommended. N.B. Appendix-1 (contd.) VALUES OF 4, f (4*, f*) AND AMOUNT OF INSPECTION FOR CSP I (CSP 2' k=4) PLANS FOR GIVEN VALUES OF ACCL (%) AND PROCESS AVERAGE 100p | Incoming | | | | AOQ | A0QL (%) | | | | | | |--------------------|----------------------|------------------------|-----------------------|----------------|---------------|-----------------|--|-----------|------|------| | Process
everage | 6.0 | | 7.0 | | 8.0 | | 9.0 | | 10.0 | | | | CSPI | CSP2 | OSPI | CSP2 | CSP1 | CSP2 | CSP1 | CBP2 | CSF1 | OSP2 | | 1.0 | • | | | | | | | | | | | 0 % | ľ. | } | | | | | | | | | | 8.0 | | | | | | | | | | | | 4.0 | | | | | | | | | | | | 6.0 | | | | | | | | | | | | 6.0 | 98. | 98
-0004
5.81 | | | | | | | | | | 2,0 | 93
.0003
14.30 | . 92
.0004
14.30 | 93
61×10-4
4,97 | 98
122×30-4 | | | | | | | | N.B. | ı | noe of an opti | | pr. the plan f | or p, which i | i just greser t | ich is just greser than pr., is recommended. | ommended. | | | Appendix-1 (contd.) VALUES OF \$, f (**, f*) AND AMOUNT OF INSPECTION FOR USP 1 (CSP 2 2=5) PLANS FOR GIVEN VALUES OF AOQL (%) AND PROCESS AVERAGE 100p | | | : | | | 40 | A0QL (%) | | | | | |---------|-----------------------|----------------------|--|-------------------------|------------------------|--------------------------------------|------------------------------|------------------------|------------------------|-------------------------| | process | 6.0 | 0 | 7.0 | 0 | 8.0 | | 8.0 | 0 | 10.0 | | | verage | C8P1 | CSP2 | CSP1 | CSP2 | CSP1 | OST 2 | CSP.1 | CSP2 | CSP1 | CSP2 | | 8.0 | 46
,0071
25,00 | 46
.0140
25.00 | 98 61×10^{-6} 12.50 | 98
122×10-9
12.50 | 91
23×10-4
4.42 | 91
47 × 10 ⁻⁶
4, 42 | | | | | | 9.0 | 30
.0287
38.88 | 31
.0496
33.33 | 46
.0037
22.20 | 46
.0074
22.20 | 91
28×10-6
11.11 | 91
47×10-1
11.11 | 90
8×10-4
3.95 | 90
17×10-6
8.95 | | | | 10.0 | 23
.0558
40.00 | 28
.1014
39.98 | 30
.0178
30.0 | 31
.0314
30.00 | 45
.0022
20.0 | 45
. 0043
20.00 | 90
8×10-6
10.06 | 90
17×10~6
10.00 | 89
8×10-6
3.6 | 80
6×10-6
3.57 | | 11.0 | 18
.0928
45.46 | 19
.1496
46.41 | 22
.0422
36.36 | 23
.0702
36,35 | 30
.0118
27.27 | 30
.0219
27.27 | 45
.0012
18.20 | 45
.0023
19.18 | 89
8×10-6
9.10 | 89
6×10-8
9.09 | | 13.0 | 15
.1282
50.00 | 16
.1944
49.94 | 18
.0668
41.67 | 18
.1195
41.65 | 22
.0292
83.88 | 23
.0489
33.33 | 29
.0081
25.00 | 30
.0140
25.00 | 44
72×10-6
18.70 | 44
148×10-6
18.70 | | 13.0 | 12
.1800-
53.86 | 13
.2590
68.77 | 15
.0960
46.17 | 15
-1658
46.11 | 17
.0558
38.57 | 18
.0880
38.44 | 32
30.77 | 32
.0389
30.76 | 29
.0063
23.08 | 25
.010-
23:08 | | 14.0 | 11
.2024
57.15 | 12
.2862
57.03 | 12
.1407
60.00 | 12
,2069
49.93 | 14
.0833
42.86 | 15
.1287
42.82 | 17
.0410
35 .72 | 18
.0663
35.70 | 28.58 | 22
,0276
28.67 | | N.B. | In the sheet | oce of an ordi | In the absence of an optimum plan for $\tilde{v} \leq v_c$ | | the plan for ". wh | hich is met greater than | ater than | is recommended | | | , ts recommended. N.B. In the absence of an optimum plan for $\bar{p} \leqslant P_L$, the plan for \bar{p} , which is pure greater than Appendix-1 (contd.) VALUES OF 4, f (**, f*) AND AMOUNT OF INSPECTION FOR CSP 1 (CSP 2 &-*) PLANS FOR GIVEN VALUES OF AOQL (%) AND PROCESS AVERAOE 100p | oozning | | | | | | (8) | ļ,
ļ | | | | |----------------|----------------------|-------------------------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|-----------------------|-----------------------|----------------------| | process | 6.0 | 0. | 7.0 | | 8.0 | | ₽.₽ | | 2 | 10.0 | | | CRP1 | CRP2 | CSFI | CSP2 | CSP1 (| CSP2 | CSP1 | CSP2 | CSPI | CSP2 | | 15.0 | 9,2580 | 10
. 346 4
59.89 | 11
.1606
53.36 | 12
.2314
.53.27 | 12
.1107
46.67 | 13
,1656
46.61 | 14
.0641
40.00 | 15
.1001
39.98 | 17
.0306
33.33 | 18
.0496
33.33 | | 16.0 | 8
.2926
62.52 | 9
.8831
62.37 | 9
.2118
56.26 | 10
.2901
66.15 | 11
.1282
.50.02 | 11
.2135
49,94 | 12
.0875
43.75 | 12
.1526
48.75 | 14
.0496
87.50 | 16
,0779
37,49 | | 17.0 | 8
. 2926
64.74 | 8
.4216
64.58 | 8
.2435
58.84 | 9
.8251
58.70 | 9
.1738
62.95 | 10
.2429
52.85 | 10
.1212
47.07 | 11
.1760
47.00 | 13
.0698/
41.18 | 13
.1240
41.16 | | 18.ô | 7
.8828
66.70 | 8
.4216
68.61 | 7 .2818
61.16 | 8
.3645
e0.98 | 8
.2036
55.56 | 9
,2765
55.45 | 9
.1435
50.00 | 10
.2033
49.83 | 10'
.0990
44.45 | 11
.1461
44.30 | | 19.0 | 6.838 | 7
.4664
68.20 | 7 .2818
63.17 | 8
.9645
63.05 | 7
.2396
57.92 | 8
.9150
57.77 | 8
.1707
52.68 | 9
. 2351
52. 58 | 9
.1190
47.37 | 10
.1702
47.33 | | 9.
9.
9. | .3798
70.07 | 7
.4654
89.86 | 6.3275
65.00 | 7.
4090
64.83 | 7
.2395
60.00 | 8
.3161
59.94 | 7
,2041
55.00 | 8
.2722
64.89 | 8
.1487
50.00 | 9
.1989
49.95 | In the sheares of an optimizing plan for $\bar{p} \leqslant \bar{p}_{L}$, the plan for \bar{p} , which is just greater than \bar{p}_{L} is recommended. N.B. APPENDIX = 2 AMOUNT OF INSPECTION (%) FOR A GIVEN P_L FOR DIFFERENT VALUES OF 1 WHEN INCOMING QUALITY FOLLOWS A DISTRIBUTION P_L =.01 # Appendix-III COMPARISON-OF AMOUNT OF INSPECTION AND AGO FOR OPTURE (SP PLANS PL 4.85 REFERENCES Dongs H. F. (1943): A sampling inspection plan for continuous production. Ann. Math. Statist. 14, 264-279. Dodge, H. F. and M. N. Torray (1951): Additional continuous sampling inspection plans, Industrial Quality Control, 15,7-12. GHOSH, D. T. (1988): The continuous sampling plan that minimises the amount of inspection. Sankhyā, 50, Sr. B, Pt. 3, 412-427.