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ON UNIQUENESS OF BAYESIAN THREE-DECISION
PLANS BY ATTRIBUTES

By B. J. PANDEY
Indian Statratical Inatitute

SUMMARY. Tor Bayesien thres-decision ASR plans by attributes tmiquensss of optime]
solntion has bevn established by using a two-point prior distribution for incoming lot guatity and
agnuning that the expected decision loss is a mnnotonically deercasing fanction of acceptance
decigion number with falling rate of decreass snd the point of intersection of regret foncticna i
an increaging fometion of acceptance decision number, Both of thess apnunptions arc posed ea
opsn conjecturss. It is pointed out that numerical reeulis mupport the truth of both the
oonjeotnres.

1. INTRODUCTION

A wide variety of Bayesian three-decision plans wers developed in Pandey
(1984). The numerical compubations of the optimal plans yielded unique
solution in each of these cases. These unique Bayesian plans are tabulated
in the above work for the cases : (i) two-point prior restricied and unrestricted
Bayes soluticn (if) three-point prior unrestricted Bayes solution and (i) heta
prior unrestricted Baycs solution. An attempt ia made to establish, analyti-
cally, the uniqueness of the optimal solution.

In this paper we consider the case of two-point prior restricted Bayes
solufiion for three-decision ASE (accepi-screen-reject) plan to show ihe uni-
queness of the optimal solution. A complete rigorous proof for nniqueness
in provided under two assumphions— (1) expecied decision loss is monotoni-
cally deereasing function of acoeptance decision number with felling rate of
decroaso and {2) point of intersection of regret funetions is increasing function
of acceptance decision number. Although, both the assumptions have been
found to be trus in practics on the basis of numerical results, it has not been
possible to establish their truth asmalytically. In view of this they are posed
a8 open conjectures.

To facilitate disoussion on the uniqueness, necessary background theoreti-
cal deteils ars also given in Sections 2 and 3. The uniqueness of Bayesian
solution for other three-decigion plans are attempted on similar lines and are
omitbed,

AME (1930} subjert clossificaion : 62N10.

Key words and phirises @ Bayesion three-decision rostricted plan, expected desision Loss,
uniquencs? of Bayes rolution, accoptance decigion number,



BAYRAYAN THREE-DRCISION PLANS 417

2. THREE-DECISION BERTRIOTED BAYESIAN ASKE PLAN

Assume that the incoming lot quelity p follows a prior distribution with
density wip). For the triplet {n, ¢, ¢,) defining a three-decigion plan the three-
decigion corresponds to the values of the decision varisble x as followa :

_Denisiﬂu ! Value of
1 I Lo -
2 | gz . (20
3 ‘ I i

If the three terminsl decisions 1, 2 and 3 are acceptance, soreening or rejection
of the loé respectively, we call the plan as three-decision ASE plan.

Let ky(p), %i(p} and k{p) be the cost associaked with the deciston 1, 2
and 3 respectively and k,{p) be the cost of inspection when p is the incoming
lot quality. It is assumed that for lots free from defectivea the costs ka(p),
Lip) and k{p) are in increasing order whereas for lots with 1009, defectives
they are in decrcasing order, Also, the cost of inspection in assumed o be
more than the minimum unavoidable decision cost &y{p). We shall write

- '_fk (p) IW (D). . (22)

Assuming the simplest form of the prior distribution W{p) for p as two
poin$ prior with values p’ and p” with relative frequencies w, and w, respecti-
veoly wy 1y = 1, the rogret or loss function eorresponding to the three-decision
is given by

RN, n, ¢, c) = { e (2.3}
n+(N—n) Hn, 6y, &), # < N

wherse (@(n, ¢, ¢;} denotes the expected decision loss and is & complicated
funchion given by (2.4).
(1. o1, ) = An [1—B(e, ; nley), 2]
+ A4z Bley ; 6(ey), 27)
g [1—Blcsler) ; nler), 2'}]
+Agg Blog(ey) ; nley}, P°) . (24)
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where Ay, 5,7 = 1, 2 are consfants defined in Pandey (1984) as follows :

An = Wy [Re(0)— Ralp ) (Re—Fiz)
Ayg = 3 [Ralp” ) —Fel " )3 (Res— R}
Aoy == wy [e(p")—Jer{0") ) (Ra~— o) e (2.5)
Agg = 0y [Ka(@" )~ K (" ][ ez —limn)

p Py L
- r @R+ LW+ | bpliW) ... (2.0

Tt in degired that the Bayesian three-decigion plan should satisfy certein
restrictions on the probability of misclassifiation. Let o, and p,, »; < p,
denote the levels of incoming lot qusaliby such that a lot of quality p(p,) if
correctly classified should be screened {rejected). Let #,(f,} be the probabili-
ties of misclassification of alot of quality p,(p,) resulting in acceptance {acoep-
tance or soreening) of the lot under the plan (n, c;, ¢,) i.e.

Bloy;nmp =5 e (2.7)
and By s n, py) = 5 . (2.8)

where 0 € §,, 5; < 1 and (2.7) and (2.8) arc satisfied as closely as possible
treating n, ¢, and ¢, as inbegera.

Lot § denotes the set of plens satisfying {2.7) and (2.8) for given values
of py, Py, 5y 8ud By, For a plan in § if any one of the triplet (x, ¢, c,) is fixed
the remaining two parameters can be nniguely obtained. In view of this, a
plan in & can be indexed according to acceptance decision number ¢, alone end
denvted as 8(c;} and the correspending regret for lot of N as R(N, ¢,). Thus,

8= {{H, 61y '5-!} - B{Gl : T PI) = ﬂl! B{‘:E s Ty FE} = ﬁ!-] e (2.9)
A regtricted Bayesian three-decision (RBT) plan (#°, ¢, c§) can be defined as
5(cd) = {8y} : B(N,c}) = inf R(N, o)} . (2.10)
Sley IaS

3. Drrerumiarion oF BBT sraw
For & fixed X, the value of ¢, minimising R(N, ¢,) is determined from the
inequality
ARN, ;- 1) 0 < AR (N, ¢)) ... (31)
To obtain the bounds for the lot size for which the plan (n, ¢,, ¢,) astisfying
(3.1) iz the optimal plan we shall define ¥ ¢, rom AR(N, ¢,) &8 follows :
N gy — ﬂ{ﬂl}'l‘[m'—ﬁu_#ﬂ'!'aﬁn Ble;+1 ; nle,+1), )
—#a Bler+1 5 nleg+1), p")-Hiby Blegle,+1) 5 n{e 4-1), p')
—B(cgle,+1) ; mley+ 1), 27)] A nle,){Ulcy) . (8.2)
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whero m = 1fAg, Mgy = M flyy > 0,4, = 1,2 snd
Uley) = Ly A Bleg ; niley), ') —pyp A Bley ; »{cy), %)
a1 & Blegley) 5 nioy), p')—Hae A Blogley) ; nleg), 2"} .. (3.3
Clearly,

A RN, c) = Uig) (N o, N fm
and A BN, —1) = Ule,—1) {Nﬂl_l—N}jm. m == 0.

The function I{c,} is related to G{e,) = G(xn, ¢,, ¢,) defined by (2.4} and is used
subsequently aa Ule,)/m = —A &{e,).

Alshough, 1t has not been possible to study the monoctonocity of Gie)
analybically, extensive computations show that it is 8 monotonically deereaaing
function of ¢, with falling rate of decrease ie., A G(s,) << 0 and A*G{e,) > 0
sa in Tig. 1 and, hence, that Ule,) > 0 for all values of ¢,. Further,
numerical results show that Gle,) << 1 for 2ll the values of ¢,

Therefore, it follows from (3.1) that the plan (n, ¢, ¢5) i3 optimal for the
lot size N if
Ny < N<N, o (34)
For fizxed ¢; and Ay's note that R(N, ¢} as defined in (2.8) is always an
increasing linear funetion of N.
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Fig. 1. Fxpeotod decision loag (standerdized} aa a funetion of ¢, for Bayeatan plan with doahle
binomial as & prior distribotion p' = (.01, " = (.15 end w = 0.9, g = 1=,
and &(r,) fn the unita of 16-¥ where p, = .05, pye 010, §, = G.0T, & = 9.1,
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Consider two plans—plan 1: {ny, ¢;, cg) and plan 2 : (ny, ¢y, ¢p) and lok
(¥, N} be the range of values of N where plan 1 is opbimal and (¥y, Ny)
be the range of values whers plan 2 is optimal, according to (3.4).

For plan 1, R(N) ircreases when N rises from &, to I} and for plan 2 it
increases when N increases from N, to ¥, Let N, << N, << N, << Ny ; then
(N4, N7) is the range of overlap in N, We shall now examine the question &s
to which of the two plans—plan 1 or plan 2—should be preferred in (¥, N).

Since N, < N, < Ny << N and it i3 given that

-R{-N: My, GE: Bllj fﬂl‘ N € Ml

Iﬂlll{R{N, 5 "-"1'} C-é], RN, 1y, ':"EI E‘I:)}= v -
B(N, na, 61, &3} for N e M,

where M, = {N; N, < N Ni}and M, =[N ; Ny < N < N} and further
E(N) is increasing linear function of &, the R(N) function for plan 1 and
plan 2 must intersect at some point in (¥, N7), the range of overlap (¥igure
2). At the point of intersection in (N, N;) the values of R(N) for the two
plans must be equal i.c.,

RN, ny, ¢1, €;) = RN, ny, 43, 65) o (8.5)

which pives the expression for N{1, 2) the point of intersection, For example,
Nie,, ¢;+1) the point of infersection of E(N, ¢;) and R(N, e,-+1) is given by

Niey &+1) = ME"FIJ[I—-G%IEZ@@W o (3.8)

Thus
RB(N, »y, ¢y, €2) S B(N, ny, 01, ¢;) according as N % Ny, o {37
and hence in (¥, N,,) we should prefer plan 1 to plan 2 and in (¥, N,)} we
should prefer plan 2 to plan 1 where ¥, = Nic,, ¢;+1).
For any ¢, the plan 8(¢;) € 8 is optimal for lot range N, , < N < N

ag stated by (3.4). The function R(N, ¢?) is & concave function of ¥ according
to (2.3).

Writing

No = nlet “pgs) Anio . (38)

we note that ¥ o> nfe,). N ¢, 18 an increasing function of »{s). Henocs, as
stated earlier, for inoreasing values of ¢, of various optimal plans in &, the
corresponding lot srze ranges would be moving to the right, possibly over-
lapping according to {3.7),
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The optimal plans can be systematicslly tabulated, as indicated in
Pandey (1934), as followa :

Step 1 : Take some arbitrary values of ¢, and obtain a plen, say 8{e;) ¢ &
by using the fact that (2.7) and (2.3) are satisfied as closely as possible.

Step 2: For the plan &(e,} so oblained, compute the value of N o and
N - using (3.2}

Siep 3: Choose ¢; = 0,1,2 8, .., systematically and proeceed as in
steps 1—2 and tabulate the sampling plans and the corresponding bound
for the lot smizea.

Siep 4 : For two plans with overlapping N-intervals use (3.7) to selsct
the optimal plan.

Steps 1-4 have yielded unigue plans which are available in Pandey
(1984). We shall devote the subseqguent aection to analytical uniguenecas
of the optimal plans.

4. URIQUENESS OF RESTRIOTED BAYESIAN ASE PLAN

The uniqueness of optimal Bayes solution discussed in the provious see-
tions, nan be proved analytically provided—

(a) the function ¢}, denoting ¢, as ¢ for simplicity of notation, as defined
in {2.4) is analytically shown as » decreasing funotion of ¢ with falling rate of
decrease ie., A; Gie} << 0 and A2 Gig) > 0 and

{b) the point of intersection ¥(c, e+ 1) of B(N, c) and R(N, c-+1) as defined
in (3.6) is analytically shown as an inereasing function of ¢ ie,, A, ¥i(e, ¢+1)
= Q.

It has not been possible to prove {a) and (b) analytically and it is noted
from Hald (1960) that it has not been possible to prove (b) analytically
even in the case of two-decision plans.

We pose (a) and (b) as “‘open conjectures”. However, as mentioned
earlier we have carried out extensive numerical computations and found that
both the conjectures {a) and (b) are true for the range of values of ¢ taken,
Our numerieal results in respect of (a} and (b} are illustrated in Figures 1
2 respectively.

In the light of the above numerieal investigations if we accept (s} and (b)
as true, then, the proof for uniqueness proceeds rigorously as follows :
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Yemma 1. Let BN, ¢) = ale) 1 —GHe)j+-Go)V. Forany 0 <S¢ < o" g n
there exists o unmique N,>» 0 such that R(N,, ¢') = B{N, ¢"). Furlher, we
have RN, c") > B(N,¢) for all 05 N << N, and B(N,c") < B{N, ') for
N = N,

Proof : It can be eadily shown that the functions fyfx) = 4,462 and
feol®) = ag+bx, veR? for iy = by > 0, 0 < &, < a, interseoct at z, > 0 and
Jilx) meets fi(x) from below.

Now, for plans in 8 we have s{c-k)>n{t) forany k =1, 3,.... We take
n{e") > n(c) and note that n{e”) (1—FHe"}) > n{e’) (1 —G(c) end ') < Ge').
The required resuits follow by putting a, = »(e) (1—Fc")), oy = nlc")
{1—-8{c"), b = ({c') and by = G(c").

Theorem 1: Ief g, > 1 and lef N be such that B(N,, ¢y} = R(N,, co+1).
Then ¢ = cy+1 38 the unigue vnlue which salisfies the condilion AR(N,, )
ﬁ“ < ﬂR{Nﬂ: ﬁl}+1)'

Proof : By hypothesis we have A B{NV,, ¢,) = 0. We have by Lemma 1,
A RN, ¢+1) = 0 for all 0 < N << N{g,+1, 6,-4-2). Since N = N(cy, cp-+1)
<< N{cg+1, 64+2), we have A B(N,c,+1) >0 Consider any ¢ > ¢gf1.
For all ¥ << N(c, ¢+ 1) we have AR(H,¢) > 0. Bince N, < N(c, c11) we
have A R(Ny, ¢} = 0 for all ¢ > ¢+ 1. Now, consider any O < ¢ < ¢, By
Lemma 1, A B(N, ¢) << 0 for all ¥ = N{e, 1.

Binee N, = N(cy, eyt 1) > N(c, 6 1) we have A RN, ¢) <0,

Theorem 2 : For ang N > 0 there exisls an unique c, suth that A B(N, ¢,)
< 0 < A RN, ¢o+1).

Proof 1 For simpliciby of notation let Np=N(k, k+1). I Np< N <Np,q,
Jet ¢, — k. We have from the proof of the Theorem 1 for Ni = M,
ARM,E)=0 and ARN,c)<<0 for all ¢<k and N> N, Bub

N 3 Ni > N, and hence A R(N, ¢} << 0, Ennﬂarly,weuanshuwthatﬂ.ﬂ{ﬂ c)
= 0 for all ¢ > k.

This completes the proof that tho solution is unigue.

5. CONCLUDING REMARKS
For different prior digtributions and different terminel decisions the poing
of intergeotion of the regret functions and the expected decision loss have
similar expressions but varying degree of complexity. Approach presented
here remaina basically same for other cases with some minor modifications in
B 3-20
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the proof. However, the conjeotures, still form the main foundadion in all
the oases. In ecase of a continwous prior distribution uniquenecsa of Bayesian
three-decizion plans ia implied analytically under certain regularity conditions
a4 it ean be seen in Pandey {1087). It is felt that it may be relatively easier

10 ghow uniqueness of solution analyvically in oase of Dayesian three-decision
plans by varisblee.
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