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SUMMARY. A fow genoral inothods are dovelopod in the prosont puper for construoting

orthogonal arreys of various strongths, particularly of strongth two and three. Some now and

sorios of orthogonal arrays 1 in tho papor as illustrations aro ax follows :

(1) OA((s—1)m sm*m, (724622 .. +a+1) (8= 1M+ (a—1)2m-D .. +1, o 2) for all
n > 2 and m > 1, whon s and #2—1 are both primea or prime powers.

(1) OA(2a— L) arem, (2an-2 4477 . a)+1)(e— 14 (a—1)3m=20. .. 41,6, 2),when
s and s— | aro both primes or prime powers, n > 2and m > 1.

(it} OA(s»?, 7, 5, 8), p > 0 always implics the oxistenco of OA(A? 6743, er, A 4, 3), whon
both X and ¢ aro powors of same primo.

(iv) OA(A!-! &%, As, 5, ¢), ¢ > 3, when both X and 2 aro powers of the same prime.

1. INTRODUCTION

Orthogonal arrays (in short, OA's) wero first introduced by Rao (1948).
Since then, efforts have beon made Ly soveral authors to construct OA's of
various strengths and indices, and to provide suitablo upper and/or lower
bounds to the number of constraints for an array with a given index, lovel
and strength. The use of orthogonal arrays as fractional factorial experi-
ments i8 too woll known to bo reponted. Boso (1960) first pointod out the
interrelationship betweon orthogonal arrays and error correoting codes.
Importance of the study of properties and of tho construction of OA's has
h 1, beca of their application in error correcting and

been greatly
error doteoting codes.

In tho present puper, & fow methods aro doveloped for tho construction
of orthogonul arrays, particularly those of strength two and three and somo
now series are constructod by those methods, as illustrations.

2. DEFINTTIONS AND NOTATION
The definitions of an orthogonal array fOA) and balanced array (BA)
aro to be found in Rao (1973) and we follow tho symbols therein. A rectan-
gular array (N, r, 8) is an r X ¥ matrix with oloments from X of s > 2 olements.
OA (N, r, s,1) ropresents a (¥, 7, s) array which is orthogonal of strength £
We shall use the shorter notation OA (r, !) to denote un OA (N, r, s, {) whare
the other parameters of tho array are obvious from the context.
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82 A. 0. MUKHOPADHYAY

Extending the dofinition of a completely resolvable orthogonal array of
strongth two in Bose and Bush (19852), we defino an OA (uAét, r, 8, t) to be
p-rosolvable, if it is the juxtaposition of us diffcrent arrays OA (Ast~1, r, s, (—1),
132

Wo shall call an OA (A8, 1, 5, ¢), ¢ > 2 completely decomposable, if it iy
the justaposition of Ast-! different arrays OA (s, r, s, 1).

The rows of au array (¥, r, 8) are aiso called its constraints and N, the
number of columns of the array, its size. The maximum numbor of cons-
truints, r of an OA of size NV, levels 5 and strength ¢ is denoted by f(N, s, 1),

Lot ¥ bo & finite module of s eloments, viz., tho null clement e, and other
elomonts e), es, ..., eg_y. For ¢ > 2, let us consider the s distinet. {-tuples
formed by the elemonts of Z. Thoy can bo divided into &#-1 sots, Al,, 4,, ...,
M.H, cach consisting of s distinct L-tuplos such that givon any {-tuplo in a
set, say My, all the s L-tuplos in the set can be obtained by adding successivoly
tho elements ey, e,, ..., &_, of T to each elomont of the given (-tuple. A sot
of t-tuples, M, satisfying this property will be called a closed set in future
discussions. Suppose that it is possible to find an array B of r rows and
n = ust~! columns with elements bolonging to X such that in every -rowed
submatrix of B, the number of l-tuples belonging to each 2y is the samo and
oguals z. Such an array B win bo denoted by Sy(ust~!, r,8), ¢ > 2. More-
over, if the array B is eis0 orthogonal of strength t—1, we will denote it as
Sge(ust=1,r,58). The shorter notation Sy(r) and Ses(r) will be used where
there is no scopo for confusion. Tho arrays of the type Sy(r) and Sje(r) wero
considored by Soiden (1954) and Seidon and Zemach (1968).

Standurd notation is used for partially balanced incomplete block designs
and particularly, group divisible (GD) designs. The definition of a resolvuble
GD design is to be found in Raghavarao (1971).

Tho matrix operations which will be froquently used in the construction
of OA’s in tho subsequont scctions aro described below :

Lot A'lx”l <= (agg) and B'zx'h:
olomonts {rom the finitc modulo X.

=(byy) bo two matricos writton with

(i) Let r, = v, =r. Then, wo define A@B 48 un rxnn, matrix where
for eny colunu of 4, say a; and any column of B, say fy, we define a column
y+fyof A@B,i=1,2,...,n;j=12 ..,n. Here the symbol + stands
for tho usual vector addition.
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(i) The Kronocker sum, 4 U B denotes an 77y X nyng matrix of the form
(4(sj)), where A(ij) = A‘H’il--’;,xnl and Jr,xn, stands for & v, x7m, matrix

ofall Ve i==1.2, rpi=: 1,2 oy

3. CONSTRUOTION OF Sy'8 AND Spe's

In the prosent scction, construction of some series of S;'s and Si's is
taken up. They will be utilised in the two subsequent soctions in constructing
orthogona: arrays of various strengths and that is the main aim of the
I\J\IK']'.

3.1 8,5 and Se's. Let s be a prime or & prime power > 2 and let
0 = €&y -er €y DO the s elemonts of GF(s). In this case the muitipiica-
tion tabic B of the olements is obviously an Sy(s, s, 5) and deleting the row
E,s from B. when s> 2 wo obtain an Sye(s, s—1, ). Eypn donotes an mxn
matrix with all clements e;.

Tho existonce of u resolvable GD (s,4,5.0,1) is always onsured
when s is a primo or a prime power (Raghavarao, 1971). Lot N bo tho
incidonce matrix of the rosolvable GD design. We can write N® as
N® [Ny Ng ... N.T, whore Ny = [Ny Nip ... Ny), overy Ny is an oxs
matrix with a single unity in cach row and coiumn, and the remaining elemonts
0, i.j=-1,2,...,8 Ono such construction was givon by Fedcrer, Joiner
and Raoghavarao (1974), where their M js our N®. Morcover, N.N;. = sly,
Poo 1,2 s und NeNp. = g i 4 i = 1,2, s

It is obsorved that tho matrix B which constitutes an S, (s, s, ) is of
tho form (E,, : 8). Duoloting this first cohnun from B, we aro left with .
an §xs—1 matrix.

Let 8¢5 be obtained from Ny 7,5 =1,2,...,5 of N® in the following
manner :

If the (f, g)-th coll of Ny contains unity, f-th row of Xy is to be replaced
by g-th row of 8. Let us replaco cach Ny by the corresponding Sy in N,
t,7 - 1.2, ..., 5 aud devotv the resulting matrix by Si®.

It is casy to sce that tho matrix € =[E,2,:8®: E, 8] is an
8,(s3, 8%, 5) i.c. an 8§ matrix with p# =3 and £t — 2 Then, we have the
following resnlt :

Thoorem 3.1.1:  [f # 15 a prime or a prime power, there ahways exisls an
8,(s7,47,8), p = 1,2. If. in addition s » 3. there exisls an Sye(s, 8—1, 8).



84 A, 0. MUKHOPADHYAY

Lot s—1 too be a prime or a primo power in addition to . We can start
with 8 resolvable GD(s—1,8—1,8—1,0,1), whoso incidence matrix N, ia
partitionod in tho samo manner ua N®. Then, deleting any single column
from S, wo get an (s—1)x(s—1) matrix, sy, donoted by SW, Working
with S and tho partitioned incidence matrix N{¥, and following exactly
the same procedure as in the construction of S®. we got an (s—1)x (s— 1)t
matrix P Now, it is ensy to sce that

D =[S Eoya U S is an Syt(e— s, (s—1)8, 4).
Thus, we have the following theorem.

Theorem 3.1.2: If s and s—1 are both primes or prime powers, there
cxists an S,(fs—1)s, (s—1)2, ).

3.2 General Si's and Sp’s, t > 2. In general when s is a primo or a
prime power, by modifying slightly tho method of construction of OA(st, s-+1,
4,1), s> ¢ given in Bush (1052a), wo can obtain an Sye(st-1, s—1,8). Tho
modification to be effected is as follows :

Lot us consider ' polynomials y(x) = ar_yzt~'+ar_pxt-t+ ... raz
in some order, whero the cocfficients range over tho fiold GF(s). Let us cons-
trust an array with column subscript j ranging from 0 to (st-'—1) and the
row subscript range from | to s—1.  An s—1 by g*-!is thus formed by writing
in the i-th row and j-th column the clement ey, whoo gyles) = ey, where
0=¢,.0 €, ..., 65, 010 the clomonts of GF(s). It is ersy to seo that the
array 50 formed is an Spe(s—1).

Now for any s, given an Sys(pst=!, 7. 8). t 2 2, an Sy(uat-1, r4-1, 5) con
always be obtained by adding one more row. viz., E‘ 1 to the former.

Hence,

Theorem 3.2.1 . [f s is a prime or a prime power > . there always exisls
an Si(st=),3,8). There also exisls an Spe(s'-',3—1,3), when s >t > 2 and
8> 2.

The following theorem will bo useful in obtaining S¢'s and Sie's, when s
is not & prime or a prime power.

Theorom 3.2.2 . The exislence of Si(past™. v, 8). 1 7:1,2,.,m implies
the existence of Sy(ps'™), r.8), where iz gy flay s imy 877 Hi¥as r M

r=min(ry, rp. ..., rm).
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Proof : 'The result is analogous to the product of OA’s as disoussed in
Bush (1962b) and is not difficult to arrive at by following similar argumenta.
Hence, tho proof is omitted. Tho result of the theorom 3.2.2 remains valid,
if the Sy's are replaced by Sye’s.

Another theorem which will be very useful in constructing orthogonal
arrays in the subsequent sections is stated and proved in tho following lines.

Thoorem 3.2.3: The existence of an Sy(Ast=',r, 5) implies the existence
of an Slus ™, v, 85, where s = 8,3, and y = A=

Proof : Lot eV, e, ..., e:?_l denote the & elements of the module X,

i—=1,2. The module T of 88, = s elements can bo represented by the #8,
ordered pairs (ef, ef®), i = 0,1,...,8—1, j=0,1,...,8—1. The addition
of two eloments (e}'l‘ e}:’) and (e;"), e;i’) in ¥ is defined as usual by

(e +ef?, e 4ef).

Now, lot M, MP, ..., H®s{-) represont the closed sots of { tuples
formed by the elements of Z, i = 1, 2. Similarly, let My's, 1 = 1,2, ..., &}
and j=1,2,..., 5" represont the closed sets of !-tuples formed by the
cloments of £, whore if & is any ¢-tuple belonging to My for somo i and j, the
t-tuple formed by only the first coordinates of the elements of a belongs to
(" and the -tuple formed by only the socond coordinates of the elements
of @ bolongs to M.

Now, lot the Si(As#-1, r, s) bo written with the elements of X. Then,
let us introduce tho mapping
f1ESE,
Sief?, &?) = &®, for sll 4,j,
and thus rowrito the array Sy(r) in terms of tho oloments of Z,. Then,
for any t-tuple in SifAs*=!, 7, s) bolonging to the set My, for some i and j,
tho corresponding t-tuple in the new array will belong to MP. 8o, in any

t-rowed submatrix of the new arrny there are u = A&, I-tuples belonging
toany M, j=1,2, .., 6"

Hence, the theorem is proved.

Making use of Theorems 3.1.1, 3.1.2 and 3.2.1 a.long with tho Thearem
3.2.3, wo obtain the following corollaries.
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Corollary 3.2.1: There always exists an 8, (ste, sfsh, 8,). p= 1,2,
when &, and 8, are powers of the same prime.

Corollary 3.2.2: There exisls an S, ((8;8,—1) 8,8, (818,—1)?, 8,), when
8, and 8, are powers of the same prime and s—1 = sy8,—1 is @ prime or a prime
power.

Corollary 3.2.3: There exisls an Sy}~ si™'. 8,55, 8,), | > 2, when g,
and &, are powers of the same prime.

4. CONSTRUOTION OF ORTHOGONAL ARRAYS

Let us state 3 lommas which will be needed to prove tho main rosults of
this section.

Lommn 4.1 1 Given an array B with entries from a module T of s elements,
which is Sypst~' 7, 8) and a veclor & = (a;, @y, ..., @) with m = gs such that
among the elemenls of a each element of T occurs g times,

A = a’'{J B gives an OA(gpst, r. 5, 1).

Lomma 4.2: If A is an OA(As', 1, s.1) and & = (ay, @y, ..., ) 18 any
t-tuple with all elements €5, a @ A is also an OA(Ast !, s, 1).

Lemms 4.3: Lel A be alxn arvay (n = As*-1), where first ({—1)-rows
conslitule an OA(1—1,t—1) and the t-th row is identical with the (L—1)-th row.
Let B be atxm array (m = A,s8) the last two rows of which constitule an S,(2).
AU the elements of the arrays e . Then,

B@® A is OAQ, ).

Proof : Tho first two lonunas aro obvious and we consider only tho proof
of the third lomma. Lot us consider any column g of B and let its Jast two
cloments be b;_, and &. Ing@ A4, tho first /—1 rows constituto an OA(I—),
{—1) by Lemma 4.2 and in all the t-tuplos of §@ A tho I-th clement differs
from (¢—1)-th elomont by b;—b;_;. As tho last two rows of B constitute an
8,(2), in the difference sorics of the last two rows of B ({-th row minus ({—1)-th
row), cach olomont of ¥ occurs A, times. Henco, B@® 4 isan OA(t {) in which
each f-tuple occurs Aj), times.

4.1 Orthogonal arrays of strength two : A genoral result in the construc-
tion of orthogonal arruys of strongth two is contained in the following theorom.

Theorem 4.1.1: The exislence of an OA(A% 1y, 8, 2) and Sy(us,rss)
implies the evistence of a p-resolvable OA(Aus®, vyry. 5, 2). Moreover, if the
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OA(Ast, ry, 8, 2) 18 complelely decomposable, the resulling OA is also completely
decomposable.

Proof : Lot tho arrays be writton with olomonts from the module I of
s olomonts. Lot tho array A with r, rows and m —~ As? columns ropresont
the OA(As%, ry, 8, 2) and lot tho array B with 7, rows snd n = z8 columns
veprosont the 8,(us, ry, 8).

Let C = AUJB. Then, C can be easily proved to bo an OA(r,ry, 2).
with the holp of tho Lemmas 4.2 and 4.3.

But € is the juxtaposition of us arruys each of which is an OA{rr,, 1).
S0, the array is g-resolvable. Moroover, if tho OA(As? ry, s, 2) is completely
dccomposablo, the resulting arruy given by C is also obviously complotely
decompossble.

It is to bu noted that if any OA(Aust, r,8,0), § 3 2 i8 u-resolvable, we
can writo tho corresponding array, say, ¢ deccomposed into us blocks as

C=[Cl1):C(2):...: Clus),

whore cach of C(i)'s is an OA(r,t—1), i = 1,2, ..., z8. Wo can add one more
row to C by writing ey for all the columns of the first blocks C(1) ... C(u),
¢, for all the columns of the next blocks C(z+1), ..., C(2x) and 80 on &,_, for
all the columns of the last blocks, C((8—1)z-+1), ... Cl§x). Thus, we obtain
an QA(Aus!, r+1,8,1).

So, in the Thoorerm 4.1.1, bocause the resulting OA(Aus?, ryry, 8, 2) is
pvesolvable, wo can always add one more row to it to obtain an OA(Axs®,
nry+l, 8, 2).

Now, if the resulting array € in Thoorom 4.1.1 is complotely decomposabls,
we con writo ¢ decomposed into Aus® blocks as
C=[C(1):C(2): ... : O(ApusY)],

whoro oach one of the blocks i8 an OA(ryr,, 1). If therc exists an OA(Aus?,
ry 8 2) and roprosonting the array corresponding to tho OAlAus? ry, s, 2)
by D, wo can show tho matrix

[E.,UD
c

J is an OA of strongth 2.

80, in this case we got sn OAlryry+rg, 2). Thus, we have
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Corollary 4.1.1 : The exzistence of an OAlAs®, vy, 8, 2) and an Sylps, 7, 8
implies the existence of an OA(Aus, ryry+1.3,2). Moreover, if the original
OA(AsY, vy, 8, 2) is complelely decomposable and there exists an OA(Apa®, vy, 8, 2),
the ezistence of an OA(Aus®, ryry+r,, 8. 2) is ensured.

By Thoorem 3.2.2 and Corollary 4.1.1, we have the following results :

Corollary 4.1.2:  The existence of an OA(As?, r, 8, 2) implies the existence
of an OA(As*, ra,+1, 3, 2) and by repeated applications of the procedure, implies
the existence of OA(AsP*Y, rsf+a~t+ ... +8,+1.8.2) for all p > 1, wheres 3 2
and s, = nn'n(p:‘, p:’. p:') and s = p:'p:‘ ... pe¥ is the prime power decomi-
posilion of s.

Cloarly. 8, = & in the Corollwy 4.1.2 if s i8 & prime or a primo powor.

Obviosuly, an OA(A#, 1,8, 1) is clso un Sye(Asf, r, 8). Supposo, there
oxist OA(Aesh, reos, 2% 1 = 1,2 Troating tho first OA 8s OA 2nd the sovond
OA a3 S,eir,), which implies an S,(r,+-1) and making uso of Theorom 4.1.1,
wo have Ly writing A for the first array and B lor thoe socond array,

C = AJ B is OA(AAg8t, ry(ry+1). 8, 8)

Some mure rows can bo added to C in tho following masnner. Lot us
writo,

[E‘,.UB
D .-

] , where n = A%,
c

D, can bo oaaily shown to be 8n QA(AAgs, (ry+ 1)(ry+1)—1, 8, 2).  Hencs,
we have,

Corollary 4.1.3: The existence of OA(Awt ri,8,2), i = 1,2, implies the
exzistence of OA(A A8t 1, 8, 2), where r = (r,+1)(ry+1)—1.

It may be noted that Corollary 4.1.3 is an improvement upon Theorem 4
of Shrikhande (1964). The general resuits proved so far are utilised in cons-
tructing somo series of orthogonal arrays of strength 2.

(i) Addelman and Kempthorne (1961) have given s method of conatrue-
tion of OA(2s%, 2(s"1+s%-2 ... +8)+1,5,2), n > 2 and s, & prime or a primo
power. Let us borrow their mothod of construction for the smallest n i,
n =2 and that is enough. Thon, tho generel rosult will follow ocasily from
Theorem 3.1.1 and Corollary 4.1.2. In Addelman and Kompthorne’s (1981)
method, there exists sn OA(2s 2, s, 2) which is complotely decompossble.
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8o, by a repeated application of Corollary 4.1.2 in conjunction with Theorem
3.1.1, we have & completely decomposable OA(25%, 2s"-1, 3, 2), » > 2. Assum-
ing an OA(26% 2s+1,5,2) exists, we have by induction the existence of
OA(267, 2(s™+s"-2+...-+8)+1, 8, 2) for all n > 2, by & repeated application
of Corollary 4.1.2.

(i) By Theorem 3.1.2 and Lemma 4.1, we have the existence of
OAl(s—1)s?, (s—1)*+1,s,2), when both s and s—1 are primes or prime
powers. By using Corollary 4.1.2 along with the Theorem 3.1.2, wo have
the existonce of OA((s—1)s%, {(s—1)*4-1Ja+1,5, 2), OAt(a--1)s", (a7 g4
+...+8+1}(s—1)2+1, 5, 2) for all n > 4 and more generally, OA((s—1)mg"+m,
fsn-14-87-2 . a1} (s— 1) 4 (s— D)%MD {(s—1)24 1,6, 2) foralln > 2
and m > 1, when s and s—1 are both primes or nrime vowers.

(iii) Using Addolman and EKempthorne’s (1961) OA series along with
Theorem: 3.1.2 yiowds tho existence of tho series of OA(2,3—1)msa+m, {2(gn-1
Har-tp 81} (=14 (s— 1AM . H(s—1)2+1, 8, 2), when both
3 and s—1 are primes or primo powers.

(iv) Procecding in a simuar manner and making uso of the theorems of
this saction, it is observed that if s and s2—1 are both primes or prime powers,
we an construct an OA/(s*—1)s?, (s2—1)%4s41,8,2). By making use of
8.(s,5,8) andfor S,((s—1)s,(s—1), s) vepoatedly (the latter exist when s—1
too is a prime or a primo Lower), via (‘oroiiary 4.1.1, we can construct many
moro series of orthgonal arrays of strength two from it.

(v) From Corollary 3.2.3 wo know tho cxistonco of an 8,(As, As, 8), when
s and A are powors of tho same prime and henco via Lemma 4.1, in this caso
wo have a rosolvablo OA(As?, As, s, 2). This rosult was proved by Boso and
Bush (1952). But, our result is more general. By Corollary 4.1.2, we have
the oxistenco of OA(Xs", AsP—14sn-24 .. +3541,3,2) for sll » > 2, when A
aud s aro both powers of tho same primo. By a ropeated use of Sy(As, As, 8)
along with OA(As, As, 8, 2) wo havo the existence of OA(An-1s», (As)n—14(As)*-?
+..-4+(A8) 41, 8, 2), for all 2 > 2, whon both s and A are powers of the same
primo. Again Ly applying Sy(As, As, ) to tho series of OA(2s%, 2(s7~ 4%
+o+8)+1,82), n> 2 vin Corollary 4.1.2, wo have the existence of
OA(2Asn+, As(2(sn~!+8"~24 ... +-8)+-1}+ 1, 5, 2), when both A and s aro powers
of tho samo prime.

Ono moro point that needs to Lo mentioned at this stage is that the
Theofem 3.2.2 in tho provioua soction is moro genoral than the comparable
result on.orthogonal arrays provod by Bush (1952b).

B1-12
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By Bush's (1952b) result it is known that f(2:10% 10,2) 3 15. But
Theorem 3.2.2 used along with Theorom 3.1.1 and Corollury 3.2.3 gives
£(2:10%, 10, 2) > 18.

It is to be noted that in all tho now series of OA’s of strength two consi-
dored in the presont papor the numbor of constraints are considerably largo,
evon if thoy don’t attain the known upper bounds.

4.2 Orthogonal arrays of stremgth three: The method of construction
employed in Scction 4.1 in the construction of orthogonal arrays of
strength two can be oxtended with o little modification to the construction
of orthogonal arrays of strength threo. A general result proved in that dirce-
tion is coutained in tho followinyg theorem.

Theorom 4.1.2: The existence of un OA{As?, vy, 5, 3) and an Sy(ps?, r,, 8)
implies the existence of an OA(Aps, ryr,, 5, 3).

Proof: All tho arrays are written with clements from a module £ of s
clomonts. Let the array A with r; rows and m = As® columns represent the
O0A(As?, ry,5,3) and B with », rows and » =: us® columns represent the
8y(pus®, 13, 5).  Then, invoking Lommas 4.2 and 4.3, it can be proved easily
that C = A B is an OA(rry, 3).

Hence, tho resulting array C is OA(r)r,, 3).

Theorom 4.2.2: The cxislence of an OA(As%, v, 5, 3) implies the existence
of OA(AsY, 2r, 5, 3).

Proof : Lot T Yo the class of residues Mod(s). Let A bo the array for
OA(As%, 7, 5, 3) with cloments from X.

Let
o 0 .. 0
B = .
0 1 .. s=1
Then C = A ) B is OA(2r, 3).
Assuming s to bo o primo or a primo powor, Theoroms 4.2.1 and 4.2.2

do not help us in improving the lower bounds on f(s?, 5, 3), p > 5, that have
boen obtained by Mukhopadliyay (1978). But the theoroms have other uses.

The existenco of an Sy(A%2, As, 8) is ensured by Corollary 3.2.3, whon A
and 8 sro both powers of tho same printo.  So, by making use of lowor bounds
given in Mulliopadhyay (1978) via Thooroms 4.2.1 and 4.2.2, we obtain tho



ORTHOGONAL ARBAYS 81

following lower bounds when & and A are both powers of the same prime, for
all p 2 0.

F(X%5, 5, 3) > Asls4-1), s0dd and > As(s+2), seven

S3s4432, 5, 3) > As{stP+1) 4% .. {8241}

F(A274%9, 4, 3) > 22s{s2PH04atp 45211}

S(A%684%7, 5, 3) > As(s+1){s* P00 4527 ... 462+ 1}, 8 0dd,
and > As(s+2){s¥p+l 1 577 .. L g2+ 1), soven.

Moreover, Theorems 4.2.1 and 4.2.2 can also be used to construot series
of orthogonal arrays of strength three, when the number of levels, & is not
& prime or & prime power.

4.3 General orthogonal arrays of sirenglh t (> 3): By Corollary 3.2.3,
we know that S;(Af-1st-1, s, s) exists for all ¢ > 2, whon both A and s are
powers of the same prime. Hence, via Lemma 4.1, thero always exists an
OA(X-184, 28, 8, 1), £ 2> 2, whon both A and & are powers of the same prime.
In particular, writing A =7, p > 1, when s i3 a prime or a prime power,
we have the existence of OA(sPU-1, 5P+, 5, 1), ¢ » 2, or writing M) =P
i.e., A =8P, assuming p/t—1 js an integer, we have the existence of
OA(st+2, s2/-U+Y 5, 1), 4 > 2, when s i8 & prime or a prime power. For
instance, we have f(85 8, 4) > 18, f(s'%, s%, 3) > 84, f(s'%, 8%, 4) 2> &4, f(s™, &4, B)
> 5% when s is a prime or a prime power.
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