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CRAMER-RAO TYPE INTEGRAL INEQUALITIES
FOR ESTIMATORS OF FUNCTIONS OF
MULTIDIMENSIONAL PARAMETER

By B. L. 8, PRAKASA RAQ
Indion Stolistical Tnshiule

SUMMARY, Crumer-Eao tvpe integral inoqualities for the integrated risk for estimntors
of funetione of multidimensionsl parameter are derived extending the work of Horovksy
{1854). As an applinadion, a lower bound for the local asymptotic minimax risk of an ssbimator
in obtained when the somponente of the parsmetsr exe orthogonal. Seversl examples mre
prescmbed iilnstrating the results, The problom of sstimstion of function of mean vector and
ouvarienor metrix of a multivariate normsl distribution is dispossed,

1. INTRODTOTION

Let X, X, ..., be independent snd identically diatributed random vari-
ables with values in a measurable apace (v, 2) endowed with a probability
meagure Py, fe@® open  R®. Suppose that {P,, § ¢ @} are dominated by a
e-finibe measure g and f(0, 2) = {g@ {x).

We are interosted in the problem of estimation of g(f), where gi.) is a
meagurable function defined on Ew, based on, the sample X = (X,,..., X )
when 8§ is the true but unknown parameter. Let B,(.) denotie the expectation,
under & Suppose g(6) is & prior probability density for @ snch that 8, @
where 8, denobes the support of g{.). We denote the expectsation over the
gpace x#xX @ with regpect to the densiby f{#, @) ¢(f) by E. Here

100, ®) = 7 (8, 2). (L)
t=1

Our sim 8 to obtain lower bounds for the integrated risk, namely,
Bl6*) = Bigl6*)—g(0)P - (1.2)

where #° ia any estimator of 8. Kor earlier work in thiy direction, see
Borovk  {1984) and Borovkov and Sakhanenko (1980} for caso m = 1 and
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g{f) = & and Shemyakin (1887} for the case m > 1 and ¢g(f) = 6. In fag,
Bhemyakin (1987) obtained lower bound for the matrix of the integrated rigk,
namely,

B{9*) = B{§*—thg*—oy o (1.B)

where af denotey the transpose of solumn vector &,

Sectlon 2 containa Cramer-Rao type infegral inequslities for the inte.
gratod risk for estimators g(#*) of a parametric function ¢{(@) of a multidimen-
sional parameter #. Some special cases of regnlts in Seckion 2 are derived in
Seobion 3. As a consequence, & lower bound for the local asymptotic minimax
rigk for the estimator g{#*) is derived. It was shown that the lower bounds
for the integrated risk and the local asymptotic minimax risk are sharp when
the componenta of # are orthogonal. Several examples illustrating the
repulie derived earlier are presented in Section 5. The problems of estimation
of Yinear funstion of mean and variance and the estimation of the ratio of mean
and varianoe for a normal distribution and the problem of estimadion of ratio
of menan of two independent exponential random. variables are discussed.
The problems of estimation of functiona of the form at §a--v*F(if) 8, where
o, y snd 8 are known k-dimensional vectors, fu and ¥(y) are the mean vector
and covariance matrix respectively of & k-variate normal distribution, with
B and ¢ unknown sealar paramefers and V(.} has a known functional form,
has been investigated in Section 8. Special case of the problem when F(if) =
A i where A iz known is studied in detail BSome remarks are made m
Hection 7.

2., MaIN RESULT
We first state o well-known result.

Lemma 21. Lt Z=(Z, .. Zs) b¢ o rondom wvector auck thal
B(Z3) < oo, 1 <t £ mand Y be another random variable such that B(Y?2} < 0.
Lt vy = Cov{2, 1), 1< s < m. Let E denote fhe covariance wmalriz of
£Z. Suppose E i3 pogitive definite. Then

Var (Y) » ¥ 51y SR
where Y= (Y1 .o, Vm)-
Tn particular, if A is the largest eigen value of B, then
L)
. Em

Var(Y) > 5 Z 7> ) . (22)
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where #(E) denotes the trace of the mairiz ., If Z is a disgonsl matrix with
entries of, then Var (¥) » T Yi{ob.

iwl

Proaf. The firat part is & cousequence of Cauchy-Schwartz inequality
snd the second part is sn easy consequence of properties of positive definite
matrioes,

We aggume that the following regulerity conditions hold.

(C1) Let Kif,.x), 1 < 7 < m be funetions jointly measurable in (2, )
and absolabely indegrable with respect to A X g7 puch thet

JE(G, @) df = 0,1 & i< m, e ym e {2.8)
o
Henoe A is the Lebesgue meagure on Em.  Define
Ot 0) = M ® ) e mmeyn 8eS. .. (24)

~ Toll, 2y 20}

(02} For simplicity, we assume that S, = @. It can be checked that
all the following argumenta hold if 8, is a proper subsst of @. Hence ¢(ff} > 0
for all ¢ @ = 83 C, B™.

(C3) Let g{f") be an estimsator of g(f) and suppose that ¢(0*) K8, o)
is jointly messurable in (6, x) and absolutely integrabie with respect to A pa
on (X y*.

{C4) Let A{#) bo o meagurable function of & such that fg(0, ) A (8) is
differentiasble with respect to # componentwise, Lot

Hy(6, ) — "E?ar: [£.(6, @) WAL

Suppose Ky(f, @) ia sbsolutely inlegrable with regpech to AXu® on @xx®,
Furthermore suppose that, for every @ ¢ y*®
f.(6, @) M{B)— 0 aa |8;] — boundary of ¢ for all i,1 i m
where @ is the range of the ¢-th component.
(5} Suppose that diffsrentiation componentwisp with rtespect to &
mder the inbepral sign is valid in the equation
[ fulf, ®) pride) = 1.

xn

{U8) L) = s Ee[qloga";ix 91 is consinuous in @.
=1 !

Let
Y = g(6*)—g(9) and Z; = G0, X). .. (2.48)
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Observe that

B(Zy) = B(H,(G(8, X}))
= B{[ GO, @} f,(0, x) pHidee]]y

= { {1646, @) 1,00, mun(dae)} g(6) 48
P
= £ [ Ky, o) po{dx) d¢
P
=) [[] Kb, ®)df] phdx) = 0
i &

by Fubini’s theorem. Furthermore
B[YZ] = E{(g{8)"—p(0)) Gu(B, X)] = —E[g(8) Gl8, X))

gince, by Fubini’s theorem,

Elg(@} G, X)] = | ;L
J

51 #6w) Ko, %) pMdee)do

P

.L gl*(=}) [ i K8, @) d6] poida) = 0.

X

Note that

Cov(Y, Z;) = B[ Y Z]—E(Y)E(Z) = —E[y(?) &6, X)]
from {2.6) and (2.7) and

CoviZ, Zy) = E(Z; Z)—B(Zy) B(Z;) = BIOi(8, X) (6, X)]. ...

Hence, by Lemma 2.1, it follows that

Var[¥] > y¥E1y
where
. ( ~ Bg(6) 65(6, X)] )
—E[g(0) Gul®, X)) 7 mxa
and

& = (B[40, X) Fr(&, X)]))mscens
We have now the following vesult.

g(° (@) GulB, 2) fo(B, ) ¢(F) pr{dax)dd

. (2.8)

. (2.7

. (2.8)

. (2.9)

(2.10)

. (211

. (2.13)

. (2.13)
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Theorem 2.1. Suppose the conditions (C1) to (C8) hold. Then
m
o (Ep(d) Gy(e, X))

Blg(6")—g(O)F » = +H{Elg(6°)— ()1 e (2.14)
& B(G (6, X)]

Lot us now congider & special case of the inequality (2.14). Buppose the
conditions {C4) and (C5) hold end (C8} is asaticfed for Ky, &) specified in
{C4), Then

R0, @) = 3 [fal6, @) O} . {218)
and

§ K0, ®)d0 = { o 11,06, 2) o)) a8

= i (1 a0 Un6s ) WOV} d0.. 000 o100 A
4

ﬂj}{ +uk :':ﬂl.ulxﬂl-l-]. LT :{ﬂ'ﬂ
(by Fubini's {heorem)

= oot o L8 A0, DN} 4B, .. 3011 .. B

(2.16)

where d¢ denotes the differential with respest to 8; (keeping 6y, ..., 8y,
'ﬂ‘-l-:l. vany ﬂu ﬂxﬁd].

Henece, by (C4), it follows thas

J K6, 2)d0 =0 for 1 & ¢ ¢ m and for every ®ey® ... (2.17)
Note that
¥ (D, x)
D rpi8. W
__E@e _ g VO] o ) merrr6, 6 9)
Fal8, @) g(8) [n(t, &) g(6) o T4(6, @) ¢(6)
. (2.18)

where fi” (9, @) and &Y (§) denote the partial derivativen of 1.6, @) and A{(#)
respectively with respect o ;. Henee

Gf. @) — TG @) RE) | WOE) _ dlogfi8x) M) A (6)
o) 1o, =) ¢(6) g@ T @ T o

. {2.14)

Al=8
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Now
Eg(0)64(8, X)] —.I J {0(0) Gul6, &) [0, ) ¢(8)} pb{da)dd

.1; ifn glayLfi¥) (6, @) MO} +1,(6, @} hHNO)] un(dae)do

HO) g LA(6. &) MY potda)dt

J
r 3"

— g; § g (6) 1,08, ®) h(G) pr{da)dd
x

£ §HP) [0, BIR(G) pr(dw)dD

G{AA(D
—E[ 2 E{L) ) .. [(2.10)

I

where g'*(f) denotes the derivative of g(@) with respect to #;. Furthermore

BiG§9, X)) = E [,ﬁ.‘l{ﬂ, X) o) ]E—I—E [ RO B) ] + EE’ W8, XIHORD(O) ]

falf, X) 9(6) 2(%} [al?, X} 246)
JH0.X) MO) i RENE) 12
=#lzexn o) ¥ o - @
Observe that &, [%] = 0 from (05). Hence
20 jr;m{g) i)
BG}6, X)) = 9 . (6, X)
(GH6, X)) = B | 1960) a5, | +F [~y | where 190 = 5, | £2C-T0}
. (2.22)
Hence we have the following resuit from Theorem 2.1.
Theorsm 2.2. Euppaae the condition (C'3) Io (C5) hold. Then
S (2 | 9910) hi0)a(6)] )"
[¢{")—g(E > & E [I‘:‘] @ 20) () ]+ [ h{ﬂ{ﬂ}] s+ Elg(6*)—g(6)]?
i=1 0 /T LU . {2.23)
In particular,
2 (r | 9‘“'('915{5']])2
Hlg(@*)—g(0)F > % =1 29 2 24)
) g ¢
za[we mor | +EEH g |
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8. BPECIAYL 0ASES

Let ns now consider further special cages of (2.24) which are vseful. In

the following discussion, we assume that appropriate special ceses of condi-
tiong (C2) to (05} hold.

3.1. Supposs A#) = f[?} Notie that

_n 3 log 146, Xy v _
Lioy= X 190} = flﬂ | =552l = e 1 @)

under {C6) and henoce from {2.24),

g E gP0) 112

EB{h&* —g(@F > 1 i-‘l Lfﬂwgf-}’{)ﬁ] g

[I,,{ﬂ}: E l‘ g6 ]
13 (B m])‘

- "ﬂ.-ﬂ._l-]_ 11{6‘) h“][ﬂ-] . {3'1}
w Bl E Bl G|

=1

3.2. Supposs ) = ¢(8). Let I(f) = 3 I(@). Then

=1

3 (ElgW(@)R
Tl

w0+ £ 8 [ LY

5 ey

= ey ]
n E[L(@)+ E B [——.3-—_-& ]"*ﬁ"‘i"f‘?} ]

3.3, Suppose ¢ >> 0 exists such that J == {6 : |8—8;| <&, 1 i< m)
is contained in @ C BE». Then

Bg(e*)—9(O)F >

. (3.2

Sup Bylge*)—g(0)F > j Ey[g(0%)—g(6}1* o(6)d9 e (3.3)

where ¢{.) is a prior on J. Let us choose

Moy = a6) = 11 {1 oot "0} g 5 . (3)

fuut
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We have seon, from resuits in 3.2, that

£ (Bl

Bl 600 > ——=1
n BLLO)+ £ 1 |28 A0
Twl 1

1t is onay to check thet {cf. Borovkov, 1984, p, 189)

E[alﬂng} =g e, 1l i sm

Hence

}‘g (Bfg® (&))"
sup Blg(0Y)y—g(0)1* > W BB Fm e e

;351 (BlgW(e))®
# 5 aup L) +ma?e?
Bed

Tn partioular,

“F‘ (Bl (61

E: (ETy'YE)])?
@ sup I{(0)}-ma® e tn~1
g

. (3.8)

. (3.6)

e (3.9)

Let €3 — 0 a8 >0 such that e2n >0 and J, = {8: |88y < ¢
1% ¢« ). For instanoe ey =n* where 0< & < 1/2 will be such a

sequence. Nobe thet
iEI{E[y“’ (82
sup B, [/#lg (6°)—¢( > WW

and taking limit aa #n— 00, we have

{s'“' (O
lim inf sup B[v/R (g(6*)—glONP > e

& —3 o> ﬂ'ﬂ 8

The isgh relation follows from the observation

t—B) g5, ...

BG(6)] = | ¢°(6) 9(6)i6 = 3—; [ §9°%0) ,IE post ﬂaﬂan

eer 13.8)

. (8.0)

(3.10)
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and, a8 »— o,

Eg® ()] g% (6y) o (B.11)
pinge ex—> ¢. TFurthermare by (C4),
Jup 1,(8)~ I,(d,). .. (3.12)
& Jy

The lower bound in (3.9) is not sharp as we have taken a weak lower bound
in (2.2}, However, it is easily computable, The lower bounds chtained in
this scotion as well as throughout this paper are walid for alt estimators
g* of g(&} and not necessarily for those of the form g(8*).

4. (ORPHOGONAL PARAMETRRH

Suppose the componenta of & = (8, 6, ..., fx) are orthogonal in the
gense that

dlog fi6,X) dlogf(8,X) 1 L
E’,[ =0 %, =0, 1K éxsgm .. (41)

(of. Cox and Reid, 1987). Let h(0) = ¢(f) as in 3.3. Note that, for i #£4,

BiG4(0, o) G4{B, )] = E[ Ki(6, &) Ey(6, =) ]

720, x} ¢°(0)

F 7]
H{ﬁ,[ﬂ, @) g'{ﬂ}]“‘ﬁ'&';[fn{&: &) ¢(6)]

s{dx)dd
"H F:(8, ) q(&) plam)d
_ x{ £ a logﬁ,b{g‘m} g(6)) @ log [fna(g ®) g6} PY

from (4.1), {C3), independence of Xy, 1 i n and the ehoice of g(!) am in (3.4).

Hence the matrix E defined by (2.13) is a diagons] matzix snd it can be
checked that

' 8 (E[gld) G458, X))} ) {8
Blg(0”)—l6)F° > E ~HGHE, X)) +{E[g(0%)—g)])

5 % (Eg™ {‘3}]}*

f=1 gi(6) ¢
BUgO+E| Lo

2 Egey
=X i e (42)
“t ngpoy+5 | LB
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It is eagy to see that the above inequality holds for any prior density of
8 of the form 4{#) = if ¢i(ft) where ¢ is a prior density of #; anqd
1

i (f) = B, [ﬂlﬂgaéfﬂ,j[}]* The lower bound i3 sharp here gines

v 5 ly =ii; (vElet} whers o2, ..., 0%, denote the diagonal elements of B,

Choosing ¢(8) = Il

=1

19 oan, be checked that

Hiad 1 3 H[ﬂr—* El'-u-:'
{ - 008 l # ¢ J as before as prior dengity,

m {E[g? (9)])°
?1;]} Blgl6®)—g(0)1 » ;El ﬂgl:gfi?juiﬂ}_l_ﬂa e e {43}

Lot eg—> 0 anch that ¢ 1— 0 a8 n— 0. Then it follows thab

lm inf swp B LVAGE)—9OP > E gl . we
5w I8,
where J; = {#: |8i—0y| < e, 1 < ¢ & m}. If the squality is obtained in
{4.4) for every 8, 8, then g(0*) ia a loeally asymplotically minimaz esbimator
of g{8).

5. Exawmrixs
We now illuatrate our results. Detailed caloulations are omitbed.
Example 6.1. Let Xy 1 ¢ n be iid. random variablea N(g, of).

It can be checked that g and o2 are orthogonal parameters and a locally
sgymptotic minimax estimator of g(#) = g+bao® where b ia 8 known constant is

8(X) = E+wi =z = (X—Xr

The problem of egfimation of linear function of the normal mean, and variance
haa been studied recently by Rukhin (1987) among others. He showed that
the egtimator 8(X) is inadmissible for g(?) for loss funetion of the form

Lig, 0, 8) = (8—p)tjot,

As far a5 we know, multivariste version of this problem has not been discussed
in the literature, We investigatie this guestion in SBection 6.
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Example 5.2 (Conkinuation of Example 5.1}, Suppose X, X, ..., Xa

ave 1.i.d. N(g,o%). Let 8 = (%, F-“—I—-a'ﬂ). It is known that this reparsmetri-
zafion, also givea an orthogonal parametrization of the normal density (cf. Cox
and Reid, 1987). It can be ghown that

X

§X) =

Lad
where 8% = “~1:1 iﬂi(xi—f P ig a locally agympiotic minimax estimator of

9(0) =5 .

Brample 5.3. bSuppose X and ¥ are independent exponential random
variables with mseans A and y respeotively. Let Z = (X, F) and suppose
we are inberested in the estimation of the ratio y/A based on an iid. gample
Z, 1< ¢ € n A convenient reparametrization of the family of distributions
of (X, ¥} in terms of orthogonal parametiers #,, 8, i given by A = &, 874 and
¥ =6,6). Then

g, Bz) = Oy=yr]A
and ié can be proved that
"
n—1 iE ¥
HEY) = ()|
% Xy

iml

ia 3 locally msymptotic minimax estimator of yr/A.

6. ESITMATION PRORLEM ¥YOR MULTIVARIATR WORMAL DISTEIBTITON

Let wa now comsider a multidimensional version of Example 5.1. As
far a8 we are aware, this problem has not been discussed in the litersture.

Suppose Xy, 1 <€ ¢ & % are iid. I-dimensions]l random wectors with
multivariate normal distribution with mean vector S and covariance matrix
Viy) where g and ¢ are unknown scalar parameters and ¢ and F{) are
kEnown k-dimensional vector and kX% metrix respectively. Further suppose
that # and ¢r are not functionally related. Then ib follows that # and ¥ are
orthogonal parameters {ef. Cox and Reid, 1987). We are interested in the
preblem of egtimating

9(f, ¥) = B of 6y F(y)b e (8:1)
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where o,y and § are known k-dimensional vectors. Note that this iz g
generalization of the problem of estimafing linear function of meen g and
variance o2 in Fizample 5.1 to the muliivariste case. Let & = (8, )
Obeerve that

g &) = of @ and g™(F) = y* F'{i)r)b o (6.2)
where V' (i} denotes the matrix obtained by taking the derivatives of ¢le-

menia of F(ir) with respect to i and forming the matrix of such derivatives,
Here we ssaume that the elements of V(y) are differentisble with rempect

o ¥.
Observing that # and i are orthogonal paramsters, from results proved
aarlier, i# follows that

(E[gw ]y

Blg(6")—gO)F > £

=t B(I(o)-+E[ 2 R o
where &, = 4§ sad Gy == ¢,
196) = &, | “"Eﬁféf’ M =1, . {84)
¢(9) is & prior donsity of # a« given by (3.4) with m = 2 and
12,6) = oyargrr o |- go-p¥ Tie-m} .. (68)
with & = 8 @ and £ = P(). Purthermore,
b inf sup £y[+/Rlg(6%)—g(ONT > E [{L;’ Fnﬂ‘
_ (e} | [yPHBP 6

I LA T CN

where J, = {0: |Oisbiy| <emi=1,2 and &2n1-0 ag . It
order to obsain the lower bound in a more explicit form, we have to cornpute
IM$, = 1,2, Note thet

log /@, 6) = — = log(2m)— 3 log | E] — 3 (@—pe) Bz —p)

= — 5 logln)+ 5 log|Z | — @—wEHa—p). . (7
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I+ can be checked that

dlogf _ - .. (6.8
7 EYm—p) .. (6.8)

and hence
ﬂ%‘%ﬁ — o T e—p). .. {6.9)

Therefore

196) = By | 38 1" = Bt 230X~ (XY T'a]
= @ 2 Efe—p) (X—p)] 2 o
-~ T1ZE g = of Z'n = V(Y La. .. (6.10)

Computation of I'? (0} is much more difficuls, T4 iv easy to check thet
(ef. Anderson, 1958, p. 46)

%_l%ﬁf:{: Ei (B—(X—p)} (X—p)f) = .;_ (E—Z) e (611}

where Z — (X —p) (X—p )t
Since E Xt = I, it follows that

m—l
d. v + d 7 E“ = 0
ald hence

[d Zd ] = —E-Yd Efdy] 8. w {6.12)

Therefore

ﬂ;c;%f _ ["Vﬁﬂ é?lugf ] Ven [d",.;;‘-l

d &
dyr

— ; [Veo (B—Z)] Voo (2 22 £4)

qZ ] (8.13)

1
=y tr @B E @ =

by the relation {vec AY vee B = 4r (4B). Hence

aéﬂff = = &r [{z_l;r}lf—l‘[ﬂ[,?—lj e (ﬁil":]

4 ]-8
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where ¥ stands for £ = F(y) and V' — ‘= — P'(y). Since B,2) =7V,

dyy
ié follows that
E, [f%] =0 . {8.15)
IP6) = E, [ ﬂ%—f]== Var, [ a;f_f] e (6.16)
= Var, {—;— tr [(E—F}F*W’I’-‘]} = % Ve, [tr (ZV- V' V1))

1
5 Vaz {tx (Vi ¥4 Z V7399 7))

= 3 Var, {tt Vs W Vi V=L VY3 = L Var, [tr (AW)}

where A = ¥} V'F-+ and W has standard Wishart distribution. Note that
AW =T HA N HW

where H ia an orthogonal matriz such that H A HF is a diagonal matrix fA.
Henas

tr(AW) =tr (FHAHBHW) = tr(H A H' HW |)
— tr (AH W HY). e {6.17)

Since H iz an orthogonal matrix and W has the standard Wishart distribufion
HWHF has algo the rtandard Wiakart distribution. Therefore

Var, [t (AW)] = Var, [tr A W)] . {6.18)
where W has the standard Wishart distribution, Hence
E i
Var, [tr (AW)] = Var, [E g WH] .. (8.19)
{1

where A;, ..., Ay are the diagonal elements in A which are the eigen values
of A and Wy, 1 < i~ & oare independent random varisbles each with Chi-
gouare digtribution with 1 degree of freedom. This in turn proves $hab

Var, [ir (AW} = 2 £ A}
fml

— 2 fr (49
— 2 te (V- VP PPP)
= tr [(P-W")"]. .. (6,20)
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Relations (6.18) and (6.20) show thab

I (8) = B, [@%]’ = 3 V-] . (8.21)

Combining (6.2}, (8. 6), (6.10) and (8.21). we have

liminf sup B [+4/%igf*)-—g(d)]
A=rw PgJdg

_(ﬂ' a)l E‘Ef V() a}ﬂ
} V() "a + el (Vi Y W i )) P ... (6.22)

where J, = {&#: |6—8y| S e, 1=1,2) and &% 130 ag n—00.

AR a special case, suppose F{if) is linear in ¥ in the semse that V(i) =
Ayr+T, where I' is a known non-negstive definite matrix, A is & known posi-
tive definite matrix and ¢ > 0, Then ¥ (i) — A and (6.22) reduces to

li‘n_:; inf Sy B, [/%(g(8")—g(O))]*

o (waep . 2pAse
& (Bf T a | (B, T AR

If A is positive definibe and I' = 0, then V(y) = Ay and (6.22) reduces 1o
lim inf sup B [+/A(g(0*}—g(NE
#ddy

i —p an
(afa)® | 2(yfA 8) 3
} !&n ﬂ!ﬂ"’lﬂ. + -hr{ﬁ—l ﬂ}ﬂu

e af | UPADF VS e (824)

. [6.23)

A natural estimostor of

glt) =gl ¥)=FatatyyA . {8.25)
ia

B0 =t X4Cpr A . (6.26)

where
- L% x, . (827T)

R fmil
a- L% x5 x--X .. (6.28)
" gt
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and O is o constant chosen o as to minimize the mean square error of g,(g%),

Note that X and % are unbiased estimators of p and ¥. Furbhermore X
and A are the maxiroum likelihood estimators of pand X for n > % Sinee
X in an inadmissible estimator of p when % 2> 3, it might be hetter to use the
James-Stein iype estimator of the form

=T — "{?} AT . (8.29)

a8 an ostimator of p where

(a) r{z) == min{k—2,2), 0 < 2 < oo,
_m XXA:X
(b) F, = pe )
and
(e) - [u{r,~a—1);'ra+2]—1f%3l (X, — X A-(X,—X) .. (6.30)

as sugpeated by Berger (1976) or a further improvement given in Nickerson
{1988). In such an event

7(0%) = atp+dyt A S ... (6.81)

may be chosen as an estimator of g(f) where 4 is a suitable constant. Ibis
difficult o compute the mean aguare error of g,{f*) in view of the fact thot

;: and A4 are dependent random vectors. However, one can compute the mean
gquare error of ¢,(#*} given by (6.26) using the fact that X and A are indepen-
dent random vectors. In fact

B (6] = o ByX)+ Oy B A) — wrp ot Cpyra 8 (- 1) .. (8.32)

B [g,(6%)—9(8)F = Vor,[g,(6")i+ (Hy(,(F)— ()1
f-'f’{ﬂ 1)

= Vargo, @1+ 88 | —1)r L e

But
Var,(7,(0%)) = of Covary(X)a-C Var,(y'48) (by independent of X and A

= % oA a7 ?ME{T‘H 5). .. (6.34)
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Let

8 = Z (X—X) (X—X, .. (6.35)
i=1
Noto that
Var, (vt A8) = . Var, (v § B)

— = Van, [or(y* 8 )]
= = Vor, tz( 8 S

= ;:-ﬁ' Vor, [r(BS)] .. {6.38)

where B =8+4%. Note that B is not s symmeiric matrix. Ié can be
thooked that

Var, (tr(DS)) = 2(n—1) tr{D T D X) o (6.37)
for any symmetrie matrix D and

Vaz, (te(BS)] = Var, [ t{/ B_:;_B‘ \s}]

_.2{u—1)m-[{ﬂ+m)z (BJFB‘ 2]

2 2
= 2n—1) HI(BEBE)+-w(BEB E)] .. (6.39)
Combining (8.36) to (6.38) and observing that & = Ay, we have
Var, (¢ A8) = LD yeu@y A sy ) tady AR A). .. (6.3
Hence

Var, (v A8) = 21 yo fur (v 85 v A8)1ury? Ay 5 88))

= 8L ey asp-+ iyt Ay) (3 29, . (8.40)

Therefore, from (6.34), it follows that

Vaz (6% = & (ot A+ o Lm Lyt A8+ Ay 8 8. 01
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{ombining {6.38) to (6.41), we have

a? (n—

2 (000001 = ¥ (¢ Be)+ TV gopey a8p-1 (¢ Ay 3¢ A}

+y2 p asp( LRl )

=¥ s [O¥n—1p _ 20(n—1)
= 1 (a? Ba)yagy Agp (ST D )

4 0D [ pmp i Ay) 688 . (843

The last expression ag a function of €' is minimized when ¢ = " given by
20%n—1)2 2(n-—
qrasy { U Ay

—2OD sy (peay) asy)
. (6.43)

This imyplies

¥ n—.
-'M{{ﬂ—lnfﬂﬁ]’—l-{'t‘ﬂﬁ}“ﬂ?‘ﬂ'r} ®08)) = (~— )f'r‘ﬂﬁ}‘ = (64

or equivalently

_ »(y*AS)
= W BET+ (1 AY) 5] e
Let
(0"} = X +-C*{y* A §) e (6.46)

Then g4{¢") is an estimator of the type (6.26) of y(6) minimizing the mean
square error and the mean square error of g{(f*) is given by

B0 —~g(6)F = ¥ @t A a)+yiyt 4 8y

P n—1p _Eﬂ‘[n—l}}
n

nl

+yiyt Asy |

I
+yao* 2)

iy A 8Py A y) (8 AB))

=¥  (af A a)+- 94yt A B)P— "”;ﬂ ¥yt A §)7

"(n—1) }

- . (6.47)

=¥ (w A ety a8 {1-
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where (" is as defined by (6.45). Henec
“1;1-"_1}1” Eg[fﬁ{ﬂn{'ﬂ'}—ﬂ'afﬁ}]}a

= ot & o) +y*{(y A v) (5 A 8)-+-y¢ A 8)Y. e (8.48)

Obviously this limit is not the same as the lower bound in {6.24) when ¢ = .
Hemce the estimator g{f ) of g{@) is not locally asymptotic minimax even-
though it is optimum in the sense of minimizing the mean square error. This
iz unlike the result in Example 5.1 where the one-dimensional ocase was

dizscussed.

However, in view of the regression structure in the special case (X is
N8 a, Ayry with known @ and A), one can obtain an estimator which attains
the lower bound (6.24) as shown by Dr. . (. Bhattacharya i a private
communication. In faet

0" = B o a-(y* A B)Y

where 8 is the regression estimator of § and yi}ie. the estimator of ¢ based on
the error sum of equares is a looally asymptotic minimax estimator of

§lf) = ¥ at(y* A 5) .

7. REMARES

After the original version of this paper was swbmitied for publication,
Professor J. K. Ghosh has informed the author that he and Dr. 8. N. Joshi
have extended the Borovkev's inequality to the special case g{¥) =& in
an unpublished note in 1983, Babrovaky ¢f of. (1887) diseussed global Cramer-
Rao type bounds for the estimation error of a parameter in a Bayesian set-up
both in the one-dimensionsl as well as in multidimensional ease. In the one-

dimensional case, they obtain the inequality

(ERB))Y L
(M) (X, 6L 6) |

Ef—BB| X)) » ——
a6
for any integrable R(.} (see Hquation (24) of Babrovsky el al. (1987)). The
ecorresponding inequality of Borovkav (1984) 1s

o) 2

(72
B~ BB X)P > - - -
B| S (LnlX, 0) MONIL(X. 0) 2(0)]

|

(1.2)
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where ¢{f) is the prior density for & and k() is a suitable function of 8, Hepe
L (X, 6) is the joint density of X = (X;, ..., X,) given €. If k(f) =1 ang
Xy 1 € ¢ & 5 are Lid., then the inequality {7.1) reduces to

1

He— B X)* > ey - {71.3)
where 1i9) 13 the Fisher information. Choosing Aif) = %, the inequality
(7.2} reduces to

Je
BO~BOI X > 7op > S o (19

for some H > 0. From the elementary inequality
(X < E(XY)

for a positive random varisble X, it follows that the inequality (7.4) gives a
botter lower bound than that given by (7.3) upto terms of order o(x—t). One
might get a sharper lower bound than the one given by (7.3} by choosing a
suitable fanction » in (7.1) a8 pointed out by Babrovsky et of. (1987, p. 1428).
Brmilar comments are in order for the multidimensional case hetween Pro-
pogitions 2 and 4 of Bebrovaky ¢! gl. (1987) and Lemma 2 of Shemyakin {1987),

The lower bound given in (4.4) is obtained as an application of
the Cramer-RBao type integral inequality for the special case when the com-
ponents of the parameter are orthogonal, the obsorvations are independent
and identically distributed (ii.d.} and ¢he loss function s the squared error
loss. However atronger resulis can be derived for general parameters and
for subconvex logs functions when the obrervations need not be i.i.d, following
the general theory developed by Millar (1991, Chapter VII, Theorem 2.6),
This was shown by Bamanta (1890} in a private communicakion to the anthor.

Apar* from their applications to problems in checking losal agymptotic
minimaxity, integral inequalities are interesting in their own way (cf.
Babrovsky e al. (1987)). It would be interesting fo extend these integral
inequalition to the non-reguler cese, An attempt in this direction was made
by Babroveky ¢ al. (1987). However their discussion is incomplete.
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