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SUMM{RY Strong i md 7 lity of en i for pars-
meters in di are i igated by dying familios of
stochas- tic intogrule using Fourier analytio methods.

1. IxTRODUCTION

Tho study of inferenco problems for stochastic processes with both

ti and discrote timo pa ter is of oxtreme importanco in vicw of
tho largo number of applications. It has boen found that the class of diffusion
procossos is amenable for statisticel analysis among the class of continuous
time processos. A survoy of tho rocont work in this area with examples is
given in Basawa and Prakasa Rao (1980). Further work on asymptotio theory
of estimators for parametors of diffusion proceseos is discussod in Prakssa
Rao (198l1a, 1981b) and Lanska (1979).

Dorogovehev (1978) studied weak consistency of lesst square estimators
for paramoters of diffusion procesees which are solutions of non-hnesr
stochastic difforentizl oquations. Asymptotic normslity and ssymptotio
efficioncy of theso ostimators is investigated in Prakasa Rao (1979). Jur
aim in this papor is to study limiting proporties of a process related to least
squares estimator and honco to discuss the asymptotic properties of the
maximum likelihood estimator derived from the limiting process. We study
strong consistency and asymptotic normality of this ostimator. Our approach
hore is entirely different from that of Dorogovchev (1976) and Prakasa Rao
(1879). We boliove that our techniques for study of families of stoohastic
integrals is new and is of indopendent interest.

*Rescarch partislly supported by the Office of Naval Research oontract NOOOI4-75-C
0465 st Purduo Univarsity.
**Research partially supported by NSF Graat MCS76-08316.
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2, STUDY OF A PROCESS RELATED TO LEAST 3QUARES ESTIMATOR
Lot {X(#), ¢ » 0} be a roal-valued stationary orgodic procoss satisfying
tho stochastic difforential oquation

dX(t) = f(8,, X(Odt+dE®D, X(0) = Xt > 0

where £(!) is Wiener procoss with monn zoro and varisnco o¥, ¢* known
and E[X%) < co. Supposo f(f, z) is 8 known roal-valued function continuous
on E xR whoro Z is a closed intervel on the real line snd 6,¢ £ is unknown.
Without loss of gonerality, assume that £ = [—1,1]) and 02 = 1.

Suppose tho procoss {X(t),0< ¢t T} is obsorved at timo points
o k=0,1,...,n—) with {,=0and ¢, =7. Let

Q6 = "5 (X lteay)— X)) =10, KUNALT?
" k=0 Alg

where

Aty = tepy—-lp, 0K k€ n—1.
An ostimator 8, 7 which mininuzes Q7(8) cver 8 € = is callxd o least squares
estimalor of #. Assumo that such rn estimntor oxists. Note that if 3,..7
minimizos Q%(0), then it minimizos QT(M)—Q%(0,). This cstimator is not
consistont’ in genorar as 2 — o0 unless T — oo such that the norm of the

division tends to zero.

We shall first study the limiting proportios of the process
{QR(0)—Q%(8,), O E} for fixod T > 0

a8 the norm of division

A, = max [tgy;—2| tends to zoro.
0& k& n-1
Let
AXg = X(tp4))—X(t)
and

Afy = Etrey)—E(tr), 0 Sk < 2—1.
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1t is cagy to check that
Q16)—-Q7(0,)
= E‘ (0. XUeN—F(B, X(te))* Aty

+2 E [f0q, Xtte))- 16, X(te)]ALx

+2 % {f(60. X(tx))—f16, X(1x))}

ety
X |I g, XN =0, X(1x))) dt

= L a4 2y, (20
Assumne that the followmng regularity condition on f(z, 0) aro satisfied.

Assumplions : (Al). f(0,z) is continuous in (,z) and differentiablo
with rospect to 6. Donoto the first partial derivative of f with respect to
0 by [0, ) and the derivative ovaluated at 0, by f;V (6, z).

(A2). E[f™ (8,. X(ON)* < co.

(A3). fiV (6, z) 18 Lipschitzian in § for each z ie., there exists a > 0
such that

1S9 (0, 2 —f§V (8, 2] € c(a)|0—¢|%, xER, 0,4 €8
and
E[c*X(0))] < co.

(A4). fiB, z) satisfies tho following conditions :
0 16, )] < L)1+ |2]), AEE, z€ R; sup{L(0) : € B} < co.
@) }f6,2)-f6, 0] < LB)|z—y|, 6EE, 5.yE R,
(i) /(6. 21—f(g,2)| € J(2)|¢—6], 6,4 €5, zER
where J(-) is continuous and E[J%(X(0))] < co.
(A8). 1(8) = E[f(6, X(0)~f8,, X(0))) > 0 for 0 3 6,
Remark : Sinco E[X%(0)) < oo, assumption A4(i) implios that

E[f(6, X(0)))* < o for all 6 € E.
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Binco f(#, x) is continuous in x and the process X has continnous snmple paths
with probability ono, it follows that

z
I, = S U105 X0—f10. Xt di o2
as A, > 0. Assumption (A4) implies that

q.m. T
Ly, — nI [f(Bo. X(1)—f16, X)) e (2.2)

as A, 5 0 in view of stationarity of the process X where the last integral is
tha [to-stochastic integral.

ot us now oatimato Iy, In viow of assumption (A4). it can be checked
that

fay
‘; L0y, X()—f1By, X(te)V) dt
x

< L0 sup B —E(ly)]
h <<

HLAONAE  sup {1 X(0)] L (2.3)
te << dpay

for 0 & n—). Using sssumption (A4) again, we obtain the following
inequality :

I3, € cma){mz, sup  |EO—3(0)] )2At}}|6—0°[. L (24)
k VS SESI™ ]

Sinco £ in compact, it follows that
L, < c'(aa){ £ Ay(2Alx log, 1/A)1+E Aa:} ws.
k X

whenever A, is sufficiently small by the law of iterated logarithm for Brownian
incromonts (cf. McKean, 1969, p. 14). Thereforo

I, =0 ( x Ai/2 logh? 1/At,) ns. .. (2.5)
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Relations (2.1), (2.2) and (2.6) show that, for any fixed 7', Q%(6)—QZ(6,) con-
verges in prooavility to Rp(6) as n — 0 where Rr(0) is defined by

T
Rr(0) = § 10 XO)~10. XO)
+2 100 Xo)—10, Xz

= J’T o6, X(l\)dl-2°jfv(0, X(0)dE() .. (2.8)
[

where
0(0, z) = f(6, z) —f(0,.z). (27
We study the limiting properties of the process {Rp(6),6 € E} in the
next section.

3. STUDY OF THE LIMITING PROCESS RELATED TO LEAST
SQUARES ESTIMATOR

Lot us now study the properties of the limiting procoss

1
Zp(0) = — [ o6, X()dE() ..o (3.1
7(6) VT (8, X(t)dg( (3.1)
as A process in the parametor 8 € E =[—1,1]us T > 0. From the central
limit theorom for atochastic intograls (cf. Busawa and Prakassa Rao, 1980),

it can bo shown that

Ly :
77 V0 X(0)dE(e) £ N, Efo(6, XO)Y')

sinco the process X is stationary ergodic. In general, finite dimensional
distributions of tho process {Zr(8), 0 € Z} converge to the finite dimensional
distributions of the Gaussian process {Z(6), & € &} with mean zero and co-
variance funotion

R(6,, 6,) = E[v(6,, X(0)v(6;, X(O))]

Wa shall now prove the woak convergence of the process {Zr(6), 6 € &}
on C[—1, 1] under uniform norm. It is sufficient to prove that

lim Tm P( sup sl-Zg-(0)—-Zr(¢)f>s)=0. . (32)

T—m 350 16-91<
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Since v(0, z) is difforontiable with respect to @ on [—1, 1] by sssumption
(A1), it is onsy to see that thers oxists a cubic polynomial g(f, z) in & such that

g(—1,2) =0(—1,2), g(1,2) = v(1, 2)

and
(=1, 2) = tfP(—1, 2), g1, 2) = Hfi)(1, 2).
Let
B, z) = v(0, z)—g(6, 2).
Then,
M—=1,2) = k(1,z) = 0, A(~1,2) = AM(1,2) =
Now

Zz(6) == I LICH X(')WE(‘)+ I g(o. X(0)dEw). ... (3.3)
Sinco g(d, z) is a cubic polynomial in & with coofficients in z which are linear
funetions of v(—1, z), ¥(1, z), vj(—1, ) and ¥{)(1, z), it is easy to check the
uniform equi-eontinuity condition of typo (3.2) for,
= [ g0, Xenagw
vr s 1 ‘
Let us now consiqer the proocss

T
Wo(6) = J RO, X())dE(1). .. (34)
(]

L
vT

Let tho Fourier oxpansion for A(6, z) in Ly([—1, 1]) be given by
O, x) =S a(z) e, z€R. ... (3.5)
-

Lemma 3.1 :
r~ T
J MO Xy = & { ] a,,(Xm)dE(l)} enind .. (3.6)

¥n the sense of convergence in quadralic mean.

Proof: An approximating sum in L,-norm for

£ wo, xnazo

N
A,y = T RO, X(4y_,)AL
=
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T
and an approximating sum in Ly-norm for 2{ ) a,l(X(t)\drE(ﬂ} enine ig
n )
N
Ay = I w-'( T a,(xu,_,nAa,).
Inl @& =1

It is sufficiont to prove that E| d,»—Ad,npe|2— 0 88 N— o and M - 0. Now

N N 1
Bl Aw—dun] = B| T {0, X00- T ety ) a5

N ]
SE|E 3w e
§=1 Inl> M

2, (( Focxuom)))

Inl > M

by the olemontary inoquality
R 1
E|Z Ay, [ < IA1E0AY)
L L]
for any soquonco of complex numbers {A,} and sny sequence of real valued
random variables {y,, 2 » 1}. Hence
<4 i
E|Aw—dwul*< | T 12 Eo (X004} ] .
DEY AYE!
Since,

N T
El Ela,(X(4_)? Al,—)sf Ela,(X(O)dt = Tu, (say)

a8 N> ¢0, it is sufficient. to prove that X 4l/® < 0. This follows from remarks
n

following Lemma 3 of the Appendix under assumption (A3). Let
W L7 X(8))dE( (3.7)
= — ' t). e N
. T uf a (X()dE(R)

Lomma 3.2: For every ¢> 0,

limP( sup |WT{0)—W,-(¢)|>3)=0 . (39)
8—0 10-41 <8

Jor every T > 0.
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Proof : In view of Lemma 3.1, fot any e > 0,

P, - >

| W, (e=ind_exing) ‘> ,_)

=P L)
( 10-0P<u

<P( sup b [Wal)eunt—exint]| > 6). ... (39)
10-¢1 <6 a=-—»

Lot n, bo chusen so that

z piA < €274, .. (3100
n=ny

This is possiblo since P pA3 < o0 Ly Lomma 3 of the appendix.
=1

Inoquelity (3.9) implios that

P wup [ Walo)-Wad)] > ¢)
10-91< ¢

lo I3
<P sp = |wn|n|a—¢(>4i”)+P(Inizm|w,|>3)
0

19-9i<8 a=—n

0 £ -
' 2 £ P(W
<nz_,P(IW..I> 2"%5)+ p_— (1 W,| > &)

(Horo £, = 2‘%#},”( E‘. /L}.”)_l)

a=ng+l

2mnyd \2 2 2 Ma
kil I L Le
< ( 3 ) n=1 ~t Amsg+l €
(since E\W,) = 0 and var(W,) = g,)

— (2mmd) £”n+£( 3 A")a

e . [ P
8 8 se\d
wats (1)

A2-8
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where Guo depends only on n,. Choosing & such that
8 3t
Ony g < ¢ 0. 0<8< (55-)

20,

we havo the inequality

P( sup [WrO-Wi@) > ¢) <26

3 +
for every 0 < & < ( %) and for every 7 > 0. This proves (3.8). In
o

viow of Lemma 3.2 and tho remarks made oarlier, we have the following
thoorem.

Theorem 3.1: The family of slochastic processes {Zp(6), 6E€ E} on
C(—1, 1] converge in distribution lo the Gaussian process with mean zero and
covariance funclion

R(B,, 6,) = E[v(6,, X(0))v(6,, X(0))]
as T — .
4. STRONG OONSISTENOY

Let us now considor the limiting processes Rp(6) dofined by (2.6). Supposo
thore exists an estimator fp which minimizes

7
Rr(0) = of {f(6, X(1)—f(Bo, X)W dt

—2 [ (6, X(t))—[(6,, X(2))}E() . (40)
over 6 € 2.
Lot 45 be tho meesure gonorated by tho process X on C[0, T] when 0 is

tho truo paramotor. From the gonoral thoory of diffusion processes, the
Radon-Nikodym derivative of u, with rospoot to u, exists and is given by

Bs — oxp{ [ 116, X0 —1(00 X0) 00
dﬂﬂ, [ ’ @

L [ 150, Xy 10, X0y 6

—30
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(of. Gikhman and Skorokhod (1872), p. 80). Henoce
G _ L
log Gy = — 3 Bal0)

whioh proves that the estimator 8p is the same as the maximum likelihood
ostimator fr of 6 (cf. Basawa and Prakass Rao (1980)) when the process X
is obsorved over [0, 7). Let

T
12(6) = [ (/6. X)~f100, XN}t e (43)

and W* be a standard Wienor process. Since the solution of the stochastic
difforential equation given in Seotion 2 is stationary ergodic by hypothesis,
it follows that Inp(f) — co a.8. for & # 8, by (A5) and the process {Rp(f)) can
bo idontified with the process {Ip(0)—2W*(Ir(6)}. Furthermore

Ip(6)—2W*(I2(6)) > 0 a.8. . (44)

88 T for any 6 # 0,. Honce 0 and 6, aro pairwiso consistent. Note
that

Rop(6) = Ip(0)—2+/T Zr(6), 68, T » 0 .. (4.5)
where Ip(6) is defined by (4.3) and Zp(6) is given by (3.1). Lot

Z346) = T Z7(6). L (48)
It ie obvious that

0 > 16) as. 88T -0 )

by the orgodic theorem. Noto that
T
Ir(B)~Ir(g) = { (X, 6)—f(X(t), $)}-

(X(). $)+AX(1), 0)—2f(X (), Go))t

and therefore

| 12(6)—~12(8)| < |6—} f JX()-{LO)+ L)+ 2LIOH1 + | X(¢) ] )de

T
< C|0—¢| J JEXG{1+] X0 e
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Since E{JY(X(0)] < c0and B[ X*(0)]< co, it follows that B[J(X(0)X(0)]< oo
and hence, by the ergodic theorem,

1 7T

7§ TN+ X0 2 BHKO+ KO < w028 T e

Therefore,
| Ip(0)—Ir(¢)] € C°T|6—¢| b.s. oo (4.8)
as T — oo for some constant C* > 0. In view of (4.7) it follows that

17'7('0) 25 16) = B[f1v. X(0))—f(6,, X(0)? ()

. . lim Ip(0
uniformly in f¢= as T >, But Ip(f,) = 0 and ey T;, ) > 0 as.

for 8 # 0, by (A5). Hence, for any 6> 0.

I2(6) ™

inf S AsTowo o {400}

lo-gi>s T
for some A > 0 depending on é.

Lomma 4.1 :  Under the assumplions (A1)-(A4), for any Ty > 0 and any
£> 0,

T,
Psup su Z30)] > ¢ c, 2 Al
(su, s, 12300 > ¢ ) <0 (
for some constant C,> 0.

Proof :  Let h(0, z) and g(8, z) be defined as in Soction 3 and

K0, 2) = Ta,(z)ennd, He[—1,1).

T
Wa= I auXuNdet).

Since g(6, z) i a cubic polynomial in 8 with coefficients in =, it is casy to check,
by Kolmogorov’s inequality, that

sup  sup !Tﬂ(ﬂ,x(l))df.v(l) = 0p (T} . (412)
8 OKTLT |0
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using the faot that |8] < 1. On the other hand, for any & > 0,

P (sup sup

T
{ [ au(X()dE() | erin
8 0<T<T | » 0

-1)

T
<2{, 212y, B[ f oo > )

<:IP ( spu
n \0T<T,

T
§ A XOMED) | > e, )

(where T ¢, < E)
z T o (X
< gver( [ alXl)dEw)
{(by Kolmogorov's inequality for martingales)
L To
€I 5[ Ela,(X()d
n €0

- Hn
=Tl

12“(2 1R . (413)

=1
where ¢, is chossen to bo gul/® ( 2/4,‘,/‘) . Note that M = X jp/* < c0.
n
Hence relations (4.12) and (4.13) together prove that

T
P su su Zp0)] > & Cy
(g0, s, 1200 > 6) <Oy

for some tant C, > 0 independent of 7', and 8.

Lomma 4.2: For any y > 1/2, there exists H > 0 such that

| Z3(6)]

Yy - 14
lim $up 4P Turlog 7y < H 42 (814)
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Proof : Let

A, = 2360)] > H'avw
. [z__‘zu;d sup | 230)) > Bovmw], a1

Obsorvo that Lomma 4.1 gives tho inoquality
P4,)=P sy, sup | 23(6)| > H'2n/2ny
)= wp e 1230 w]

(by stationarity of tho process X(i)\

Cc2n-
< T

_Cc 1
=T a5
Honco s P(4,) < co which implios that P(4, occurs infinitoly ofton) = 0
ne=l
by Borol-Cantolli Lomma. Thoreforo sup | Zp(8)| < H' 2% for all
[}

281 < T < 2% oxcopt for finitely many n with probability ¢no and hence (4.4)
holds for suitable H > 0 dopending on y.
Thoorom 4.1 : Under the assumptions (Al)-(A5),

Or— 0yas. as T — 0.
Proof : Noto that
Rr(6) = I2(0)—223(0)
and Rp(0,) = 0. Furthermoro, for any 8> 0, thero exists A > 0 deponding

on & such that

id  Ip(0)> TA as. as T
10—08,158

by (4.10) and with probability ono, for any y > 3, thore oxists H > 0 depend-
ing on y such that

sup | Z3(0)] < HT'*log T)" ns.

for sufficiontly large 7. Hence

if Rp(6)>X*T>0 as asT—ow
166,138
for somo A* > 0 doponding on & and y. Since §r minimizes Rp(6) and
Rri(6,) = 0, it follows that |8p—8,| < § a.8. as 7 — 0. Honco 87— 6,83
a8 T > oo,
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6. ASYMPTOTIC NOBMALITY

In addition to tho conditions (Al)}-(A5) assumed in Section 2, lot us
supposs that thore oxists a neighbourhood Py, of 6, such that

(A8) 1S90, )| < MO+ |2]), OE Ty

and
sup {M(0) : 0 € Vg} = M < 0.

We shall now obtain tho asymptotic distribution of §7 under the condi-
tions (A1)-(A6). Sinco 87 is strongly consistent 0z € V, with probability
ono for large 7. Expanding f(¥, z) in & neighbourhood of 6, we have

16, ) = f(Bo, 1) +(0—0)f(6, z)

whero |G~8,] & |0—6,| and honce

r
Ip(6) = oI {f10, X(1))—f(8,, X(e))y* dt
— (0—0,)t f (06, Xyt

+0=002 [ U6, XOP— U6, XA . 1)
Obsorve that
(LS8, ) E— (S50, )2
= £, 2)— (B0, )] 1 SO0, %)+ Br
& 2M|6—6,|° c(x)(2+[=]) . (5.2)

by assumptions (A3) and (A6). Thereforo

17(6)—(6—0,)* j?{_[,‘”(ﬂo, X(eyyrde

o
7
 2M|6—6,| 2= oI X)L+ | X(0)]) de. .. (6.3)
Lot us write 6—8, = T-%. Then it follows that

sup | Ip(6)—yr1-2 J'T UiN(0,, XMV dt| K M A%eT-1= . (5.4)
IVI<4dr [
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for some constant M, > 0 by the orogodic thoorem since
Ble(X(0)(1+ ] X(0)])) < 0.
On the other hand, let
va(y,2) = TVt Y T, 2)— 16y, 2)— YT f{(6,, 2))

for || Ar. Thon vp(y, X) is differontisblo with rospect to  and tho
dorivative vy, z) satisfios

#’(W. I]_ﬁ)(g‘ z) = f‘”(oa‘i'lﬁT_m. I)_ﬂll(ﬁﬂ_ﬁ_!T—llﬂ, z)

and hence

12, 2)— (L 2)| € e(2) T2 |y — ] . (8.5)

by (A3) for all , §in [(—Ap, A7). It can toshown that therc exists a poly-
nomial in ¥ with coefficients in x viz.

o) = wptan, 2P, (L )+ drfiiar. Py (L)

+op(—Ar, 2)P, ( Aiz- ) + A7 (—Arp, 2) P, (A—’(;) . (5.6)
on [—Ar, A7] such that
gplAr, %) = vp(dr, ¥), gpt— A, 2) = vo(— A7, 2), o {8)

Az, 2) = Ay, 2) and gi(—dp, 2) = ¥P(—Ar,2) ... (58)

whero P;, 1 € ¢ < 4 are polynomials in Aﬁ with constant coefficionts.
4

Obsorving that vp(0, z) = ¥P(0, z) = 0, it is easy to cheok that

|9 Az, 2)| < c(2)A§T-*", .. (55)
19— Az, 5)| < clz)dgP5, o (6.10)
|92(dr, ¥)] < c@)AfreT-2, o (BID

and
|92(—Ar, 7)| § c(z)AFFT—2R. o (6.12)
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Furthermore thero exists a t M, > 0 independent of T euch that
190, 2) L. 2)| < i) 3Ty —¢| o (8.13)
forall ¢, {€(—4r, Ar]. But

ARt Y=L 2y -t

since |Yy—{| < 24p. Hence there exists a constant M, > 0 independent
of T such that

16, )~ gL, 2)| € Myclx)T-*1|y—L|* e (6.14)
for all ¥, { E(—4dp, Ar]. Renormalizing, we got that
(gY°, 2)—g (L, 2| < Mol dy|y*—L (T . (5.15)
for all *,£°€(—1,1]. Lot
hr(y®, 2) = opl¢®, 2)—ga(¥°. 7). e (516)

Then thoro oxists a constant 33 > 0 indopendont of T such that
MR, 2 —RP(E, 2)|  Mic(z)dplys =L I" T .. (517)

for all y*, {* €[—1, 1] by relations (5.6) and (5.15). Now, applying Fourior
series methods as in Lomma 4.1, it can Lo shown that for overy € > 0,

P( sup ’ ;rww'.xu))da(n{> 6 < o7
1 []

e o Al T~ E[c4X(0))]

and hence
T
P( sup [ {f0+¥T N X0 X(1)
lyi<dr 0
— - 00, TN )| > <)
< % A3 T2 B[4 X(0)). . (5.18)
Let us choose Az =log T. Since
% 5 U§0(0,, X(0)))idt — 1(8,) = E[f{(0,, X(0)))* a.s.
88 7' — o by the ergodic theorem and
L o, 2 3 N0, 16,) 8 Too
VT ¢
A2-9
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by the central limit theorem for stochastic integrals (of. B and Prakasa
Rao (1980)), relations (5.4) and (6.18) imply that the asymptotio distribution
of 87 which minimizes Rz(6) given by (2.8) can be obtained from the Pprocoss

Y 1{0)—242, —0 < Y < o (519)

where Z is normal with mean 0 and variance I(f,). Since
¥ = 21(6,)
minimizos (5.16), it follows that
£
TUfp—0,) = N(0,1/1(6,)) a8 T — co0. . (6.20)

This result is obtained under stronger conditions in Prakass Rao (1079)
fer the least squarcs estimator 9,_7- s n— 0 and T > oo defined at the
beginning of Section 2. Results obtained in this section as well as the earlier
sections can be easily extended to tho case when ¢* is unknown.

Appendix
Lemma 1 : Suppose ¢(u) is square inlegrable on [—1, 1] and §(.) is
Lipschitz of order a i.e., there exists ¢ > 0 such that
| gtu)—g(v)| < e u—v|* RO
Let ¢iu) = uZa,,e"'"". Then, for any 0 <y < a, there exists K,(a,y)>0

such that
Z Ja, |t < Ky(a, y)é* (2
n

Proof : It is oasy tc check that
j"l¢(‘u+h)—¢(u—b)l'du=4 Z}a,|*sin® #nk. e (3
-1 L]
Sinoe ¢ is Lipschitz satisfying (1), it follows that
4 5 [a,|? sin? mah § 28416 b -
n

for all hE[0,1). Lot h=2* and A-3<a 2t It is olear that
sin?rnk > }§ and relation (4) shows that

o1
T e, |t 2M 2 o (B)
b =241
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for any k> 2 and hence for any 0 <y <-a,
o1
5 la,|2n? 22 ¢t oti-tk . (8)
n-gk-211
Summing over all k » 2, we obtain that

[, |t ntr € 2% cf(1—20tr-m)-1, -

Hence there exists a constant K,(a,y) > 0 such that

I [a,|? € Kye, y)e* e (8)

where ¢ is the Lipschitzian conatant given by (1).

Remark : A slight variotion of the above result is duo to Szasz (1922).
The proof given above is the same as in Szasz (1922) and is given here for
completeness.

Lemma 2 : Suppose h(u) is square integrable ion {—1, 1] with
M—1) = h(1) = 0. Further suppose thai h'(*) exists and is Lipschilzian of
order @ i.e., there exists ¢ > 0 such that

(K@) —Rw)| < elu—v]=. )
Let Mu) =T a,etine. Then, for any 0 <y < a, lhere exists K (a,7)> 0,
i=23 m;t that

L |a, |t & Kyfa, y)e* e (10)
and '

E' |a,[** < Ky(a, y)et. o (1)

Proof: Sincs K(u) = mi £ na,eriny, inequality (10) follows from
Lemma 1 : "

Observe that
b Ianlz/a g (Elanl:niﬂy)l/a(gn—u*n)!ls
n

< Kyfa, y)ed(En-ttnyes

= Kala, y)e?.
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Lomma 3: Let h6,z) = Z a,(x)e®™® and suppose there exists a> ¢
.
such thal
| MO0, 2)— A, 2)| < o(z)| 0~ |

for all 8,8 in [—1,1) where f§" denotes the partial derivative of f with respect
to 0. Let {X(1),t€[0, T]} be a stochaslic process such thal

E[R(0, X(1)))* <

Jor every L (0, T). Then, for anyy < a, there exisls a positive conslant K (a,y)
such that
1 7

s {5 [ Betxona)” < Kay (5 [ Beo )™
AT an(X( e Y\ : (

Proof: By Lemmas 2, it follows that
I |a (X(1)| 2 < Kyla, y)eX(X(1) as.
n

for cvery te[0, 7). Heonce
%E[a,’.(x(l))]n’*" < Ky, y)E[HX(1)]

for all 1€[0,7). Let
| S
fo = | EloH(EW)
The mequality proved above gives the relation

E pt < Ky g  BXO

and hence

b /‘_'l'll < (Zﬂ,,n’“')”’(fm"“")’"
»
< Rt yma ey (11 prewxoa )
0

1 7 My
< Kia {7  Blexena)”™.
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Remark :  Anslyous argument proves that
B g1 & (Bpndt A En 2ty
< 00.
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