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Abstract. We consider a lincar filiering model {with feedback) when the
observation noise is an Ornstein-Ulhenbeck {OU) process with parameter 8.
The coefficients appearing in the model are all assamed to be bounded. In addi-
tion, the coefficients appearing in the observation equation are also assumed to be
differentiable. We consider the general case when the OU noise is also correlated
with the signal. Under these conditions, we derive the filtering equations for the
optimal filer,
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1. Introduction

The theory of filtering can be explained as foliows. The process of interest X, called the
Signal, is not directty observable. However, it is assumed that at time ¢ a (known) function of
{X(s) : 5 = ¢} is observable in the presence of an additive noise.

The question of interest is to esimate the signal X{7) given the observations {V(s) :
0 < 5 = #}. This is known as filtering the noise (to recover the signal). The best estimate,
called the apeimat fifter is the conditional distiibution of X (#) given the observation o-field
FY = o{¥Y(5) : 0 < 5 < t}. We wiil denote this conditional distribution by w{1).

In the classical theory of filtering, the observation noise is modelled to be a Brownian
motion. Then, under fairly genetal conditions on the signal and on the observation function,
the filter 7 solves an infinite dimensional siochastic differential equation called the Fujisaki-
Kzllianpur—Kunita (FKK) equation (Fujisaki et af 1972). Uniqueness of solution to the FKK
equation is also known {under some integrability condilions) when the signal-observation
pair {X, ¥} is uniquely determined either via a martingale problem (Bhatt et af 1995} or
as & solution of a {non-anticipative) stochastic differantial equation {Bhatt & Karandikar
1999).

In analogy with discrete time models, we can assume that the ohservation noise has sta-
tionary independent increments. But this implies that the noése is a Brownian motion. Hence,
the classical model of filtering is a natural model for filtering. At the same time, it has given
Tise to a very rich theory as mentioned in the previous paragraph, (See also Efliott 1982 and
Kallianpur 1980.)

However, this model-has been objected 1o by engineers from a practical point of view, The
actsl observed paths of the accumulative observation process ¥ are smooth. But the classical
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model gives zero probability to all such smooth paths. (See Kallianpur & Karandikar 1988
for a detailed discussion on this.)

Recently, several authors have considered the fltering model when the obsetvation nojse
is a process other than a Brownian raotion. in Kunita {i993), the author initiated the study of
filtering theory with gereral Gaussian noise processes. This was also foliowed up in Gawarecki
& Mandrekar (2000) and Mandrekar & Mandal (20007

A special case of the above is when the noise is an Ornstein—Ulhenbeck process (OUP) with
parameter # > 0. Such a filtering model answers the criticism by engineers of the classica)
model. Moreover, when B is large, the OUR approximates Brownian motion, Thus a filtering
model with QUP noise approximates the classical maodel,

The optimai filter 7 for the model with OUP noise has been studied. This is done by looking
al the Bayes’ formula for the filter in Mandrekar & Mandal (200C), Bhatt & Karandikar (2003}
and Gawarecki & Mandrekar (2003). The filering equation has been studied by Gawarecki
& Mandrekar (2000), Bhatt et «f (2004) and Kouritzin & Xiong (2002). However, each
of these articles uses dilferent assumnptions on the model, in particular, on the function A.
Gawarecki & Mandrekar (2000) and Mandrekar & Mandai (2000) require that B{X (1)) is
almost surely differeniiable in ¢, a very stringent condition. A perturbed model (with a small
time-lag in recording the observations) is used by Bhatt & Karandikar (2003} and Gawarecki
& Mandrekar {2003). Bhatt £ af (2004) and Kouritzin & Xiong (2002) require the observalion
function & to ke bounded and smooth. Also, a point to note is that all these authors assurme
that the observation noise and the signal are independent.

Ir: this article, we consider a very imporiant special case — linear filtering. In the classiosl
set-up this was first considered by Kalman and Bucy (Kalman 1960; Kalman & Bucy 1961).
The Kalman—Bucy hlter is also the most widely used filter becanse of its simplicity. In this
case the optimal filter s finite dimensional in the sense that xr is characterized as the unigue
solistion of 2 system of Awe SDE’s {as opposed to infinitely many in the general nonlinear
filtering problem).

The linear filtering moded with observation noise being an Ornstein—Ulhenbeck process,
which is also independent of the signal, was considered by Gawarecki & Mandrekar (2003}
However, as mentioned earlier, they look at a periurbed model where there is a time-lag in
tecording the observations, They show thal in this case the filler approximates the classical
Kalman filter.

We also censider the linear fltering model with OUP as noise. Our model {given by (16)-
(17} below) is very general in the sense that it allows feedback (from the observations into the
signal}. Also, we consider the case when the observation noise is correlated with the noise
driving the signal. We howcver assume that the (non-random) coefficients that appear in the
model are all bounded and the ones appearing in (17) are also differcatiable. Under these con-
ditions the optimal {ifter continues to be finite-dimensional and we derive the corresponding
filtering equations.

The paper is organised as follows. In the next section we consider the coresponding
classical lincar filtering model and write down the filtering equations (thearem 1). Also, for
later use, we note down a result on FKK equations from the general theory of nonlinear
filtering {theqrem 2},

In § 3, we introduce the lineas filtering model for the signal-gbservation process with
OUF as the observation noise. We derive the equations of filtering for the cptimal filter
(theoremn 4). This is done by effecting a series of transformations on the model to recast it as a
classical model of filtering (i.e., one where the observation noise is acertain Brownian motion}.
However, in doing so, the (erms appearing in the SDE for the transformed sign al-pbservation
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pait process depend on the entire past of the process. This peceysiiates the se of results
from the nomlinear fltering theory. We also show that the filtering equations admit a urique

solukion.
For notational simplicity, we consider the one-dimensional case.

2, The classical model

We start with a general linear filtering model (allowing feedback) in the classical set-up.
The signa! process X and the observation process ¥ are given by the system of stochastic

differential equations,
dX{t) = @)+ a X (@) +a (¥ ()] dr +'-b(_r]dw5(;}_ )
dr{r) = [Re() + M X (1) + (DY (O] de + AW (), @

for0 < 1 = T where X (0} is a Gaussian random variabte independent of (W5, W#) and
¥{0} = 0. The coefficients ay, a1, 9z, k|, Az, Ay and & ane all pssumed to be non-rendom,
boundead and measurable. The observation noise W and the noise W7 driving the SDE for
the signal X are assumed to be standard Brownian motions with

)
(WS, W, = f pluyd.
0

The fllowing facts are well-known. Such a system of SDE"s admits a unique solntion (X, ¥}.
By virtue of the linear nature of the coefficients, it follows that the pair (X, ¥) is jointly
Gaussian, Then the optimal filier s, which is the conditional distribution of the signal given
the observations, is defined by

f Fdr() = E[f(X(WIFY].  forall bounded, continuous functions f:
(3}
Futther, (r) is also a Gaussian measure (see for example Ellior 1982, Kallianpor 1980}

Hence x{f) is completely determined by its first two moments X () and F¢) which are
defined by

Xt = E[x)FT], @
Pty = E[¢X (1) — X)) IFAY]. hy)

Mureaver, the conditional variance F(r) is non-random. {Sce for exampie p. 522 of Rao 1983.)
The additienal information got by observing ¥ at the instant £ i3 given by the innovations
process I (1), which is defined by

¢ n .
108y = ¥y — L [ﬁu{u} Fh )X + hziu}}’[u]] dat.

[;-_ 15 well-known that § is a standard Brownian motion with respect to the abservation o-ficld
Y,
We have the following theorem {see theorem 0.5.1. of Kallianpur 1980) regarding the
opumal fiiter.
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Tiwearem 1. The Kaimanfilter (R, P) for the signal-observation model {1)-(2) is the unigue
solwrion of the following system of equations.

I 2l
;i’{r] = E[Xg] +-{l [ﬂn(u} -+ a; (X {u) + n;(u}l"(u}] du

i
+ ,{; B0} + PR, @) AT (1) ©)

L]
Py = VXl + fﬂ [2e: ) P ) + D)’ — (Bldp () + Ao () P ()] due.
)

Remark 1. The above result is also true for unbounded coefficients under some appropriate
integrability conditions, see theorem 10.5.1. of Kallianpur (1580).

To end this secidon we give the general FKK equation (theorem 8.4.4 from Kallianpur
1980, also theorem LB.11 from Elliott 1982) which is used in the next section. Suppose that
the observation model is given by

f
Z(t) = f Hu, X, Z)du + f a(u)dW (1),
Q 1]

where W is-standerd Brownian motion, the observation function & & non-anticipating func-
tional of (X, Z) and o a deterministic function bounded away from zero, We assume the
energy condition

T
f IH{u, X, 2Pdu < 00, as. (8
0
Supperse that the signal process X is such that

I —
M@y = FIXD) - fu AT )
is a martingale, with
I
(M7 W) = f Bf (e,
]

whire 3}' and Df are some (non-anticipative) functionals of X and Z. Letz(r, f) denote the
conditional distribution of £ (X (1)) given the observation o-field FZ = o{Z{x) : 0 < u <t}
Let

£ f
() = f @)™ ¥ @) — f ()™ 7 (u, H)du
[1] ]

be the innovations process. Then we have the following theorem.
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Theorem 2. Under the above setup, x(t. F) satigfies

r —
2l ) =70, P+ L e (u, AF el

! F e
+fn [0, DFY + (@)™ (0, HEY — 5, IR, £] I ).

(%
3, Linear signal-observation model with OUP najse
Les WY and W5 be slandard Brownian motions with
4
tws, whe = f plu)da. (10)
{1
We assume that p is a bounded measurable function on [0, T] with
plu) = =1, 0<uxT. {1
Fix & 8 > 0. Consider the Omstetn—Ulhenbeck velority process
dvi@) = —pvEnd +dW(@), O=<tsT,
{12)
VA =0.
Then ¥ is given hy
&
VA = ,af e PU-MawN iy, 0<t=T. {13)
0
Let OF denote the Omstein—Ulhenbeck dispiacement psocess defined by
!
81 =f Vi, O0=<t<T. (14)
0
Then ( has the form
¥
0f (1) = f (- Pr=dw¥), O0=<rxT. (15)
0

It is well-known that &% converges to W¥ in L? as 8 — oo (see Nelson 1967).

We will consider the following linear signal-observation model. Let Xo be a Gaus-
sian random variable independent of (W5, W), Throughout the article, the coefficients
ay, 41,27, kp, k), by and b will be assumed to be non-random, bounded and meastirable
fl..lnctiﬂns on [0, T). Further the coefficients g, 7). f2 will be assumed to be continuously
ﬂlf’r:eremiable on [0, 7). Let C < oo denote a common bound for alt the coefficiens and
their derivatives. The model is then given by

dXP (1) = Juote) + ai(DXE L) + a0 YP (O} dt + B(AW (1) (16}
d¥P(e) = [ho(t) + by ()XP() + Batry YR (D] de -+ dOF (1) an
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B <t < T with XP(0) = Xo aud ¥#(() = 0. This is a SDE with linear coefficients
drivon by the Ganssian semi-martingale (W9, 07). Existence and uniqueness of solution to

such an equation is quite well-known (see for example Karandikar 1989, Métivier 1982), We
ulto have the following observation which is crucially used in the rest of the article,

Toearem 3. Lel the processes WS, WY, OF, the random variabie Xo and the coefficiems
i, @1. 03, By, 1, ko and b be as above. Then the solution of the SDE (16)<(17) is a Guaussian

PIOCESS.

Proof. We note that (WS, 0, X;) is jointly Ganssian. We now construct a Gaussian solution
for (16){17). Let

XP% = X5 ¥#my =0, C<r=<T,

and define successively form > 1,

I
) L O f fao () + a () XP"" ) + a2} Y2~ ()] du
(|

T
+ ] b(u)dW* (u)
a
H
Yam) = f [Rotu) + I (@) XP* " (@} + Ao V2™ ()] die + 0¥ (2).
0

Noie that (X#*™, ¥} is a Gaussian process for every m == 1. Also

1(XP= — XPP=h?

e

4
= ] f [m@o(XPmt — XP2y() + az A7 - YR du
[
== 2[’:1T f‘ [I{x,ﬂ'm-—l - Xﬂ.ﬂ“?){unl + t(r.ﬂ.ﬂt—! _ Y'ﬂ‘”_z}(u}lzldu.
L

Similarly, we get
I{Yﬁm — rﬂ.m—i}(r}ii

<2071 f [lxPmt — XE 2y + (Pt — ¥ a))] du.
0

Define 7™() = suppe,s, [E[I(XA™ — XPmN)() 4 KYPm — ¥Am-l)(e)?] |. Then
using Fubini's theorem it foilows that

" (1) = 4C°T f rwodu s < SET (8
o (m — 1!
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where
n'ir) < sup {E[IX? ) = XaP? + 1Y% )?))
! x I ¥

<2 sup IE] f (ao(t) + a1 ()Xo — Xo) du +:~:[ f Bluyd WS ()

i TR ] a i

¥ 2

+ E fu (hola) + k() Xo) du +E{oﬁ(m=]

< oa. (19)

It tow follows from standard acguments that (X8, ¥} converge a.s. to a process (X%, Y?),
which is necessartly Gaussian. It is also clear from the construction that the limiting process
is a solution of (16)-{17). This completes the proof. o

The optimal filter 7¢) for the modet (16)~(17) is the conditional distribution of XP(r)
given the observation o-field £ := #{¥?(5); 0 < 5 < r}. Theorem 3 implies that =5(2)
is Gaussian and hence, as in the classical case, it is completely determined by the first two
conditional moments X* (1) and PA(t) where

By = E[xPi1FY] (20)
and
PP = E[(XP() - KM 0P)FT) = B[P 0AIF ] - (RRoP. @

Further it is well-known that the conditional variance PF{r) is in fact deterministic and is
equai to E[(XP(1) — i’ﬁ{t}}j] (see for example p. 522 of Rao (1985)).

Remark 2. In Bhatt & Karandikar (2003) the Omstein-Ulhenbeck noise V# was assumed
to be stationary which implies that VA(() ~ N (0, #/2). However this is rot a necessary
assumption and the analysis there works for a general ¥2{0). In this article, as seen from
the above comments, we use the Gaussian nature of the process (X?, ¥#). To ensure this we
would need ¥#(GY to be normally distributed. Thus the assumption that V2 (0) = 0 is only
for convenience and is not a restriction.

Qur aim now is 1o characterize (X# (1), PP{r)) via filtering equations, Towards this end we
proceed by making some transformations of the model (16)(17). First, let us define

Y = i—rﬁm: EP() = Rolt) + Ry (N X (D) + Ra (DY P L), (22)

Then in view of {14) the observation modet (17) can be rewritten in an equivalent form as
Yy =+ Vi, 0<t =T, £23)

Remark 3. Model {23) can be thought of as the inslantaneous observation model as opposed
10 {17) which is an accumulative observation model.
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Mow lat

Py =Py B = P x
Then it follows that

Po =0+V@, 0srsT,
Using (13) we have

Vi =g f ' AW (),
1]
Thns wo get that V2 is a semimartingale and

£ =
f E_aVtu) = wh).
o B

The relation (23) implies that ¥ (r) is also a semimantingale, Now define

VA () = &P VP

-~ r — Hu y =B
Po= [ Po=[ S@w,

| follows from (25)(27) that

PO =Fu+wiy., o<: <T.

ey €
B f 45 @)
j; -;d[eﬁ"e#{u}]

=f E‘“{u)du+f Ed‘;"“{u}

1
f §% (ydu + - f {Aa () + BYGD XA () + ) YA () da

+— 1k P = § h A
F: f“ 1) X7 () + : f; ha ()Y 7 (u)

!
= [} [+ HPaxP @) + H (@)Y ()] e

! I
+ fﬂ Bf )W u) + L By (6YdW ¥ (u),

(24)

(23)

(26}

27}

(28)

(29)
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where
HE ) = holu) + %[h;,(u} 1 ao(udh ) + holuha(u)], (308)
HO () = by () + l[hi (1) + 3 6Dy () + oy )2 ), (306}
HE () = halu) + ﬂ[kir:u) + aa(udhy (u) + Cha(m))?], (30c)
Bf (u) = %M(ﬂ]b{ul 0
and
B () = %hz[u). (30e)

Let a deterministic function o be defined by
w0 =B + BI + D+ 20008 BEB+ 1), 0<r=T,

€})]
where o is a5 in (10). Tt foltows from (11) that (nr"(t)}z > 0 for all 7. Let
F
Fluy .. o [ By + 1, .
Wi = —— ] W
(= f T ad il M e LA (32)

Then W is Standard Brownian motion. Moreover, using (29)—(32) we can now write the
observation model (28) as

FA() = f [H,;’{u} + HE (w) %P () + Hfu:uw#(u)] du
(1]

1)
+ f FuNdW (), 0<t < T. (33)
0
Also, it follows from (22, (24), and (27) that
o (FPiu) u<t) =a(y'ﬁ(u}:u5r)=a{i"£u] FERY!
=o (YA) :u<1t). (34)

Letusdenote the o-field in {34) by .:!:],'EF . Thus the optimal filter {.i' E(t), PP(1))isthe conditional
mean and variance of X#(¢) given F7.

J_.'i’emmi 4. The new signal-obsetvation model is now given by (19) and (33). The advantage
in making the rransformations is that both these equations are now driven by (correlated)
Brownian motions W¥ and W. We also note here, vsing (1) and (32), that

}
(WS, Wi = j; [{aﬁ{u]}“ﬂf{u} + (P ) oM BE () + n] du

f
- f Miande. (35
I
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Remark 5. Tt follows from (33) that the transformed observation process J ¥#isstilla Cranssian
process. However the SDE's (16} and (33) are no longer linear in (X%, ¥#). In fact, it is easy

to see that , .
YEn = f P ( f BeP d¥¥ {r}) de.
) 9

Thus the coefficients in {16) and {33) depend on the entire past of Y& (ina non-anticipative
way). Note that the dependence on X? is stilt Markovian and Tinear.

Let us denote the non-anticipative functional by #%. i.s.,
HG, XP 0, T = H) O+ H OXP (i + K YP@, o0<e<T. (36

Pt F#(#) denote its conditional expectation E[HA (e, XP (), ¥2)1 77 1. Define the innovations
process 1P as follows,

r i
iy = f (@®))~ d¥Pe) - f @ B, 0<e<T. a1
L] (1]

Then it is well-known {and also easy to see) that /? is a standard Brownian motion adapted
to the filtration .:F;ﬁ Now we are ready to prove the main {beorem of this section.

Theorem 4. Ler the processes W5, WY, OF, the random variable Xy and the coefficients
ag, 4y, d, hg, k1, B and b be as above. Let the s:‘gnai—ab_{emrim model be given by {16)-
(17) Let Hf be defined by (30b). Then the optimal filter (X?, PP} (given by (20, (21)) is the
urigue solution of the equarions

L r ey,
£2(0) = EfXg) + fﬂ (30(5) + a1 RPLs) + a () YA(5)) s
i
+ j; (b{s}a.ﬂ(s) + (o)™ Hf(;).vﬂm)dfﬂ(s} (38)
¥
PO = VXl + [ [2ai) PP + eis?

- (b + (P (3) " HE () P‘B{s})z }ds. (9)

Proof. We have already noted that the observation model (33) is equivalent to the original
model (17}, Also, as remarked afier (34}, to find the optimat filter for the origiral model it
suffices to work only with the observation moedel (33). However, remark 5 tells us that we
cannot directly apply the classical Kalman—Buocy filter formula. Instead, we use theorem 2,
which is a more general result from non-linear filtering theory.

Our assumption of boundedness of all the coefficients, together with the fact thar (X2, ¥7)
is Gaussian, implies thai the observation function A% (asin (36)) satisfies the cnergy condition
(8). Fhus theorem 2 is applicable. In fact, we need to apply the theorem for only two functions,
viz. filx) = x and folx) = x*. This is easily done by identifying the varioas components
appearing in (9),
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It Is immiediate from {16) and {35) that
M) = XP (1} — ﬁ [ac(s) + a1 (53X (s} + az(5) VA ()] ds,

is a martingale with (M, W) = f BHIV (5)ds. Also, recalling (21) and using the fact

tat Y2 is (F7 adapted, the term w(u, Hf1) — m{a, H)m(u., f\) appearing in the stochastic
integral in (%) reduces to Hf‘{u} P2 (). Thus we get that X2{r) satisfies {38).
Similarty, to evaluate (s, f2), we apply Ito's formula to (16) and vse (35} 10 get that

| |
M) = (XY — ﬁ [230() X (5) + 201 () XP )y

+ 200 X7 ()Y P () + (b(sH ] s

is amantingale with (M?, W)ir) = ] 25()2#(s)X# (s)ds. The vross quadratic variation gives

the first term (x? (-, Df2)) in the integrand of the stochastic integral in (9). Let f5(x) = x2.
Then the second term can be easily seen to equal

HY e (u, £5) — HE ) XPpan? (u, fi).
Hence we get that w#(z, f>) satisfies the SDE

7H (e, f2) = E(X3]

+ fﬂ [2a0()XP(s) + 2ay (53 (s, fo) + 262() P (5) Y2 () + (b(s))?] ds

+ f; [26032)%8(5) + (o )) ! Hf (e, 1) = R s, 1) |ares).
(40)

Now, another application of ko's formula to {38) gives
(X)) = (EXo)
+ [ [206)X24) + 2a,65) (F2653)° + 2a() R P (o)
+ (bt + )™ 1) PP ) |as

!
+ fﬁ (zb.:mﬁ{sﬁﬁ(s) +2{a? ()} HF(s}Pﬂ{s::i‘”cs))dfﬁ{s},
(41)



152 Abhay & Bhatt
Finally subtracting (41} fram (40) we get

PRGY = 5P, f) - (RP )

!
= V(X + f [2ai05) P(5) + 602
{1
- (b{sw’{.n +{ef(0)) Hf ()PP (s})! ]-:Is

¥
+ j{; (ef ()" HE ()

x (7P (s, f5) — 2P, fRE) — 2PPOIXE () dIP(s). 4
The integrand in the stochastic integral above is zero as expected, since
nf(s, fa) ~ wPis, XP(s) — 2P ()X (s)
=mf (s, fy + 2 (RF )’ ~ 3% G)nP s, f
= E[(xP(s) - R%s3)’ | 7?] =o.

Thus (42) is the same as (3Y).

Equations (38) and {39) have the same form as the filtering equations in the ¢lassical linear
filieeing case (i.e., {6) and (7)). Uniqueness of solution is 21so similarly proved. (See proof of
theorem 16.5.1 in Kallianpur 1980). m]

Remark 6. In this article enly the case of signal and noise being real valued is considered.
This is done purely for the sake of notational simplicity. The resuits can be extended to the
general case when bath the signal and the noise {ake values jn arbitrary Euclidean spaces.
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