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DIFFUSIONS AND THE NEUMANN PROBLEM
IN THE HALF SPACE

By 8. RAMASUBRAMANIAN
Indion Statistical Institule

STTAIMARY, 'I'he imhvmogensous Neumann problem for sartain olagses of second ordar
dliiptic operators in thn half spave is invesiigated using the asuocisted diffusions with normal
roflection.

1. INTRODUCTION

Congider the Neamann problem

L) = _f{mjr xel

1.1
%{‘-ﬂuﬂ—?{m},mﬂﬂ .

where 7 (C R¢ is open, L is a second order elliptic operator and % is the
direetion of the inward normal. If & is a bonnded domain, this problem bhas
been investigated wsing probabilistioc methods by several authom. See Ikeda
(1961), Wabanahe (1064), Brogamler (1976) where I iz the generator of
& diffusion ; sec Heu (1885), Chung and Han {1986} for the homogencous
Neumann problem for the Schrodinger opcrator ; Freidlin (1985} gives the
stochastie representation for the solutions.

In the case of the bounded domain and when & is the generaior of a nonde-
gemerate reflocbing diffusion in &, the concerned diffusion is ergodio ; and the
transition probability converges to the invariant probability messure g
exponentially fast. Consequently

¥ L
u@ = lim E{ [/ToMs+ [ elZendi] .. (12)
= 0 1} -
I8 well defined, provided f, ¢ satisfy the compatibility condition
[ f@) dp@)+g [ deel@pipe) =0 E

g
Wwhere £ denotes the local tims at the boundatry, and « is a snitable function
given in terms of the ditection cosines of the normal and the diffugion coeffi-

gients, In such & cnse #is a solution {ix & suitable sonse} to (1.1) ; also & is the
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unique solution such that | w{e) da(a) = 0 ; {the lather fact does not seem
to be explicitly mentioned in the literatmre). The compa#ibility eondition
(1.3) 18 also a necessary condition.

The aim of this paper is to investigate using probabilistio methods, the
inhomogeneous Neumann problem when & == {#e¢ B 1, > 0} is the half
space end I is the generator of a diffusion process. To our knowledge such
an investigation has not been carried out for any unbounded domsin. (The
homogeneous probiem for the Schrodinger-type operator L 4- in the half space
has been considersd by the present author (1992) ; but the results do not apply
here as the concerned gauge is infinite}. In the cases eonsidered here the

(L, Ej:-:l—)-diffﬂﬂiﬂu {X(t}: ¢ » 0} can be written as {{X{f), i{&}]} where

{X,(0)} is a reflocting diffusion in [0, oo) with generator Ly and {.f' (£} is {(d—1)—
dimensional diffusion with generator L,, where the coefficients of 1, depend
oitly on z; and those of L, depend on (xy, ..., zg)-

The main difficulty in extending the results to unbounded domeins is the
lack of information about the rate of convergence of the transition probabilities
to the invariaut measure,

In Secfion 2, preliminary results concerning the diffusions in @ are
obtained. In Section 3, we consider stochastic solutiong for the Newmenn
problem wher L, == Laplacian, L, has peripdic coofficients and f, ¢ are
poriodic in {xg, ..., xg}. Bo our analysis iz essentivlly over [0, c0)x Td-t; and
the invariant measire is Lebesgue measure on {0, an) X ¢ probakility measure
on Té1l,  With the eompatibility condition (B 3} which is similar to {1.3),
(and two technical conditions) we are able to show that @ given by (1.2} is a
solution, and is unique in an appropriete class : also the condition (B3) ie
& necessary condition,

In Section 4, we consider the case when L, is eolf adjoiné, Ly, has periodic
coofficients and f, ¢ are periodie in {2y, ..., 2g). Once again the problem is
reduced to [, oo} X TE 1 with tho same invariant measore as in Seeotion 3.
But the compatibility condition (3) is strongor, and porhaps it is not a new-
saary condition ; (see the remarks at the end of Section 4). However, for the
homogeneous problem, ((8) is the same as {B 3} and we get » compleic pisture.

In Heotion & we consider the cmee when I is the Laplacian ; here
the invariant measure is the Lebesgue measure. The date f, ¢ are bounded
fanctions having finite second momente and satisfying the competibility condi-
tion (D 3), which again ia similar fo (1.3). Tt addition to analogous results
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o5 in the preceding sections, we also give, using the spectral representation,
a oriterion to realise the solution as a continuons function vanishing at infinity.

In the last section I i3 assumed to be the generator of the Ornsteim—
Uhlenbeck process, which bas a Gaussian invariant messure. Our analysis
hinges upon Propositions 2.4 and 2.5 which concern respectively the rate of

convergenoe of q(t, @, y) to »(y), and that of w to unity, where g is

the transition probability density of O—U process amd » is the invariamt
density.

It may bz noted thal the existence of a stochastic solution depends on
woll definedness of u{as given by (1.2)), which in turn depends on the com-
patibility gondition ; and uniqueness depends on lim F_ {u(X ()} = 0. The

=

latter condition is & natural one from the probabilistie point of view. This
is one main reason for investigating the problem using probabiliatic metheds.
though. onr srguments can be rephrased analytically. (Another reasom ig
that probabilistic method gives an elegant continmous solution for messurable
data). It would be interesting if conditions without involving the time para-
mster £ can, be put @ engure 1111'1 B lu(Xt)}=0; (see eog. Theorems 4.2,

6.4, G.1).

Using the estimates given in the following sections, it i3 eagy to establish
the sontiruous dependence of the solution on the given data. Also our results
roadily extend to those diffusions which are diffeomorphic to any of the cases
considered here ; (such diffusions can be easily characterised using Lemma 8.5
of Ramasubramanian (1988)).

Before ending this seetion we show by an example thet, in spite of our
{seemingly strong} conditions, the problem can not be reduced bo s bounded
Beb or to a lower dimension,

Esample. Tob d=3, @ ={@, 2): 5>0 L= {1+ T
TP, i Xy, gl Iy » E(EE' ﬁg),

f.)=0, of0, 2,) = cos® 2ma,. Clearly ¢ is a periodic funetion on &G such
that | e(a,)de, — 0. Suppose thero exists a solution u(zy, #) to (1.1} of

=1
the form
w2y, o) = wy(z) ual) e (1.4)

Note that (1.4) and the boundsry condition imply tha wz,) = ﬁ;“j—m ()

tnd hence u4;{0) £ 0, I+ now follows from the differential equation that
A 3-8



364 8. BAMABUBRAMANIAN

Uy (24)07(2,) = h—-uitaa}rp{m.-}* Since w;(0) 3 0, there i an 2, such that w,(z,) & 0.

Therefore T_} % (2s)] = consfant, which is not pogaible, Thus there can not

be a golution of the form (1.4) to the problem {1.1).

2. IIPPUSIONRE

In this gootion we pub together certain resulta conocerning reflected diffn.
sions in the half space &, which will be of use in the subsequent sections.

(i) Self-adjoint X Perivdic case. Let G = [®e¢ RS 1, » 0} where d » 2.
We have the diffusion coefficients «, b satiafying the following conditions.

(A1): For each #¢ G, ¢ (@) = ((@is(T))1as. < ¢ 18 & (dXd) real symmetric
positive definite matrix and b(@) = (b, (@), ..., ba (@)} i3 & d-vector. The func-

tions @y {.), be{.) e C2(G) for 1 i, j < d. There exist constants A, A,

such that 0 < A; A, < 0 and for any ® e G, any eigenvalue of o{w) & [Az
Aq.
(A2): a4y, &y areindependent of 2y, ..., B iy =04y =0, == 2, ..., 84

iy, by are independent of x, for 2 4, § & d. Alsod, (z,) = -;— Ti:—la.u[a&}, and

b, (0) = 0.

(A3}: For i, j=2,.., d& the functions agy (. ). b¢(.) are periodic in
Zgy .1y Zg with period 1 in each variahble.

Note that the functions oy, b, can be extended to the whole of R by

(1} = apl—&1}, by (%) = —b(—ay), if 2 <0 e (F1)

These extensions are again denoted by @y;, b, respectively. For any
@ = (2, %y, ..., £z} we shall denote 2 = (x,, ..., z) and we shall often identify
I3 with Bé1,

Define the elliptic operators L,, L,, I respectively on (% (R), C® (R4},
(% (R) by

Lib(o) = gon (0) T @) Holo) -6, o @D

d

Lo@ =g I oy %{mwz b (@) o (@) . (B9)

4 -
Ly (@) = ';”:E: g @) g @) T @) @ - @4
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Let Ry = C{[0,00) : R}, £y = O([0,0) ; R¥1), 2 = ([0, cc) : R¥) snd

0 = [0, o) : T4 1) be endowed with the topology of uniform eonver-
gence on compacta and the nafural Borel structure. (Here T%-! denotes
the (d—1)-dimensional torus). Let X{t) (sometimes written X,} denote the
i-th coordinate map on 0; let i{t} = (X}, ..., Xalt)) snd E’{t} = [Xqlf)
mod I, ..., X;(f) mod 1).

Let {Pm:mﬂﬁ}he the (L,a%] diffusion inﬁ;{Pg}:ieHﬂ-l} ba the

L,;-diffusion in Re-1 ;{Pﬂ: i - {}} be the ( Ly, ?% )-dj:fuai{m in [0, o). These

are the families of probability measures respectively on Q, Q,, Q, solviop
the appropriate martingale problems. (It may be mentioned that {P,} and

(P} are diffusions with normal reflection atthe boundary) Becanse of our

agsumptions (A1}, (A2} note that L, and L, are penerators of diffusions ; alao
Ly is self-adjoint.

Under the assumption (Al), there exista a contihmous, nondecreasing,
nonanticipativg process £(f) on L) such that

]
@) £6) =1 Ly (X(s) dia} ;
(hy for every ¢ ¢ Cf (RY),

-

- e (2.0)
¢ ¢
HEEN - — | LXK (ads— [ IL (X(s)) dbto)
0 0 aq
is & continuous P,-martingale with respect to {43}, |

where &8 = o{X(9) 1 0 « 3 { t}. This process, called the looal time st the
boundary, is uniquely determined. (see Stroock and Varadhan (1071)).

Proposition 2.1. Let (A1), (A2) hold, Then for any ®© = (zy, &g, ..., Tg) tn G,

Pp = PY xP;" e {2.6)

where & == (2, ..., wg) The processes it(e)} and (R(6)} are independent. Also
fﬂr £ 0, ¥, e a:

o, @, §) = 2.0, 3, 91} Poft, T, Y) o (2T
where p, py, p, are respeckively the tramsition probability densify funmclions of
(L, a{"—l)-—d‘iﬁu&ian, (LG él)diﬁuaicm and L~diffugion processes 5 in parii-
Cular, the three diffusions are strong Feller.
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Proof. The first two assertions are immediately seen by writing down
the stochastic differential equationn for the (L, Eg“ )—diﬂ'uﬂiﬂn ; (see Tkedn
1

and Watanabe {1981)). To prove (2.7), extend the ccefficients to R¥ using
(2.1}. Consider the diffusion in B¢ with generator L ; let I'{{, ®, y)} be the
trangition probability density funetion of the IL-diffusion R4 Note that p
s obtgined from I by the method of images. In view of our assumptions,
(2.7) is now immediate., []

Remark 2.2, Using Green’s formula it can be shown thet, for any bounded
measurable function g on = R¥1), e, ¢ > 0,

#

B [ S 0E@) 0] = 2§ § aulywivints, 2, ) doty) d

2 - o -
=_;. [ 1 odOsi)plo, 2 Opds, @, g) dg ds ... (2.8)

&=

where B, denotes expectation with respeoct to P, and dof{ . ) denotes the (d— 1}
—dimensional Lebesgue measure on 8¢ ; note that the second equality in
the above follows by the preceding lemma. (In what follows, the notation

doly) or dy will be nsed socording to convenienoe).

Propasition 2.3, Define P : nﬂ—pﬁ by (F w) () = (wslt) mod 1,
walt) mod 1) ; put Xif) = (Xoft) mod 1, ..., Xalt) mod 1}. For Be X0 la P
= PEM-L, Aseume that (A1)—(A3) hold. Then ({X £)} is ¢ T4 mlﬂed-
conbinuous, sirong Feller, strong Markoy process wnder {PE}? alsn

Pt @, Y) = . EH odt, T, Y1 k) e (2.9)

(L] ﬂw transition probabilily density fumction of {f{ﬁ}}, Moreover, there exists
& unique hwice differentiable periodic function p on R such that

1-£—1 plyMy =1, . (3.10)
Lip(y) = 0, g ¢ R#1, . (2.21)

. P T{'" . 125 ¢, @, §)—p(y) [ < ¢ . (2.12)
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where ¢, Og ore positive constants independent of §, Ly ts the formal adjoint of
Ly s in other words, under Py(.) = | P3(.) p(@)ie the process {X(1} se

ergodic.

Progf. The first assertion i3 elementary to prove. Since X (4) is & Feller
continnous diffusion on the forus T4-', by results in Bensoussen, Lions,
Papanicolaou (1978, Chepter 3, Section 3) it follows "that thers is & unique
invariant probabitity measure p(y)dy on P41 gatisfying (2.10)-(2.12) ; (see
also Bhattacharya (1885)). The regularity of p follows by the regularity
theorems far solutions of second order elliptic equations. [

(i) Ornetein—Uhlenbeck process. We now consider a version of the

Ornstein—~Uhlenbeck process in ¢ with normal reflection ab the boundary.
In this case the diffusion coeffivients are given by ay(@) = 8y, bilwe) = —ay,
! €4, 74 d. The generator i

Lq&*{m}=% T M@ 5, %ﬁ%"-’i .. {213)

| ﬂ:n;‘-" $o=

In this cage tha tranwition probability density function is given by

g6, {21, 3, ln, B) = Q. @1, ¥0) it &, ) .. (214)
whara
| 1 i (3 —e-day )P (—g—e~tr)?

alt 30 = | oo ||~ el - imem )

{2.15)
d-=1
= 2 2 . |

G, 2, y) = [ﬂ'“._iﬂl'ﬂ_f’]'] EXp {— Eﬁ i—Eﬂ (gr—e~t x¢)? } e (2.16)

Note that ¢, is the transition probahility density of the 0.U. process in [0, o)
with reflsction at 0, and g, is th? transition probebility density of the (d—1)
~dimznsional O.U. process. Let {P,:» ¢ @)} denote the corresponding family
of probebility measures on 2, By writing down the stoehagtic differoniial
tquations for the 0.U. proceas it can bo seen that there is & uniquely deter-
minad continuous, nondecreasing, nonanticipating process {£(f)} on L} satis-
fying (2.5). Note that all the assertions of Proposition 2.1 snd snalogue of

(2.8) hold also for the O.U. procoss (Py : @6 &,
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It is easy to check that there is a unique invariant probability measure
vigf)dy on @ for the O.U. procees with normal reflection ; in fact

wy) = v5y) 7l . {2a7)
where
it} = #]Ln:; ¢y(ds Xy ) = -% e_ﬁ o (2.18)
. A & d- 4
wi) = tim gt £,8) = () oxp (= Zst) . @19

for 4, = 0, ﬁre R+,
Proposition 2.4, Let iy > 0. Then
Pqlt, «, )—u(y)| € K, e ¥4+ K, |x|et - [2.20)

for all £33 I, @, Y G, where the positive constants K, K, are independent of
¢ = by @ W
Proof. It ia sufficient to prove.

(1) op =228 -e-"!<ﬂle~ﬂ=+ﬂ,lﬂir* - (331)

for ¢ 3» iy, &, § ¢ B, where K,, K, are positive consfants independent of & 3 &,
&, 5.

. 2
Put & = et and sot b (¢) = ﬁ-ﬁx;p [-%—%]wh&r& %, f ¢ B are
arbitrary but fised. It is easily verified that

1%} < {li,fm -+[fﬂf,i} . {2.29)

for all 0 << e <1, a, feR where the constants C,, C, are independent of
& a, 8. From (2,22) it is simple to obtain the inequality (2.21). This com-
Petes the proof. [

Propogition 2.5, Let &, > 0 and H & be a compact sef. Then
git, =, ¥) < (4o ¥k + 5 |y ... F R |y ]l e (223)
Jorallt » b, e H, ye @, where the positive constants ky, &y, ..., kg depend only
on by, H.
Proof. 1t is safficient to prove that for 4, > 0, 8, > 0,

1 e —ai A0
(aem ) o [~ ]ﬂ"”!aouﬂmnr'r«’ . (224)
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tor all £ 2 8 |8l < By @e R, where the positive censtant ¢! dependa only
01l ‘u: ﬁi'

Put ¢ = ¢f. If is gimple to check that
E"'= - —ﬂ“ﬂ‘ ""'IE

Lhs. of (234) € aym {1-e%p| 1-—5“] ‘4' (T—aiyi

-I-._l=

d g8
+_'__[1_ﬂ_EE]1.FE cIp [— ﬁ

- ]|1-. 9:11] '{‘f_j}“ﬂﬂ} ]‘ ... (2.25)

Sinee the first $wo terms on the rh.s. of (2.25) satisfy the required bound, it
is enough to prove that the third term also satisfies the required bound.

Seb gla) = BIP[ (o Eﬂ{ ] —2 ;‘fﬁl ] It is wot difficult o verify that

for Ve, feR,

sup fote) - ¢ By = exp] 5 ]

ﬂuP{Iﬂ ()] :ze R}

_ BB 226 1— ) 4"

= E [ﬁ+4‘/ﬁ3+2ﬁﬂﬁﬂ] exp { = ] . (2.27)
Using (2.26), {2.27) and the mean value theorem, it is mow essy to verify that
the third term on the r.h.s. of (2.25) also is dominated by the r.h.s. of (2.24)
for ull ¢ 2> #,, |F| & &, x¢R. This completes the proof.

2.26)

d. NEUMANN PROBISM : [y = LAPLACIAN, I, Ha$ PERIODIC OCEFFICIRENTS
We now consider the inhomogeneous Neumann problem for L in the

holf space . That is, for a measurable fuuction f or  and a measur-
able function ¢ on 8@, to find an appropriste function » such theb

Lufw) = ~-f(), ®e @ }

q_“..:;g} = — (@}, @ ¢ IG

(8.1)
d2y

As in Hsu (1985), Ramasubramanian (1992), & messursble function « on @
is ealled a stochastic solution to (3.1), if for each xe (¥

| Z{#) » = w(X @) —u(X (- j [ X ()Mt j plX{eNldile ... (3.2}
8 & continuous P,-martingsle with respect to & where {P,} in the
a * F ]
L 57, |-diffosion
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Bemark 3.1. It cen be shown using (2.5) that any olassical solution
(with appropriate growth econdition) is also a stochestic solution to (3.1)

Conversely, if f and o are continuous and % & ONG) (YO (&) is & stochastio
solution, then it can be shown that « is a classieal solation o (3.1).

In this section we assumo that the conditions (A1)}-(A3) hold and that
aa{-) =1 and b(.) =0 that is, {Pg;} is the reflected Brownian motion
in [0, 00), L, has periodic coefficients, and {Pg;} and {Pg:r} are independent
diffugions. Note that, in this case

111(h¢1:ﬂ1]=(2%) [ exp{— L Ll 3._1}2 }+ﬁxp{ﬂ%}]m (3.3)

Lemma 3.2, For 0 < b <t < 0, xeR,

J e o (-5 1]

L g _ON 11 _a&h_
26 (“’P( 233) 1j—2 [ ( 1]
a?f2t,
—/2 &) j’ =12 gt o {34)
atyosy
Proof. Putz= 3, vae the fach that e*—1=fedr; the roquired

result is obtained by & roudine ecomputation. [J

In this section we shall make the following assumptions on the prescribed
data f, ¢.

{Bl1): f, ¢ are hounded on compact seta; p(%,, ..., 2g) is & periodic
function with period 1 in each vartable; flz,, ®s, ..., 24) is periodic in a3, ..., %
with period 1.

(B2); Hyz=e mp [ |z]|* [flx,, #)[dmy < o0, 7 =0,1,2

Dage-1 [0,%)

-~ ™ ~ 1 oy "~ "~
(B3): [ [ fzy, &) pl@)dd de; + 5 [ @) plw) de = 0,
[6,®) gl f
where p is the invariant probability messure for the ZLg-diffusion on 7%
For 0 £ ¢ < # < 00, & = (2y, B) 8 &, put

fa g
By by 20, B) = B, [ Ifi ﬂx{ﬂ]kh+£l ?{I{ﬂ}}ﬁ(ﬂ}] o (3.89)
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where £ is the local time at the boundary as in {2.5). Because of the periodi-
sity aspumption we may take &e T'¢-L, Now in view of (2.8), Propusition 2.3
(in parbicular (2.9)), snd condition (B3} we get

a .l'= a —y o . &
Wity by 5 % &) = EE tn.fm} :I"lfl; _1f (21, ®) P28, w0y, 2)Pe (8, &, &) d% dz, ds

Io

o1 3 o@Ipie, @, Ofyls, &, £)d8 do

i
=1 1 e B o, 21 50) (Fale, &, £)—plé)] 86 diy de

5 16,21l
% 2
F ] L e B @ | pie o) i iy e

£
11 3 9@ pu s, 2. 0) [pufe, & #)—p(E)} 46 do

ol

by | - dz de
+ 5[1 T£-1 5 #@) pl#) [Ih (2, 2y, ﬂ}‘ﬁ; ] %

= £y {8, % ; 2y, é]'i‘faffn AEALI RN SR E’}‘FI;“I& iy ; %)
oo (B.8)

whera p, ia given by (3.3) and E, ig the transition probability density function
of the L,diffusion on the torus T81,

Lemma 8.3. Let (AL}{AS) hold with ap{.)=1,b(.)=0, Let J, ¢
subisfy conditions {B1)-(B3). Then for any 0 & & < by < @, (%, eG,

N ty
| Iy (835 2 )| € Hooy [ 513 ¢ T de o (8.7)
i
S O
Lo 8] <5l ot [ . @)
bt

where the conslants ¢, &, ore as in (2.12) and the constant H, is as ¢n (82), In
parficular I, iz bounded.

Progf. Immediate from condition (B2} and Proposition. 2.8. [J
A 39



2CR, 8. RAMASTERAMANIAN

Lemma 3.4. L the hypotheges be aa in the preceding lemma. They
Jor zmel0, ), i>0,

[ 140, 2 ; 2y} ] < 2H -4-2H |2 | *f"ifﬂ (Hy+H,|% | v (8.9)
| |
(140, 8 5y)| & Ilvllm{i:vil+ﬁﬂ } o (8.10)

where the conslants H,, H,, H, are as in (B2). Moreover for a > 0, ¢ > 0 one
can choose T asuch that

sup |Iglt, o 2y)| <& e (811)
aup (I (L, 00;2)] <« . (8.13)
Iaf

for aB [ < .
ﬂﬁ:g}izl} 0

f{_zl:;'):nzl{ﬂ
By Lemma 3.2, for 0 << &) < ¥ < w0, 1 » 0, we et

Proof. Pub Pz, #) = {

I3{ty ta s @) "',{ !JM F{zl’ #)pf#} iz, 23, %y, #1) ds da, o (BARY
where
Tl toy 21, %) = 2y {exp [*—-ELE—-JLF)—-I}

~ayh; { oxp (—‘ﬂ:;-;i )1}

— /2 {5,—2 | ] A grde . (B.14)

! !_agﬂ) fz,~—x?
[ ﬂEt, 212#: )]

Letting #;—> 0 and talring ¢ = # in the above, we get

Lol g TOBIE (el my e,

fiom which (3.9) engily follows.
A shmilar argument gives

L0t o) = -;}2? Tt 0) { o BIpEME ... (B15)
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where J ia given by (3.14). The inequality (3.10) is now immediste from
(3.16).

Now leb £ > 0, ¢ > 0 be fized. Choose r, > 0 such that
'F'u 2 k " > a 1
g [ {{7) @+ ittt a)) | Feu )lp@dd < g e ... (316)

Such s choice is possible because of (B2). Letting #— co, putting # «= #
in (3.13) and wsing (3.18) we geb for |m| C @, and ¢ > 1,

F jh . ~
[ Iyt o0 )] < ]JITdL Lﬁ;}%!ﬂhm 25, %) |62 dzy

(1) Hy

i
< 3ok (7] Balrbban+ 2 o

revds L, {317

Clearly one ocan choose T' large emough that the right side of (3.17) <« & for
all t 3 T, Thus (3.11) i3 proved.

Using (3.15) in the place of (3.13) apd proceeding eimilarly, (3.12)
is proved. This completes the proof of the lemma. [

We now prove the main theorem of this gection,

Theorem 8.5. Lef {Al)-(A3) hold with a,(.)=1, b{. =m0,

Let f, @ satisfy conditions (B1)}-(B3). For we @ define
we) = lim Bo | [ fE@) det S oKD & @] . (318
Fam 1] 0

Then u i3 o continmous funchion on G such thai
(8) u is persodic in oy, ..., %g;
) fulzs, 3] & K(L+]2,]), where K s a constant independent of 2y, & ;
() w és o atochaalic solubion io (8.1);
() lim P | By, 2y (LXK == 0, for any o, 5 0.
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Morepver, u 1¢ the unigue siochastic solution fv (3.1) én the closs

& ={:GaR: (i) vis bounded on compacts ; (i) v s periodic inxy, ..., 1g:

@iy |elmy, ®)| < E{14|2,)), for some constant independent of x, @ ; ond

(o) Bm FEelo(X()] = 0} o (319
Proof. Observe that u(w) = lim #(0, &,; x, @); consequently by the

b=+ OO
preceding two lenunas it follows thet w(at) is well defined for esch i, # ia perio-

dic in @, ..., ¥g and that |ulz,, ﬁl}l & K{(1-F|x,{). To prove continuitby,
note that for any & = (x,. :E) € a,

wl@) — B0, 8 ; xy, LTS, T 2, &) LA(D, 00} 2y, @)
where % is defined by (3.5}, and 0 << § <. T aze to be suitably chogen, For
fixed (x,, B e, € > 0 by the preceding two lemmas, T > O can be chosen
so that &7, 009, 1) < % s for all {%, ) in & compact neighbourhood of
{x;, #). Choose & > 0 such that

}
() @Hotliehe) < 3

Then if ia easily seen that sup 120, 85 ¥y, Y| < 1 ¢. By the strong Feller
property, ®e, T ; x,, ) is continuous in (z,, T). (*untmmty of u now follows.

To show that % is & stochaalic solutior, we have 1o show that Z{t) is a
continuons Py—martingsle, where Z{t) is given by (3.2). Becaunse of assertion
(5) of the theorern and condition (B2), it follows that Z(f) ia integrable ; con-
tinaity in § iy clear from continuity of . For 8, { 2 0, we {} put

¢ 4
Yelwy=o i, w) = l]J' fiX{s, w)) da-+ “J' i (X {8, 1)) d5(s, w},

e w0(g) = wl(t-+4)
As f, 3 are bounded on compacts note that 3y is well defined. Bincek is an
additive functional
1!"&{'51 ﬂﬂﬂ} = 1“{"{'&_'_#: w]-"iﬁ‘{t: ﬂ.l']' 1 {3'201
For r& 7, put MT = E(¥(7)| &) By (3.20) and the Markor property,
for £ 0, >0, @c@ we have

M = (i +-Bxy, (¥(2), ae.Px e (3.81)
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Therefore by Lemmas 3.3 and 3.4 it follows that
| M5+ < [9(0]+ (50, 55 Xy (8), X(0)}
& [+ 521 X0 + 5| Xalt) |2, 6.8 Pe . {B.2%)

for sll s3> 1, ¢ 3 0, @ c & where the constants §,, A, J, sre independent of
ae[l, =), ¢ &

Put N¢= lim M+ By the definitions of , ¥, M7, N, Z{)) and (3.21)

o 1

it followa that for any ¢ > 0, e @
Ny = Z(t)+-u{2), 6.8.Pz.

Tn view of (3.22) it 13 easily seen that for §;, > § 3 0,

E[Nﬁﬁ:lﬂh) = j-l.pn:n E{M::-#ﬂ | ’6'1}

== }ﬂ B(E(yr(e+2g)} E&H 5‘1]

= N, as. Pz e (328)

Thus {¥y}, and hence {Z()} i3 a Py-mertingale with respect to & Hence
% s a sfochastic aolution to (3.1).

Note thet for @ef, ¢ 2 0,

BalulX) = 5 1w 90malt 2 90) [0 0, 9o ) 4 Ay

‘J"[ﬂ‘j;] T‘J‘l_l u'{gll o1, 2y, 1) P(H] dﬂ' dy,. es (3‘54}

By assertion (b) of the theorem and Proposition 2.3 it follows thet for
By x 2 0,

lim sup [first term on the r.h.g. of (3.24) |

i—3m f.*,

< lim Ke o ™

= X

h]'_} RESEIE-A AL L T L
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Next, as the Lebesgue measure on [0, ¢o) is the invariant measure fop
the reflected Brownian motion and p is the invarnant measure for the

Ly-diffusion, by the representation (3.18) for u, we have for # > 0, ; 5» 0,
T 1 wly, 9) 2 = 300 ply) 4y dy,

My ) Td--l'-
T A
=lm [ [ | [ fen #inde v 2)
Febm O

(C®) ph-1 [} &) a1
b JREAE #1:';: (2, !?- E] F'[ﬁ] dz dz, d!? 2y,

+ 0L L B v O Py 4 Pale, B, 9) ) 0 i dy, | de
0, =} mi-1 pd-1

T ™~ L) L]
=%, | [ Eﬂ.{n'.l [u.l;:r( Tg-:‘ﬂﬁ“ # o) d’) P18 % %) 2 (6 34, 9] By ey

1 mjﬂ ( ] d‘[l % ol#) plz) de ) e, th, 0) py (5, 2y, 3y) dyy ] ds

.t
 lim _[ [ _r
(0, )

Tedaz ¢ T-EI;-]. f{#].! Er} _'pl ('5r mj_: ﬂl] P(Ef} d;’ !izl

+ 1, 3 o 6 m 06 6 | as (3.2

Now let F be the extension of f as given in the proof of Lemma 3.4.

Sinea f, ¢ satisfy the conditions (B2), (B8}, from (3.28) we get for x; 2 0,
£ 0,

[ ] sy, 9l 2y vy o) dﬁdm‘
] g1

te) g
=l (] e drdgg o (-0 s

+ 419000 g (e (1) 1) dé

: 1 1 1 :
< [ Th_fl_ 2v; ﬁ)] n (2Hy+207Hy 427 (8fx) o (827)

Rrem (3.24), (8.25), (5.37) the assection (d) of the theoreg ia immediste. In
petivelor ws @,
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Uniqueness in the class @, follows from the following lenmma.

Lemma 8.6. Let (A1){A3) hold and f, ¢ saiiafy (B1), (BR). Let e v be
g slochastic solufion o (3.1). Then vlz} = r.h.s. of (3.18).

Proof. As ¢ i8 & stochastic solution,

! ¢
o) = BalolX() +Ba | § fX)Ms+ oo ];
and since lim E_(v{X{f))) = 0, the conclusion follows. [
f=—p o

We will now prove the necessity of the condition {(B3).

Theorem 3.7, Let (Al){A3) kold with ay, ()=L5{.)=0; ld f 9
salisfy (B1), (B2)., Suppose there is o slochastic solwdion in the éidse & lo the
problem (8.1}, Then f, 3 satisfy the condilion (B3).

Proof. Let ue @ be a stochastic solution to (3.1). Then by the pre-
ceding lemma,

o T
us) = lim By [ [ f(Xe) dot | o4 X(e)) 4 ()]

Qbsarve that in the derivation of (3.26), the condition (B3} {3 not need. There-
fore by (3.24) and (3.26) we have for any ¢ > 0, & = (z,, &),

E, X)) = [ { vy, W, @, 1) [0l & H—plW)kdy dy,
= i

i"

+ lim Y [ Sy 1t 86 | pie o ) G e
1 a 2 )
=+ T‘{"]-E- "F[#} P{#} { 2 (3! Wy ﬂ]"_' VIEE }‘\:i'l"“‘T ] ds
_ T dgdg
+lim | e [ L 1, fe &) pl#)
+ TL% ole) plz) d& | de . (8.28)

Asueg@, Lh.e, of (3.28) tends to 0 as i— o0, By (3.25), the fitst tetm on the
r.h.s. of (3.28) goes to zero as $—» 0. Sinoce [, ¢ satisfy (B2), note that the
second term on the rh.s. of (3.28) is 0 (£9), The desistd comolumem mosw
follows, Thiz completes the proof.
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4. NEUMANN PROBLEM : SELF-ADJOINT X PERIODIC OASR

In this section we consider the case when L, is self-adjoint and L, has
periodic coefficients. We assume that (Al)—(A3) hold. As before, let p,

denot® the iransition probability density funclion of the (L:: %) —
i

diffusion in [0, c0}. Bince p, is obtained by the method of images from the
transition probability density fuunction of the L,—diffusion in R and since L,
is self adjoint, by a theorem of Aronson (1967) we have

my iU [ ¢xp {_"?‘?' {31_‘1’1]5]‘!‘5113 [_ ;imﬁ {Efl'i‘mﬂ’}]
< P, )
<kt [exp {—% (12— | +exp {—1:;’ REASY NSV

where the constants m,, m,, &, by are independent of ¢, z,, y,.

In this section we make the following assumptiora on the preseribed dats
5

(Cl): Bame as (H,).
(C2): lim sup !ﬂﬂ’l:&'}! =0

oy e OO *

(C3):for all i > 0, &, 3¢ O

oy (b 0w 926 v P91

1 ,‘ "o
+3 [ au(0) syt =, Oply)dy = 0
Tﬂ-l

Lemma 4,1, Let (Al)—(AB) kold ; let f, ¢ sabisfy the conditiona {C1)}—~
(O3). Lel 6> 0, Then there exsais vy 2 O such thet for any 0 &t < §, < a0
ﬂﬂd I } rl:l:r

¥

I § 100 0,5, iy

Y

'|""é" ag &, (0)o(y)plt, (%, ), (0, ¥))dy ] dt |

aup
&

fy - - T
<2rbiolfle | 0™y |- Bl g
L5

4 e I‘ .
e | dtg b lole0u®) [ £ wmp( - ) @ .
1
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where the positive conslants ¢y, ¢, are as in (2.12) and &,, ky aré as s (4.1) ; aleo
r, depends only on 6, f.

Proof. By our assmmptions note that f is bounded. 1ot ¢ >0, By
(C2) there exists 7, # 0 guch that

sup | fly, o) < eforally, > 7

Conseguently by (4.1) we get for all ¢ > 0, 2, > rmﬁ
: I} Fr, ot 21, 904 1 < e )flle h{ﬂ} D4l 2, Y1)y,
o = 1

< etZrgky |Iffl. £V2exp [_%}' (rp—=y)? ] ... (4.9)
Note that, because of condition (C3),

Lhs. of (42) = sup |t b 2, o)
=sup | Ity &) ; %, )+l by i 2y, @) v ()

where &, I, I; are defined analogous to the ocorrsepoing objects in Section 3.
Applying (+.1} to py(f, &, V), using (2.12), (4.3), (4.4) we can now ossily prove
2, O

Note: Fore 2 |fl, we may take 7, = 0.

Theorem 4.2, Let (Al)—{A3) hold ; e [, o salisfy (C1)—(08).Let u(z)
be defined by (3.18). Then

(@) » i3 a bounded continuous funclion on @ ;

(B} u ¢a periodic in 2y ..., 2g;

(0) = iz @ slochastic solution to (3,1) ;

(@) Wm oup {ulzy, )| = 0.

:El—}l' o

Moreover u is the unique stochastic solution to (3.1) in the class
@, a{a:ﬁ-m: (4) v 18 bounded measurable ; (i) v {3 periodic in {z, ...,

zal), and (i) lim  sup|ofz, @)| = 0.} o (48)

E.I._" E

A 3-10
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Proof, From the preceding lemma it is clear that « iz well defined, boun-
ded, periodic in {zy, ..., 2g). Continuity of % ¢an be proved as in Section 3,
The proof of u being a stochastic solution is algo similar to the onc in Section 3.
In view of (4.2), the assertion (d) is sesy to establish. In particular ¢ @,

Finally, let v ¢ @, be a stochastic solution to (3.1). To prove unigueness
it is enough to show that

lin  sup |B (X B)) [=90. o (48)

Lete > 0. Sinoe v e ®, there is r, > 0 such. that sup | w1y, ﬁ]l {%E for all

¥
¥ & rp. Consequently by the upper bound in {4.1) we get for any (a, T

bl H} E E} t } ﬂ,
| Baulw(X(£)] | < ;—64—2 ko [0 £-13

From the above inequality {4.6) is obvious. This completes the proof. [J

We now prove the necessity of the condition (C3) for the homogensous
problem.

Theovem 4.3, Lek (Al)—(A3) khold ; let f =0 and o be a bounded persodic
function on 3G, Suppose there is slochastic solulion in the class @ fo the prob-

fem (3.1) Then [ o(f)A{§)dd =0
pé-1

Proof. Note that in the proof of the uniqueness part of Theorem 4.2
we have not nsed the condition (C3). So, if we & is a stochastic solution
then by the representation

N r
wa) = ulz, 3) = lim B[ | o(X(e))E(o)]

T

.1 :
= Jlim = | TJ;__ au(0)e(¥)pee, 21, 0) [Buls, &, y)—p(y)idy ds

"é' ﬂn{ﬂ}{T :!-— 1%?)9{5‘)@}{;@_ fi’:(ﬂ: 2y, {}}dy} e (4.T)

By the upper bound in {4.1), and (2.12)
sup |frab term on r.hus. of (1.7)]

w

& a0} fohe €3 &y j' £ exp [—% ot > 0 na >

e (.8)
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By the lower bound in (4.1)

7
lim lim [ p.d, 2, 0)d
0

a2y ot T 200

T
> lim lim Emlt'*maxp[—-m-—’—§ ]d#

T,y T =pom "Ff
2 2mge F lim lim [/T—=z] v {49)
ik 2 = 00

As we @, Lha, of (4.7) tends to 0 as z,—» o0, In view of {4.7}—(4.0) this s

now possible only if | o{§iplyMdy = 0. This completes the proof.
Tl!-l

Remark 4.4, Suppose f, g satisly

{ flyy ) plg)dy = O, forany g, > 0.
! (4.10)

[ elyoly)dy =0
{Fir-—l

Then clearly f, o satisly the condition {C3). Conversely, if f is of the form
Fs, ¥) = Ky fu), then the condition (C3) implica (4.10) ; for, by (C3)
[“f m}fﬂﬂﬂ?ﬂ‘: %y, 3130y, = const. p,(k, 2y, 0)

unless [ f,(#)o@)dy = 0, and consequently either f, =0 or { fﬁ[i)p@)d& = {.

Remark 4.6. In vicw of the preceding remark, the eondition (U8) is not
mufficiently general. (In particular, f can not be a function of y; alone, 1mless
f=10). A more satisfactory condition would be an analogue of {B3); but
we have not been able to carry out the analysis under such & condition. How-
ever, in the homogencous case {as (02) trivially holds}, by Theorems 4.2 and
4.3, the condition ((3) is » necessary and sufficient conditioni for the exiatence
of & unigus solution in the class @; ; and the solution is given by

. T M m—~ A A _A
Wz, X) E%EL% { 1')."_1 2y,(0) p {§)p:(e, 2,5, O)pyle, @, §) 2y ds.

(Note that, % == 0 in general. Indeed, using the uniquensss of Doch-Meyer
decomposition, satmple path continuity, Corcllery 2.3 of Stroock and Varadhan
{1871), and proceeding as in the proof of Froposition 8.3 of Him (108%), it can
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be shown that, if p is continuons and = = 0 then ¢ = 0}. It may be nobed
that, in the homogeneous case, {(3) ie the same as (BS). Thus, for the homo-
geneous problem our analysis gives a complete picture.

8 NEUMANN PRORLEM : L — LAPLACIAN
In this section we assume that gy (.) = 0y, ()} =0, 1 € 4, § < & ; that
8, {Pe : & ¢ G} is the Brownian motion in & with normal reflection it the boun-
dary. Fora = (2, ®), ¥ = ¥), t > 0 observe that

Pt 2, 9) = polt, 20 9) 26, @, H)
‘where

it = {557) [ = O57" ) o amp (- 8l

d—1 &

wlhin @) = (57)* exe {-5 I o]

The case when f, ¢ are periodic in the variables x,, ..., ¢ hes abready been
dealt with in Section 3, Here we make the following assumptions on the
presoribed data f, ¢.

(DY) : fe L, {E}, € L.,{ﬂa) g

D2): My=j |yir If{HiliH+§l;lﬁlrl¢(ﬁlf dy < 0,7 =10,1,2;
g

(03): | figMy+4 § vy =o.

For 0 &y < by < o0, &= {, X)e lot ults, f,;mi,:;r} he defined by
(8.5), with {Pa} denoting the refleeted Brownian motion in g. Let F be
the oxtension of f as in the proof of Lemma 3.4, By Remark 2.2 and condition
(D8) it is scen that

d

ﬁ%&;:ﬁ.i}=E: (E;B)E[ I{‘F#}{m(—%i')*i }dz

28

In view of the sonditions the following lemma can now be proved easily.

Lemma 5.1, Let L=} El %. Lei f, p eatigfy conditions (D1)—(DB).

+E[H?(¥J{ e oxp (—l 2 l’)—l }&]da . {BD)
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Then for any O < ¥ < §y <20, {5, .';!) Eﬁ,

_ R 1.7 by {442
ity b vy, @) < 4 (=) | Mkt | M, | [ o Tde .. 62
|
and
- ~ ¥ ..
0,457, @) < [ bty + (7)o vV . (B)

where the constants M, M, are as in (D2). [
We now have the following theorem.

a 2
Theorem 5.2, Lef L=} & 51:!' and lek f, ¢ sclisfy conditions {D1)—
=1 ¥

(D3). Let u be defined g8 n (3.18). Then
[a}ﬂisamﬁmfﬂmiunm@mﬁm
| uw) | < K (1+ | |9, forall €.
(B) # 48 o &lochasiic solubion fo (3.1);
@ lim EX()] =0 uniformly over compock suboets of .

Moreover w s the unique slochastic splubion fo {3.1) in the olass

& ={p: G- R:()ole)] < KO+ ||, () Bim BolX ()] = O for all @ & 6}
e (B4
Proof. In view of the preceding lemma, all the aesertions except (¢} can

ba proved as in Bection 3.

In view of (D3), by an argument similar to the derivetion of {3.28), (3.27),
using Chapman-Kolmogorov squations, we get for i & 1.

\BAuXON]] = | lim e T+t ;2 z)|

4
<o+ |=ne ¥
whensce assertion (o) follows. This completes the proof. [J
Our next result concerns the neceasity of the condition (D3).

. 1 3 g3t .
Proposition 5.3, Let L = ?EETM kt f, ¢ sabigfy (D1), (D2

Buppose there is o slockastic solution in the closs @, to the problem (A1),
Then f, ¢ satiafy the condition (D3).
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Praof., Note that the econditionr (D3) is not used in the proof of the uni-

queness part of the preceding thenrem. 8o, if % ¢ & is a stochastic solution
then

~ T in
we) = ulz, &) = lim B, | [ /(X) ot [ o (Kledite)]

= lim _I‘T( ! )%[ | P {axp(_ lfffﬂl')_l}dz
T g * 28 Re 23

Foaim f {2 ] L.I‘J"{ Y)Y+ 5 My}dy] . (58)

i L l]

By the proof of Lemma 5,1, using only conditions (D1), (D2), it is easily seen
that first term on the rh.s, of (5.56) is well defined. The second term on the
r.h.B, of {5.5) is well defined only if (D3) is satisfied. [J

In Theorem 5.2 uniqueness is guaranteed in the class @, given by (8.4),
It would be desirable to replace the condition (#¢) in the definition of &, by a

condition not inoviving the parameter t{. The fllowing result is in thet
divection.

Theorem 5.4. Let I be av before ; let f, o be inlegrable funchions on G,
O respectively. For ze Rﬂ, ek

@) = § (5= )?F[me PEEE> gy,

d
2@ = { ()% ¢ @) om(—i < @92 >}

we) = 2| £{—8 {Fe)4-ole)},

{ P NN FY
where  Blg) =

Fi—yy Yo o ya) 99 G
Buppore u 18 an wilegrable function o RS,  Lek v be defined as in (8.18). Then
% 3 the dmique bounded conbintous fupclian varishing ab trgfinidy, which:4 gala
chaatic solufion to (3.1),
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Progf. By the spectral representation of the transition probability den-
sity of the Brownian motion note that

d

1
1 =g [t *
p{&,x,.y}:gﬂ (E)_f P 8 a{-r.':.:r:,#:s gt sH e g

1.8 —2 |=x% e
-I-RI' (2—&)2 e 2 AL P L P LEA N
[

for all & > 0, 2, y € &, where ¥ — (—yu ¥a .oy yg). Consequently under the
given sssumptions it can casily be verified that

w) = [ W) el # dx
whence it follows that « is a bounded continuous function vanishing at infinity,

It ean be eatablished as hefore that # is a stochestic solution to (3.1).
Suppose v is another such funetion. Given € > 0 onhe can find a compact

peb K 6 such that )] < &6 for xc X, Theefore
1
sup | Bafo(XE))| < 5 4ol | K |(@mty e

whers | K| denotes the Lebesgue measure of &, ¥From the abovs inequality
it follows that sup | E{¢(A{#))}| > 0asf - o It is now easily zeen that
[ o

¥ =1, ocompleting the proof. [J
Remark 5.5. 'Tho hypotheses of the preceding theorem imply that F(0)+
;{i}} = { which is just condition [(D3).
1 & 9 ¢ 8

8., NEUMANN PROBLEM : L= — X ——— X 2y ——
2 ﬂ—*’?’_ =1 iaﬂ

In this section we consider the Neumann problem for L when L is the
generator of the Ornstein-Uhlenbeok process ; that is ay(®) = dyy, dle) = —xg
The transition probability density is given by (2.14)—(2.16). Unlike the
preceding cases, now one haa an invariant prohability measure ofy)dy given
by (2.17)—(2.19). We make the following assumptions on the preseribed
data f, o

(B1) : M, = [ |f) |dy + § {900 ]dy < o0 ;
Fa s HF

(B2) : [ fiy) viyhdy + 5n(0) [ oyl = o
[ 3G
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In what follows {F,} denotea the distribution of the Ornstein-Uhlenbeck
PTOOEES,
Theorem 6.1, Let L = 5 [Tzf"" ] and fp satisfy (El), (E2).

2
Let u be defined a8 in (3.18). Then u is ¢ condinuoua function on @ such  that
{a) |ul@)) < K,+K,|x|, where the conslanls K,, K, are az in {2.20) ;
B} u é8 a slochastic solwloin fo (8.1) ;
©) J @ vekim = 0

Moreover, u ia the unique slochaalic solution in the clgss
G, ={h:G— R () | Kz} < K1+ (2]), (i) éh[z} wzMdz =0} .., (B.1)
Proof. In view of Proposition 2.4 and econditions (E1), {(E2) we have for

0Kt <t <oo@e G,
s

i _[f{yiqin x, gy a{; olyatt, ®, (0, y))dy \ &t

i

lI] ,.:f ) [ | gt o, y)—(y) | dy dt
Iy N . L
+ 1 ]; I 19| | git, 2, (0.9)) —w(O)niy) | 2y i

iy
& (K,+H;lxl) M, lj' e gt e (8.2
1
From (8.2} it follows that % is well defined and that (a) holds. Continuity of
#, and assertion (b) can be proved as in the earlier sections,
Note that »{0) = mj' q%{t, zy, 0) vl )dx, for any ¢, Sinoe p is the invariant

mensure, by (E2) we now have
T

fueptedc = lim [ [ figts o ypiedy de
o

+ami fopg § wate, 2, O, o 4 d, &

0 [B =) 33
I A A
= Jim [ {fomwiy+ 5 %0 L siwindy] @ =0 .. @3)
eatablishing (o).
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Finally, by Proposition 2.5,ifor any stochastic solution % ¢ &, note thet

|My) g(t, @, W) | < [polynomislin | (] w(y), Consequently by the dominated
sonvergonoe theotem, lim By (WX ()] = [ hi@)vw)de = 0, and the conver-
—

is uniform on compact sete. It ean now be proved that & = «, complet-
ing the proof of the theorem. {7

Theorem 6.2, Lel L be as in the preceding theorem ; let §. ¢ sabisfy (B},
Suppose there &5 a stochastic schulion in the class @ to the problem (3.1), Then
f, o sabisfy the condition (E2).

Proof. In view of the derivation of (6.3), the theorem can be proved as
in the earlier aesctions, []

Bemark 6.3. It may be noted that Propositions 2.4 and 2.6 ave the essen-
tisl ingredients for yroving the above theorems. Therefors, for any ergodio

diffusion in & (with normal reflection at #G) sush that zero is an iselated point
of the spectrum of the generator {on the L.-space with respect to the invariant
probability) and for which Proposition 2.4 and 2.5 hold, our analysis can be
extended. However, it ig not clear to us for what olass of diffusions Proposi-
tiona 2.4 and 2.5 hold,
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