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EXTENSIONS OF RAJCHMAN'S STRONG LAW OF
LARGE NUMBERS

Hy TAPAS K. CHANDRA
Tndinn Salistical TnslZuia
SUMMARY. Chandra (1989 inlroducsd a now ecopdition ealled the Cesiro uniform

integrability of a saguence of randomn veriables, Using this idea, thiz note eTiends the strong law
of larpe numbers of Rajohmen (1832}

INTRODTOTION AND MADN BESTLTS

We shell lirst prove in ar elementary way the following general result
on the strong law of large numbers (SLLN}.

Theorom 1. Lt (X} be a sequence of random varinbles defined on the same
probability space and with finite B(X3). Assume that (i) E(Xp4 ... + X, 0
& Qo+ ... Fe¥ ) for each integer m, n 2 | where (] 15 o consltant free
From m and n and o, = (X, 2 2 ) ; and (34) T aV2 o{fin)) 2 < oo for

some increasing seguence fin) = 0 such that n~® f{n} £ CUom= fim) for eoch
o m where & > /4 and Oy 18 some constant. Then S(n)ffin)—> ) abmost
surely as n—> oo where ) =X;+ .. +X,, o> 1.

In particolar, #28{n}~> ¢ almost surety if- Assumption (i) holds and
M g2 o for gome o > 1[4,

The most important feature of the above theorem is that nothing is agse-
mod about the independence of the underlying random veriables. There are
two well-known results, namely, the Kolmogoroy SLLN and the Rademacher-
Menshov 8LLN (see page 114 of Rao (1973)}), which rescmble the sbove theo-
rem ; they, however, require stronger assumption of ‘mutuel independenes’
or ‘orthogonality’. This is the reason why Theorern ! does not follow from
eyl standard result on SLLN.

The above theorem ineludes the following two well-known resulis s
ppocial cases,

Theorem 2 (The cxtended Borel SLLN : see page 18 of Lokve (1977}}.

Let {X ] be a sequence of uniformly bounded wncorrelaied rondom voariables,
then n[Sir)—E{8(n))]— 0 almost surely ag n— .

Yaper raceived. Dovemhor 198% ; raviced l;‘ln.y 1990,
AME (1980) subjest classiffeasion : Frimary #&)F16.

Koy words and phrasss @ Oeairo uniform integrahility, ooxrelation ooefficient, strang lew
of* large nmmbere, uniforr integrebility,




STRONG TLAW OF LARGH NUMBERS 116

Theorem 8 (The Rajchmen SLLN ; see Rajchman (1£32) and page 103
of Chung (1974)}, Let {X.} be o sequence of uncorvelated random vaviables suck
that {var(X )} ie bounded. Then a3 {8{n)—H{S{n)i— 0 olmost surely as n-» 0.

It may ba noted that in Theorem 3, (X, —E(X,)} is uniformly integrable.
Bafore sterting the proof of Theorem 1, st ns note the following lemma whish
gives & simple sufficient comdition for Assumption (i) of Theorem 1.

Lemma 1. Let {X ) be a sequence of random voviables suck that E(X X,
G 1{[i—jl}oiwy for ench inkegerd, §> 1 where r(k} > 0 for each b > 1
(10) = 1) and I r(mh<co. Then Assumption (i) of Theorem 1 holde with

#wwl

0, =142 £ ).

Bl

Proof of Lemma 1, Nobe that
Bt .. +Xpp B € O34 .. +05,042 T r{ji—j))owy.
The second term on the right side is

T Mn—] n A=
2Zrd) L oo B X
2 {$) 2 ooy T (3) 2z (@i+oh )

<2 E ) eth . o) < 2 E bt o bR

To prove Theorem 1, we use only the Chebyshev inequality and the
following lemma.

Lemma 2 (sce page 18 of Loeve, 1877). If {X }is & sequence of random

variables defined ow fhe some probubility space wmd T P(|X,| > 1fm) < m
]

for each m 33 1, then X, — 0 glinost surely as n—> .

Below (' stands for & generic constant, not necessarily the same at each
appearance.

Proof of Theorem 1. 1°: Wo first show that

H(n?)[f(n*}> 0 almost surely as n-» oo, e {1}
Let € > 0. Then
& Z P S| > fiarle) € £ (SR (fin))2
i

nd A o
ﬂl E ¥ 8 = ﬂ -8
% af{f(n®}) El ﬂ'ﬁﬂi}ﬂﬂ s,

A=l fel
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where iy = inf{n 2 1 :#* > 3}, § 2 1. Letj » 4; then

> ﬂ“’-ﬂﬁ :j' xMdy = aj" i gy
A=y fi=ky n-1 E~i

= (der— 1) (fog— 1)+ (o — 1)1 (§19-= 1)~4etL,

%ot I (fnt < O 3 Y S at <o
=i fiwky F kg

by Assnmption (if). As 5 e << o {gince a >> 1/4) for sach j > 1, Lemma g

feom
egbablishes (1)
20 : Defire m,, — [#¥2], the greatest integer < #12(n > 1). Note that
| 8{n)| & [S)}—8Sm)| +18mmE)|. By 1% it suffiicies to show ihat
a~%| S{n)—8(mit -+ 0 almost surely as n—> oo, e ()
As before we nge Lomma 2. Thus (2) will follow if we show that Z'P(| S(r)—

S(m)| = finde) < oo, fthe sum being feken over all » 2 1 such that ni2 {3 nal
on indeger, i.e., m, < w8 < m -1

By the Chebyshev inequalily, it suffices to ahow that

Z'E(Sn)—- 8 A(fn))? < . e {3)
But the last sum is bounded above by

CF I A< 0L of £ (faups
i 4 J=2

where I denotes the summation over all  such that § & n & j+2j%%; here
‘we have interchanged the order of summation and used the following fact :

Cmibl € = Al | <y, (G 1YV
== & j+ 212
Thus the som in (3) is bounded above by

CS oTS"(f5)t = 20 £ afV8(f(5))-0 '
E omefn-e = 20 £ ofprif(i)ys <o

Remark. Infthe above proof, we have used only the nonnegativity of
the o, but we have not nsed that o2 is in faet E{X2).

We finally prove s mignificant and novel extension of the Rajobma®
SLLN using the key idea of Chandra (1889).
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Theorem 4. ILet (X} be a sequence of random variables with finite F{X2),
aﬂdpuimﬂ=ﬂ“‘fﬁlﬂ¢x’;},ﬂ} 1, e S KEnPforeachn» tuwhere K i3 &

constant free from w and 0 & & < 2a¢—8/2, and Assumption (3) of Theorem 1
hoids, then n=% 8, = 0 glmost aurely as n—> oo.
It may be notbad that; if the constant & of 'Theorem 4 ia zero, ie., if {2} ia

bounded, then {X.} is Cesird uniformly integrable as defined in Chandra
(1989).

Proof of Theorem 4, We shall nse Theorem 1 (with f{n) = »¥) 40 prove
this result. Let N > 2. Below we use the formula of summation by parts
{eoe page 194 of Apostol, (1974}, Pubta, = V2, » > 1. Note, with oy = 0,
that

N N
Y E(X%e, = T [, —in—1), ],
#=1 A=l

Ny
= Noyawt Z [woa,le,—a,.;), using saommation by parts
1

o

< R[N o+ 3w (g —a_ )]
-ﬂ-

n

Clearly, a,—a, .1 < {(2x—1f2)n~2*V2 Tetting N — oo and noting that
Je—1/2—0 > 1, we gek Assumpdion (it) of Theorem 1],

For other applicationas of Cesdro uniform integrability in the context of
large numbers, sea Chendra and (Goswami (1991).
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