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SUMMARY. A characterization of the von Mises-Fisher matrix distribution, extending
6 raault of Bingham and Mardia (1973 for digtributiona on sphere te distributions on Stiefal
manidold, 13 pbiained,

1. INTRODUOTION AND MAIN BESULY

Bingham and Mardia (1975)—hereafbor, abbreviated to BM-—proved
that under mild condifions a roéstionally symmetric family of distributions
on, fhe sphere must be the von Mises-Fisher family if the mean direction is
& maximum likelihood eatimator (MLE) of the locatton paramster. In view
of Downg’ (1972) extengion of the von Miges-Fisher distribution to a Stiefel
mamfold (for further references, see Jupp and Mardia (21979)), it has been
attempted here to extend the result in BM in the direction of Downg' work.

Lot Syp be the class of 2 X p (n < p) matrices M satisfying MM =1,
For X, ..., X a8y, with X = E X; having full row rank, define the polsr

im1
eomponent of X as the matrix (XX')-2X{cf, Downs, 1972), Then the follow-
ing result, proved in the next section, holds.

Theorem. Let & = {p{X; 4) = flir(4X")] |A ¢ Sup} be a olass of non-
untform denstfies on Spp. Adesume that ff 12 lower semi-contimuous af the point
%. Furthermore, suppose thal for every posilive integral N and for all random

samplss X, ..., X, wi#aI=iE X; of full row rank, the polar component of
wi ]
X isa MLE of A. Then
F{I : .d.} =K @W{Mﬂx’}}, Xg Eﬁi}’ .. {L1)
Jor some constants A and K, both positive.
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Remark 1. The olass 5 congidered above has tho following Property.

p(X; A) = p(XB; A) for all pX p orthogonal matrix B with det (B) = 1 ghyy
satistica AB —= A. Beocause of this geometric consideration the matrix 4 cay
be thought of s & location parameter for the class & Thus &3 4

natural extension of the class considered in BM.

Remark 2. The converse of the theorem is also true, ie, if X hag the
density (1.1), then for i.i.d. observations X, ..., Xy from p(X ; A) the polar

¥
component of X = % Xy ig the MLE of A (¢f. Downs (1972)).

=3

2. Proor OF THE THEOREM

For » = 1, our theorem follows from Theorem 2 in BM. Throughout
this section, we therefore consider the case n > 2, and it appears that this
generalization i non-trivial especially for odd n. Observe that the condition
regarding the MLE of 4 is equivalent to the following : for every pogitive

N
=]
of full row rank, the relaton

0 fi@X) > I flnAX;)] o @]
=1 =1

holdy, where A = (XX*)3X. The following lemmag will he helpful.
Lemma L. For every posibive inlegral N and every choice of malrices

N
Cp e, Uy, UeB_ with C = ‘E 10; positive definite, the relation

N N

I FienCH] > 1 fprU00] - (22)
§=1 {-1

holds.

Proof. Let L= (I, 0} e 8yp. Then the lemma follows from (2.1) taking
X,=CL 1<i< N, and 4= (U, 0) ¢ 8y,

Lemma 2. For each xe[—n, ], fln) 2 flz).

Proof. Follows taking N = 1, €, = I, in (2.2) and observing tha% for
each we[—n, )}, there exists U e ¥, asabisfying w(l7) = u,

Lemma 3. For each ¢ e[—mn, n], f(2) << oo,

Progf. In congideration of Lemma 2, i} ig enough o show that

fin) < . .. @8
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Taking ¥ =2, U=0C1in (2.2), we get f[tr(C,)]f(r(Cy)] 2 fin)f[ir(C.CL)],
for svery €y, O, € 8, such that €, is positive definite. Hemnoce if (2.3)
doos nob hold then f(n} = co, and for every Cy, Cy¢ S,, such that C,4C, is
poditive definite, ome must have ecither (a) fltr{CyCs)] = 0, or (h) fItr{Cy)]
fHr(Cy)] = co.

For real «, » and positive integral m, define the matrices

cod & sin & Q.. 0
H¢=( )=9m.=rm®ﬂ'm Q;.(u]l=( )

—8inveE OB & L1 o

Consider first the case of odd #. I n = 2m+1{m > 1) and (2.3) does nob
hold, then taking €, = Qu,{l), €; = Qh_p(1),~72 < ¢ < #/2 (note that
then €,, €, ¢ 8, and ;4 €, ia positive definite), it follows from the discussion,
in the last paragraph that for each x ¢ (—x(2), #{2), either (a} f(1+2m cod 2a)
=0, or (b) f(14+32m coaa) =co, The condition (b) cannot hold over a
pot of positive Lebespue measure, Hence (a) must hold almost everywhere
[a.0.) over ae(—af2, w{2), ie., flx) = 0 a.e. over & e (—(2m—1}, (Zn{-1)) and
a contradiction is reached in consideration of lower semicontinuity of f at the
poing n{ = 2m+1) (cf. (2.4) below). Similarly, for even o{ = 2m, m 2 1), if
(2.3} does not held, then taking €, =@Q,., Cp= Qa0 —7/2 < a < n/2,
it fallows as before that for each o ¢ {—afZ, w/2), either (a) f(n cos 2a) = 0, or
{b) fin cos o) = oo, and a contradiction, i3 reached again by fthe lower semi-
conizinuity of f at n.

Lemma 4. For each x g[—n, n], f(x) > 0.
Proof. TFirgt note that

fin) > 0, e (24)

for otherwise hy Lemma 2, f{x) = 0 for each xe[ —n, n], which is imposaible as
fis a dengity. Alsc, ohserve that for any given @ £[0, #], there exists 5 astisfy-
ing (cf. BM)

(i} —36 < n £ 0, (i) cosf0+2co8y > 0, (iii} sinf4-2sing=10._.. (2.5)
Consider first the ease of odd n. For n = 2m+1{m » 1), define
&8 ={0:8¢[0, rx], f{142m coa @) = 0}.

If & i3 non-empty, then for each 8 & &, one can choose 3 satisfying (2.5) and
then employ {2. 2) with & — 3, O, = Qe (1), €y = Cy = Qr(1), U = Qr{1},
where o = —(8+5)/2, to obtain f{1+2m cos({f—x))] = 9 ; bub as in Lemma
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2 in BM, beoause of (%.4) and lower semi-conbinuity of f at n, this leads 44 3
oontradiction. Henoe 48 is empty and

Fiz) > 0 for all z ¢ [—(2m—1), (2m-1)]. e {2.6)

Wo phall now show that f(z) > 0 also for ze[—{2m+1), ~(2m—1)). 1t
posgible, let there exist z, 6 [—(2m-+1), —(2m—1)) such that fiz,) = 0. Lt
&[0, 7]) be such that cos 8 = (z,+1)/{2m), and ecorvesponding to this g
find 5 setisfying (2.5). Teking N =3, Op = Qu(—1), €;=Cy= Q5 (1),
U= o) in (2.2}, and using Lemma 3, one then gets f2m-1)
{fI1+42m cos (p—0&)]}* = 0, which ia impossible by (2.8}, This proves the
lemma for odd . The proof for even n is similar,

Temma 8. For cvery positive imbegral N' and every choice of malrices
Cy ... COn, Uc . with 3 € non-negative definite, the relation

fan]

N* Y
II flir(Ce); » I fLR(UC5)]
i i=1

holds.

Progf. In view of Lemma 1, it is enough, to consider the case when €

HJ‘
= X 4 ia positive semidefinite. Obviously, then I4»C is positive definite

im]
for every positive intsgral v. In Lemma 1, now take A == 1+42N", and ehoose
the €y’ such that one of them equals f and the rest are given by v copies of
eath of €, ..., Un. 'The rest of the proof follows using agruments aimilar to
those in Lemma 3 in BM.,

We now proceed to the final step of our proof. For 2 = 2m-+1 (m 2 1),
in Lemms 5 taking N' = ¥, € = @}, (1) (1 < i € ¥, U = Qh-(L), whero

N N
S oos By 20, X sin =0, .o {3.9)

i=1 i=1
it follows that for every positive integral N and for every %,
N N .
I1 f(1+2m cosdy) > Il f{l+2m cos(fi—a)), whenever the 87a antisfy
-1

(2.7). Writing A(#) = log f{142m coad)), which is well-defined by Lemmas 3.4,
it follows that for each positive integral ¥ and each =z,

IEF RO » % R{B—cx), .. (28}
f=i $ral
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whenever the 6;'s patisfy (2.7). The relation (2.8) is equivalent to the relation
(4) in BM and hence as m BM, &{f) = a cos@-}-b, for every 8, where ¢ » 0)
and b are some constants. By the definition of A{#), one obtains

f@) = K exp(Az), for w € [—(2m—1), (Zm--1)] . (2.9)

where K(>0) and A{ >0 ) are constants, By Lemma 5, for every O, Ue 8, ,
fitr(CY] fT—tx(C)] 2 flte(UC)] f—{TUC)], oo that fx)f(—x) remaina constant
over x¢[—n, n]. This, together with (2.9), implies that fiz) = K exp(Az),
for each a¢[—n, n], where K, A are conastants, both positive, the positiveness
of A being & consequence of the stipulated non-uniformity of f, This proves
the theorem for odd n. The proof for even # is similar,
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