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SUMMARY. TFor an arbitrary convex loss function |ncluding the case of mean abschute
deviation), a uimple and direet proof of the superiority of averaging over distinot units in sampl-
iog with replacement is considered, Ip this process, the meximal invarizoce cheractorizetion
of the group of eyolic permutativns ir investigated with refsrence to unbissed setimation of dnite
population mean sod verisoes,  Also, sonw admissibility resulta on varianes estimation are dis-
cusged.  The opeyslive factorial meoments of the nunber of distinot anits in the ssmple play sn
important role in thie stwily, and e detailed troatment of thom in provided.

1. InTRODUOTION

Asok (1980) gave an elementary proof of the basic fact that in simple
random sampling with replacement (3RSWR) the average over disfinet units
has a smaler variance than the average over the entire sample (including
possible repetitions). Various proofs of this well known result were available
longtime back (viz., Basu. 1958, Raj and Khamis, 1968, Pathak, 1062 and
Chakrabarti, 1965). While A=ok's proof i3 quite interesing and elementary
in nature, it can hardly be extended to luss functions other than the guadratic
loss. We present here a simple direct proef of the superority of averaging
over digtinet units in SRAWR with respect to any convex logs fuhetion. This,
in pasbicular, inciudes the ecriterion of mean sbsolute deviation (MAD).
We have exploited Basu's {1958) sufficiency constderations in SRSWR along
with a relevant group of vyelie permutationg to-provide a rimple proof of
quite genersl nature. In this respect, we shall see that the group of cyelic
permutations is & maximal invariant for inference on the finite population
mean, although this characterization may not hold for variance (or higher
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order parameter) esfimation. Nevertheless, thiz group is insfrumental in
providing estimates better than the usunal sample variance based on all ohser-
vations, The admissibility of variance estimation in SBSWR is & natural
guestion. in this respect, and we have ptundied this problem in some detail
too. Finally, we present, following a simpler approach, various results on
nagetive factorial moments of vy, the number of distinet units in the
SESWR sampie of size % from a poulstion of size ¥, BSome applications of
theae moment formulae are discnased at $he end.

2. INADMISSIBILITY OF THE SAMPLE MEAK
Congider & finite population of ¥ units, aeriaflly numbered 1,,.., N and
baving variate valuss ¥, ..., ¥, respectively. The mean of the population
iz therefore
N
Py = ( L Yi)/N. e (2.0)
=1

In gimple random sampling with replacement (SRSWR), we denote the random
variables and indexes by {ye, re), for k=1, ..., n. Then gy = Yry for k > 1,

and each 7y takes on the values 1, ..., ¥ with the common probebility 1/N.
Then, the simple mear per unit estimator of Yy bused on SREWR of size n
is given by

da=(Zm)m= 2 7, }m. e (22)

Nota that in SREWR, ry, ..., 7, need not be all distinet. Lot vy 4 {=v) be the
number of distinet units (i.e., the number of the distinct values of r,, ..., 1,)
in the sample of size n. We may equivalently write

(71 o Tu} = {{i, 1), -oos (s S35 e (2-8)

where fi, ..., f, stand for the frequeneies with which the distinet indexes
£1s +s05 %y OCCUT In the sample. Then, the mean per distinct wnit i given by

”H,n

% F‘Ij) I"_.El’:'lm = Hv)s B8Y. . (2.4)

Yoot = (j=-1

Lot now ¢ = {¢(u), u € R} be an arbitrary convex loss function. We like to
provide a simpler proof for the following weill-known result

Theorem 1. For any conver ¢, for every (N, n),
B (g,— Y )} 2 Bld(Fon— Y}, e {2.5)
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with the equality holding if and only if n = 1 or 2. Thus, for every n > 2,
7, i8 inadmissible {relotive fo §,) for any convexr loss funciion.

Proof : We may refer o Basu (1958) for some elegant discussion of
sufficiency in SRSWR. This may help in uvnderstanding the basic motivation
of our simple proof of (2.5) hased on this sufficiency principle and invariance
ander suitable group of transformations. In SRSWR, a typical sample
(s) may be represemted by (2.3), 1.e., by {(ip. /i) ..., (i, fu)}. We start with
a sample of the type ¢ and permute the units 4,, ..., ¢, in a cyclical manner
to gonerate a set of v samples of the form

{6, 130 G figa)ds - o G fopga)l = forj=1, .., vwithg =49, ... (2.6)

where f,.5 = Jfi, for k=1, ...,». If we denote this set of p samples by
then each s (within the set 7;) has the same probability of being drawn, Le,,

Pla=s|sem}=v foreachj=1,.. ., » .. (2.7

We now write §, = ﬁﬂ"ﬂ when & = g, 8o that

gﬂ-{'lj] = ( E fj.-l-k'-—lrik)fnj fﬂrj —_ I_} rEra . rew {2-8}
k=1
Therefore,

E{gﬂtn !3 & ‘-'I'_g} — lf"i jz_:l ﬂ:ﬂ-{ﬂ'ﬂ e (2.9}

=v1 X {kaff-l-i-‘-lrit) =yl E_l rﬁ = Fins

=1

a8 fl fioka = n, for every M =1,...,»). On the other hand, for every

Jm=1

3; € My, ﬁi“{aﬁ} = Fptsn = Fryp, 80 that exploiting the convexity of ¢{.), we
obtain from (2.9) that

o —T) = 6 {2 Gagy— ) . (2.10)

& vt ﬁ if’(fmm— ?N) = E{Wmn_ ?ﬂ'} I*F & Wals
Fl

where for a strietly convex ¢, the equality in the penultimste sbep in (2.10)
holds if and only if v=1 or fy=..=Jf, whenever v>> 2. For =n=1,
v=1 and for n = 2, either y =< 1 or v= 2 and f, = f, = 1, so that in {2.10)
wo have an equality. On the other hand. for » > 3, v 2> 2 with & non-zero
probability, and for v > 2, {but » < »), fy, ..., f, may not be all egual with »
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posifive probability, so that in (2.10), we have a gtrict inequality in the penult;-
mabe atep. Since (.10} holdz for all #;, we immediately obtain on taking
expectation over m; that

B¢ — Y] € Bl$lg,—Ym)].  for every convex (). ... (2.11)

where for a strictly convex ¢(.), the equality sign in (2.11) can hold only for
# = 1 or 2. This completes the proof of the theorem.

Remarks : Note that {2,10) holds for all convex ¢(.), and hence, the case
of MAD (for which ¢(») = j=|) i8 included in the et of all ¢ in (2.5) ; Asok
(1880) considered the case of ¢h(z) = o® and his technique may not apply for
the MAD. The risk -superiority of &, to 4, (in SRIWR) iz thus true for
any oconvex loss function, and this reesteblishes the inadmissibility of 3,
in & general setup. Basically, the Basu (1938) sufficiency of vy, and the
incorporation of the cyclical permutation group in (2.6) (resnlting in the
diserete uniform {conditional) distribution in (2.7)) have provided us with
the necessary tools for the simple proof in (2.100—(2.11). To illustrate this
point, consider a simple example: N =320, un = 10 and (Fla vnis Pyg) =
(7.2,8,7,5,2,7,15,2,3). Then, we have »—=25 and g = {(2,8), (3,3)
(B.1), (7.3), (16,1}, 8= {(22), ($1), (6:8), (L1), (153}, &= (2.1, (3.3),
(6.0), (7,8), (15,2)), s, = {(2.3), (3,1), (5,3), (7,2), (15,1)} and s, = {(2,1), (3,3),
(6,2), (7,1), (15,3)}, Thus, here #; consists of 5 elements {,, c.os &gp a0d {2.7)
aggerts an equal conditional probability to each of the 5.

3. GROUP OPF UYCOLIC PEEMUTATIONS AND MAVIMAT INVARIANOE

For a given v, = v:1 € v« »n, let P, denote the permutational uni-
form distribution. in (2.7), and let @, denote the corrcsponding sub-sigma
field. We investigate below the nature of (P, @,): v ¢[1, =].

(i) Suppose that we are to cstimate a first order parameter §, = N—*

N
E a{¥y). In SBRSWR (¥, n), a natural unhiased estimator of @, is &, , -=
f=1

n~t X a{¥ ). Note that for overy v, =v:1 v < 2,
j=1

Ed,n| @1=E {w £ fia(Yie,} = v § (T, ) Bl 1€
K] k=1

l

i B a¥[t S af = S ey L G
k=1 =1 b

= digtinet unit mean.

Thus, in this case, P, preserves the maximal invariance property.
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{ii) Consider now a second order parsmeter 8, = ( b ¢ ¥y, Tg}]f

Iftis N

N(N—1) and its natursl estimator §,, = (11&!3#‘1156{?"’, Fﬁ]‘)fn[ﬂ—l]'
Let

Ut-.l == p~1 ,E:EI ﬁ{ Yi_;_.! Yig]: r {3*2]

0, f v=1,
7,5 = - (3.3)

(S (¥, Y ) ple—1),ifv > 2
ik P

Also, note that by definition,

1 ¥ s
Byn= rﬁ;ii{;’:lfkffk-—l}'ﬂfir liﬂﬁﬂﬁkmﬂftﬂﬂ(l’ej: 1’&}} . (3.4)

Now, note that B[fi|C,] = m, B[f2]C,] = v > f2 and for k # ¢, ELfif,l
sl
] = {ﬂ-“- _ﬁlﬁ}ﬁv{v—l), g0 that by (3.2}, (3.3) and (3.4), we have

Bifyn|0) = n-a— 15 { 2 ¥y, YiBUlfs—1) (052

+ X ¥y YOBLSIC))

lgidagr
= Ui,ﬂ_'ﬂ{fn: n‘) {UR,E“UH,I}? i (3*5}
where v
elf., n) = n-l[ﬁ-—-lj-i( b ﬁw—n). e (3.8)
x=1

Thiz shows that in general U, , may not be equal to B(f,510,), for every
» 2 2. Thus, the cyclic group P, does not posses the maximal invariance
character for second (and higher) order parameters. Nevertheless, it is
certainly instrumental in providing an improved estimator E-’[E?E_,, {C,]. There-
fore, even if 9,,_,, is & natural unbiased estimsator of &, in general, the distinet
units -statiatic ¥, , may nobt be unbiased for §,. If, in particular, U, = 0
(with probability 1), then {1—c¢(fp n)}U, , is unbiesed for & with uniformly
smallec risk than §; .. This last observation pertains to the case of the vari-
v ~we of the finite population (o) where ¢{a, b) = (a—5)/2, so that U, ; = 0

and 0, ,= s = (»—1)* I (¥, ~F) for v > 2. Therefore, it follows
K=l

that the estimator {1—ea(f,. n)}s,3) is unbiased for ¢* and is uniformly better
than #, ,. It muss, however, be noted that given », f, has a known distribu-
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tion, independent of the thisﬁﬂ Pathalr, 1962), Thus, if we st dlv, ) < |
[6(fe, n)}»] and define

5 s= U,z {1—d(v, n)}, e {3.7)
then we have immediately, for I, , =0,
E(US, 2—6,F < BLE[S, | C) =0 < B[l a—0,1* o {3.8)

and & similar inequality holds for any other convex loss function (including the
MAD). Finally, by direct enumeration of the d{», n), v > 2, we obtain that

U,e= ¢, where ¢, 5 = 1—(A*O%AYO%), forv 22, ... (3.0
and this agrees with Pathak (1082).

4, ADMISSIBELE BETIMATORS OF VARIANCE

Motivated by (3.8) and (3.9), we raise the following question : How good
is the estimator U\ 4 for o* ¢ It iz admissible in an appropriate sub-class of
estimators of 2 ¥ In the following study, we (partly) resolve thiz issue.

We confine ourselves to the class Q of homogeneous, quadratic, unbiased
estimators of 2 of the form

=88 ifv 22 and =0, for v= 1. e (A1)
Note that in SRSWER (¥, #), we have
Py, = &} = (1)A*08/Nn, for & = 1, n (and 0, otherwiss), e (4.2)

s0 that the c, satisfy the restraint :
Y exPlo, = k) — (N—1)/N. e (4.3)
#.-__1

Clearly, (B.9) satiafies (4.8). The choice of simpler a ¢, == (N—1)N3
(1-N-#+1)-1, for v > 2, also satisfies (4.3} ; in this case, ¢, does not depend
on vionly on N, #), and {4.1) reduces to N-YN—1) 1 —N-#11)-1g8  for every
r=2 {and 0, for »= 1)

We want $o consider admissible unbissed variance estimators of the form
(4.1} under & quadratic loss. Towards this, we compute first the variance
{i.e., sk under the quadratic loss) of 6% in (4.1). Clearly, denoting by E,
and F,, the conditional expectetion and variance, given », =1, and by B,
and V,, the expectation and vartance on r, we have

V(d*) = ViiBy(6°)] B [V (6%)] = T+ T, say o (A)
where ¥ B
. Z( Yy—¥Yn)
T = 876 = 3 X tPp, — B—(N—1yNp]; 82 — =L
Em2 —

(4.5)
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and

¢ Flsf,,| SRSWR(N,v)) » > 2,

Vi) = (4.6)
o, otherwise,

Note that af is a U-statistic (of degree 2), end hence, by reference of Nandi

and Sen (1963), we obtain that for every &k > 2,

HN—F) (k—2) 2 (k—2) (k—3)
(4.7}
whers
am(3)7 E B TS = S8t - )
M= I (Y=Y HENN-1) . (4.9)
isigiaN

£y = [BR{MT— TP — 8% (Y i— ¥ — SN[V (N —-1) (¥ —2}], ... (£10)
and the summation I3 extends over all distinet (i, 4, &) from {1, ..., N}
By virtue of (4.6), (+.7), (4.8), (4.9} and (4.10}, we obtain that
Ty = G E M —F) (—2)efPly, = Rl 1) (F—3)]

o ﬁE_P Vo = k} (k—2) {k_a}
vl s e T -gmn gl ) - @0

Thuy, we may combine {4,5) and {4,11) to provide an expression for ¥(d%).
Alternatively, we may also seh

V@3 = B@U—ob = ByE0%]—o*
= Z Py, = &} E[ﬂf&?,ﬂ y = k)-—od
L2

— 3 Pl = ¥} EBlsh,|v = k)—o*. e (£.12)
k=2

To suggest an admissible variance estimator, we now proceed aa follows.
We choose a particuler point ¥y e B and compute §; and &£, based on ¥,
Then T(#%) beoomes s guadratie function in the ¢, & 2> 2. Next, we rmini-
mize this quadratic expression subject to the linear restraint in (4.3). If the
resulting solution, say, {exg : 2 < & £ n}, ia unigue, then

.ﬁ'ﬁ:ﬂknsfwl f{}]‘_"‘ Yo =k}2, Eﬂd ='th}1'1-'ﬂ= 1;. i {4-13}

turns ont to be admissible in the relevant class of compsting unbiased eati-
mators of o%. Suppose now that at ¥, Es),|v = k) is given by g, for
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k2 2. Then, using the (Cauchy-Schwerz) inequality that (ZprcfERi(Zp,
&) > (Toupe)® = [(N— /NP we obtain that [ I ciP{r, = ER]] > (V-1
=

N E Py, == B}E}]™", and the atriet equality sign holds iff czoc(Ed)=3, fur
k2
ﬁTﬁIT k } 2; ilﬂl}
oxe = ED Y ﬁs P, = Bt for k=20 .. (419)
Kk

This yields a choice of the rg corresponding to an admissihle estimator.

It is guite clear that a large class of admissible solution {cz,} may be
generated by appropriate choice of ¥, ¢ #¥. The intereat iz therefore to see
how some of the proposed estimators match with this spectrum. In the
following table, we consider some special rases.

TABLE 1: {&,} CORREEPONDING TO 30ME TYPICAL CHOICE OF ¥, ¢ B¥

Y. teg (& = B,. ., .n} (proportional 1o}

(i} (L On-y) &

i) (1 —LOy_y) ME—1)IN (F—1) + Kk -+ 1))

pid) (1, 1, Bay_g) HE=INNE-1)  B9—T7F 4 8]

(iv) {Tu, Oh) 1 N = 2M Ktk — kR — 13 - 2]

(vl (Bap, Fpp )i N =2M L1 spme aM in {iv) for large &7 (N}

. k(k—1}

W Craap Lippragh O <2 <2 () T T e —a] (e

{wii} (Ogg Apr a0}t Vo= 3 For n=3, ;125 = 2: 3, which corteaponds to

Pethek's choice in (3.9} ; for & o 4, the aglution
does not lead to (3.8,

(vill)  Ope. Tar. 220 By} s I = 431 Forpn =41, 05, = 36.3:28.6: 20.2 whirh
very elosely approximaten Pathalk's choiee in
(3.9). However, for % > 4, the solution wmay
nat ke very cloas ta (3. 9).

———

Some of the relevant computations have been relegated to the Appendix,
Following the choice of ¥, in (iv) and {v) in Table 1, we may conclude thai
the choice of cx oc k, ¥ » 2, may easily be made, while the choice of ¢z = ¢( > 0),
k = 2, is nearly admissible for relatively large populations., We also observo
that for n 2> 4, the simple choice in (viil} may not lead to the Pathak’s choice
in (3.9). We therefore pose this question : Is it possible to obtain Pathak’s
choice in (3.9) by allowing ¥; to have n distinct elements, say, a,a,, ..., 2,1

A~1
(with possibly equal or unequal frequencies my, ..., m, ;, where T my = N)
j=0
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for n 2> 4% For # < 5, we have an affirmative answer, while, for n > 6,
wo show that the present method of characterization of admissibility does
not work oub for the Pathak solution in (3.9), We relegate the details of this
finding in the Appendix. However, in passing we may comment that for
» = 8, the inability of the present method does not necessarily mean thad
the Pathak solufion in (3.9) i3 inadmissible. Howewver, even if that solution
ig admissible, a different method of establishing thet is needed. We therefore
pose that as an open problem.

6. NEGATIVE (FACTORIAL) MOMENTS OF wy .
We note that for every (N, a}, in SRSWE,
El§un,— ¥ nP = N (¥ —1)} {Evzh,— N1}, .. (8.1)

where o stands for the popalation variance of ¥, ..., ¥x. In fact, higher
order moments of §,, involve the negative factorial moments of vy, which
wo may consider ag follows., For every p,¢ 2 1, leb

pat=g . {(p—g+lland p@ ={p .. (p+e—1}}1; ... (5.2)

conventicnally, we let pl® == p~® = 1. Our objective is to provide a con-
venient expresston for the negative factorial momwent ;

pen s Ny = Elvafd], for every r > 1, (N, 2). e {5.8)
For every (N, n), let

PRy = Plvg, =8, k> L (Wote that pf, =0for k>n). .. (54
Note that foreveryk > L n 2 land §¥ > 1,
o = N-#Niklo(n, k), o (5.5)

where the poditive numbers e(n, &) depend only on (s, k), but not on N ; we
may refer to Besu (1958) for some details, Thus,

N-YN—k)plgh = N~(N—1)Rfn, k) = {(N—L)Npp,, ... (5.6)
forevergy 21, N 21, 5 1. Hence, for every real a ( > --1),
Elvg ot o)y J—(N+4a) ™t = (N-+a) BYN—vy 4 )f(vy, «+0)}

N
= NNty L (NN} (k) ps .. (5.7)
N--1 )‘-ﬂ

— N tayt  @tayipg (T
k=1

N
= ¥ro (N -LYN By autar)

B I=1{
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Using this chein relation recursively and noting that K, ,+a)™1) = (i4a)—,
we obtain that
N
Blvyota)} = N Ez NU=I) (N — B+-1)%/(N g}l &), e [8.8)
In particular, we have

Bigy) = N E (N—&41)pL = N-H-E JrL o (B9

J=l

From (5.8), {6.9) and the identily that 2% = g31—{x--1)-1, we obtain that
N
p;{n;IsF):N—n P jn-lu-ﬂ(NH]]. e {8.10)

Next, using the identity that @ = ((g—1) ! ¥ E .[ 1)1—1( J{-"*"F jm1)1,
for all ¢ > 1, we obtain from (5.8) and (5.10) that f{}l" every r } 1,

e ; N) = N-8((r—1) ! )—1;_21{—1314 (;__11) (N 4-j— 1)1

N
= Eﬂ-l{a_!_j_g}[,f—-lL een (8,11}
f=E

Finally, using the fact that 2 = £ (g—2) Ix—'@, we have from (5.9} and

(5.11) that =
v = 3 @-1w- (7]
g2

——

1Y@ty

5 aﬁ—1(a+j—2][f-41—N*’ﬂ( p> ;_a#—l) : .. (8.12)
41
Thus, the simple recursion relation. in (5.68) provides a very convenient way
for the computation of the negative (factorisl) moments of vy .. A direct
evalostion of these momentys would have been much more involved. Only
the expression in (5.9) haa been known ro far (vide Pathak (1961), Chakrabarti
(1965) and Lanke (1975), for example).

We also want to evaluate the negative factorial moments of (N—wvy ,)
[as these may also arise in some applications to be considersed Iater on]. For
this purpose, we rewrite {6.6) as

% = (N4 1)/ N (N -+ D)/ (N+ 1}t 5, k> LN 2 La» 1. ... (513}
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Further, we may express (N—k)— as %1 (=1} L {(N—2+1)",  TUsing this
=
together with (5.13), we obtain that

BN —vau) ) = T (N—bylp), = 3 v = -1 1v—kt1)
g | d=i ral
=% ¢—1)! { % (¥ —k+1pin)
feul ki ¥
= B (=11 | B (N—ht 1) { 4r) W —bbr)o X
= k=l
(N+1)y" p, %), }
= Elir—l} | {(N-+9) HY( - 1)1, . (814
f"=
Similarly, uging the idenfity that (N —x)2 = 5 (g—2} L{¥ —ax) W@
=2

B vy, = B byt~ 3 { § @01 @000 o)

v IS v rta) i Ve we (515
2 2 @b Yoo (5.16)
o "

= 3 @01 { B pfille-1) 1y x
g=B K=l
g L ig—1 s
Z () k1)

= 4 . g—1

= Z (g=2)! (-1 "{(j_l)f{q—ljl}x

S ol (N—ketj—1)
k-1
o _ _ g._..l

=~ E g1 2 e (7)) x

£ (=11 {I+rHi— DN 1)

Therefore, var{(¥ —vg )} ean be computed from (5.14) end (5.15),
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Finally, we commider the incomplete negative moments Ef{vy g—s+1)2
|ve.n & 8}

Tet nz write

Pln, N, &) m_;E‘ (k—s+1yp§h. for e 2 L land N 2> 1, ... (5.18)

80 that
Bioma—o 1y |vwn > o = $0n N, o) T ot .. (6.17)

Consider the sexpression
2 ((b—a+ 17— (N—s+1)7)} pify = T (N—R)pQA(N—a+1)(k~e+1)}
HN(H—EH}"‘ E K 3 {fc 5-1-1}"
= N(¥—s41)1 kEa j{N — 1) Nhp ) y(-—a1- 1)1 [by (5.6)]
= {(N— )/ NIWN (N —e+ 1)1 2 sty Tp5 9, v {5.18)

Thus, writing Aln, N, s} = (N—a+1)4 5 p{}, we heve from (5.16)
and (5.18) v
din, N, 8) = Aln, N, 8)4-{(N— 1IN (N —s1)b(e, N—1, )

= Afn, N, )+ {N— 1)/ NN s+ 1)U An, §—1, 5)

+HET) Gy s 5-20)

=" G RPN O —s 4 1)) An, N—, 2

1-{s/N )R (n, 8, 8) NN-2UN —g4-1) 1}, e (5.19)

where for # > vy p > & by {6.18)
B(n, 5, 8) = Pl = o~B(A%08), aa pM) =0, p k> 9 . (5.20)
Aln, m, 8) = {m—a+1}—1 E ;p . 2 8, are known funetions, ... (5.21)

In partioular, for s = 2, we have
Bivg a—1) |vyn > 2t = ¢(n, N, E}{ E j.'r}ﬂ’.}-i = ¢(m, ¥, 2) (1 _N-ﬂﬂ]{;lgg}
o

N-3 N-—j _ .
dm ¥, 2) = X (F2) i1y —j) Srempa-a
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Further, along the same line, we bave

B [{"'}f}n}_ll FN.s =2]=F [I’E,ln{#ﬂ,n_” 1]_11"'#,:; = 2

= Blryu— 1) van 2 21— Elrgi vy 2 2], o (5.24)

where
Elvinlvgs = 2] = {EvFo]—o¥H(1—p¥h}, ... (5.26)

so that using (5.9) along with (5.24) and (5.25), we obfain. that
N

E[{tf) vy, a2 21 =(1—N )" din, N, 2)—N—* I 34 N-ni] ... (5.26)
F=1

These expressions will be usefnl for the speocifio applications in the next sestion.

5. HOME APPLICATIONS

(I) Pathak (1962) suggested the following admissible unbiased estimator
of the population mean ¥ in SREWR(N, n) :

?'r = ﬂ'\ighf'_l: Whﬁm &, — {{N-_ l,]—l__N—l}!l’ ki p{j}{(ﬂ_ﬁk}_l_ﬂql}’

v n; v (6.1}

where §,,, is defined by {2.4) and » .= vy ,. We want to provide an expression
for the variance of this estimator. Note that s, = Ap—1—N-3) for » =1,
..., M, where A is a positive constant. As such, using the eame formula as
in {4.4), we have

P(F,) = VB P+ ELVA T, . (82)
with the notations V,, ¥, and ¥, B, explained there. First, we note that
E[VAF )] = Bap—t— N8] = SAE, {1 N1}
— &(B,(v-1—N-21* (on simplification)
= N2§E, [(N—v)1—N-1]}-
= NES[E{(F —v) I} —N-1]1

o —1
= Nogf I (1) L+ 10—N1] 7, . (83)
r=1
where, in the last step, we have made use of (5.14). Next, we note that

VBT, = Vila,T) = T2V \fa,) = 7222 V{(p—N-1) 1)
= ATPS VAN (N—)A—N-1} = RPNV V(N Y, ... (8.4)
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where by (6.1) (NOA)1= tﬁlpﬂ,?jk{(ﬂ—k]-l——ﬂ-l} = B{{N—)—N-1), s
that by (8.3) and (8.4), we have

V(T,) == f‘“ﬂn[ Elif-l} ! {(N-]—r};ﬂ}n[zf+1}-lr1__y_1] -

+ PBN )}~ NIV (¥ )3, . (85)

50 that {5.14) and (5.15) may bhe incorporated in a complete write-up of {6.5).
This explains the utility of the negative moments in (5.14) and (5.15).
(II) Consider next some admissible unbiased variance estimstors of the

form
82 = e,sf,) where c co#, for » =2, ..., . e (0.8}

We want to compute Var (¢2). This can he done systematically by wusing
(4.5), (4.11) mnd {5.22), after noting that croc &, for 2 & < .

(III) In the same lines, consider the Pathak estimator of the variemce,
o = (1—{A"0n /A 0%))sh), » > 2 (and =0, v = 1). . (6.7)

The expression in (4.4} applies to this gituation where we need to fake for the
Ok Ci.n = L—AROP-LAR(S for b= 2, ...,» Therefore, Inoking ab (4.5}, we
obeerve that our first task is t0 evaluate

£ b plf) = Tibn V), ey, . (68)
Alo, looking at (4.11), we observe that here we need fo evaluate
B (V) (B 2)2t (k1)1 ek 2 = T, N), .. (68)
k=3
P B (k—1) 6, 2 = Toln, V), - (6.00)
k=3
¥ (5—2) (k—3)k (h—1)1 ek, p, = Tln, N). e (8.11)
=2
Since pffh = {f}ﬂ'ﬂl N8, k=1, ..., n wo may simplify 7', (n, V) a8

N
(1—N-s4) 2N-14 F-= T (Akon-1t (* ) (Akon)d
b2 k:

= (1-N-)—aN- (2 (DI )R (619
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Similerly, writing (¥—k) (b—2)fk(k—1) = 2N/k—(N—~1){(k—1)—1, we may
aimplify Ty(n, N) as
S {2Nfk—(N—1)f(k—1)— Lpfh—2N-1 E eV (N—Df(k—1)— — et
b
+NH Z PNV —-1fk—1)—1] {p"‘ RISy ... (6.18)

where, for tha eva.lu&tmn of the first two terms in (6.18), the resuits in Section &
can readily be incorporated. The last torm is, however, trifle harder.

Note that bYk—1)1=(b—1)'—&, and (£—2) (k—8}k{k—1) = 1+
2{(k—1)—8fk. Hence, the treatment of (6.10) and {6.11) would be very similar
to (8.13). Thas, our basic problem reducee to finding an expreasion for

N2 I (S tye— U ) (R ¥ F 2 122 2, . (814)

for arbitrary (=, £, ¥). We write f{k) = ¢+ g 1{vk—1)"1, k=2,...,%, sand
also let by g = (A¥OP-12[(AROR)), k=2, ..., . Moreover, for every m 2> 1, we set

AP(m, ) =m D by (kfk), Re0,1, ..., .. (8.15)
A (m, ) =m™2 2 b (k-fk)’ A=0,1, ..., . (6.18)
E=2
APm,n) =ms B (E—1)%ps (), B=01 ... .. (617
Pzg kE—h

Note then that (6.14) can be writien as
aADUN, #) - FADN, n)+yAGN, n) = 4N, n}, say. ver  [6:18)

Writing dyx = f()ba, ¥ > 2, and using the identify that (f) = (E’)

N—i ,
+= (,7,) wo obtein from (6.18) that

=2

AN, n)= N-» E Ef::(ji) N-» % ﬁn#{f )"‘Hz( )}

P Bl
= (n/N)*d,(n, n}+ E (40N {:f““ % dﬂ-#(gi )}

= (WA yn, n)+j E (A n)

f

N_a1 -1
@/ N)edyfn, )+ 3 GINYS {(nimdatn, )+ T Qiysasl, »)}
=% I3

|

= (s | Eﬂ ( N;“) Azfn, )}, .. (6.19)
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where the A, (m, n) are defined ay in (8.18) with the AP, »r=0,1,2 being
weplaced by AP, r= 0,1, 2, respectively, for 2 > 0. Thus, it suffices 4o
congider suitable expressions for the basie formulae in (6.15), (6.16) and (6.17),
for m = n. In this development, we have tacitly assumed that N = n.
somae other adjustments may be necessary for the other case when n > N.
Since the AP (n, ) (r=0,1,2; } 2 0} are independent of N, they can be
aysterpatically derived for any given » and for each A : 0« A < n. While
tabulating these entries for various n is a possibility, we omit these details

(for our primery emphasiz on the theory only),

Appendix

The eniries in Table 1 in Section 4 are bagsed on somse intricate computa-
tions which are presented hore. Comnsider the point ¥, & RN piven by

¥, = (Gnlm“! reey aﬂ-—llmﬂ_:l]? fgy «ory Gy Teal <. (AL
f—1
my»0,for5=0,1,...,n—1,and £ my=N.
Jll
In BREWR(N, »}), suppose fhat vy 4, = &{ < n), and Iet f,, ..., f._, be respecti-
vely the number of units in the sample with distinct units with wvalnes g

coos By, Nobe that fo-+ ... +fyy =%, and f =(f,, .... f—y) hae the Hyper-
geometric law

) (P (1), >0 =0 nmt e

n—1
This automatically leads us to
E [f;'ﬂ’ S g = ;.:] = kP g e Ne L (A3)

where £ = ry+ ... +r,_, { 7 0) and the #; are all nonnegative integers. Note
that the right hand side of (A.8) is & polynomial in % of degree r. Further,
the usual joint moments E[fC...fu 7| vy, = ] can be expressed as lincar
combinations of the factorial moments (of same and lower orders), and hence,
these will be polynomials in & of degree r. Thus, schemeatically, we may write

r—1

[f' ¥ e v = k] = I afmy . g AN, (A

where r =74+ ... + 7, 3( > 1) and tha &glmyg, ..., My, _5) depends on {#y ..
ro 1) 88 well an the m,, 0 < 8  #n—1 (there is no contribution of myif ry =0,

0gj 1)
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=1
Next, we note that given vy , =%k and f, &, = s = {;;_1}—15;0 £t [3—

~1
-t "Euf‘ as]?, for % 5 2, and sf = 0, for & = 1. Further, under {A.1},
Fum

o (o (el ] e hn

TLooking back at (4.14), our principsl task is to eveluate Elsf,,|v= k], for
k=2,..n Inthis context, we note that under vy, =— &({ 2> 2} and given f,

8= (F—'—-l}"’[}‘l a}ffﬁ_i ﬂ?ﬂ?ﬁfﬁk"{E’ Iy o n (A.B)
—2% YT a? L alalfifi42 3% of z 2 i
{?n;ﬁﬁﬁﬂ o’ fi f5+ Z ajﬁf;-l—‘##_ et &5 Gy f1 fifa}]

From (A.4) and (A.6), we readily obfain that for k > 2,
Hisly|v =k = (k1) [4 B+ Ao+ A+ A5, - (AT

where the coefficients A, ..., 4, depend on ag, ..., 8, 5, Mg ..., M,y 80d
(¥, n). Tor ihe particular casez trested in Table 1, explicit expressions for
(A. 6) lsad us to the computations of the ¢, reported there. To have a desper
look at the Pathalk aolution in (3.9), we now look at (A.7) and (4.14). Let
us denote by

Bk} = {ktk—1)2} {ALOn/[AROR—ARDS-1]) for b =2,...,4. .. (A.B}
Also, let A =(4,, ..., 4,Y and let

a5 pr 3 1
( ........................... ) = W of order {n—1})>4. e (A

Then the scheme in {A.1) leads to the admissibility of (3.9}, through (4.14), if

WA = yd = y((2). ..., d(rn—1))', for some y 5 0. oo (A10)

For » < 6, W hag full {row-) rank (n—1){ < 4), and hence, (A.10) holds.
Thus, for n ¢ 5, the admissibility of (3.9} can be eatablished by using (4.14).
For n 3z 6, we have some bagie difficulties in verifying (4.14) with {A.10). Im
order that {A.10) holds, we must have ¢{k) = d_,}d .kt d k34 K5, for
k=2,...,n, whers the coefficients d,,, d,,. 4, and d,; do not depend on
kl=2,..,n—1). However, if we look at (A.8), the first factor Z{k—1)® =
k* 3%} k satisfien the above syater, but the second factor (i.e., AFOn/[AL(P—
B 1-11
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AROR1) o= ¢ ¢ say) i8 not & oconstant, for all { =2, ..., n). In order thai
{A.30) holds, for an arbitrary n( > 6), we require that

ek == Oyt h M, for k=2,...,n, o (ALY

where g,y snd a,, are real numbers. Note that (A.11) ensures that k{k—1)
en k = Bpy+dpob-t-d o443, k8 for every k=2, ... n. To examine (A.11),
we write

bgx == AE—ARR- for k, g > 1 (bgp = Cif g << k). er (AR2)

Then we have e 3 = (bgxt ... +bu,z){/Dar, for k=2, ..., », so that

ﬂﬂ.t = 1+b;}l' hn——l,k Eﬂ.—-‘]_,,#! fﬂl‘ k = 2l LR n. nar {A+13]

Note that b, , = 0 for every n » 2, s0 that ¢, , = 1, for every n > 8,
Since the byx are all positive numbers {for ¢ 3 k), we immediately obtain
from (A.13) that e, , ;> 1, for every n » 3. Thus, ¢, ,_, > €, for every
7 3. Also, using (A.13) in a chain-rule, we obtain that

€a = 27 —2-" and e, ; — [3(2*-1—29)-2][2.37-1—3.25-Y), ... (A.14)

for overy # ;> 8. Forn » 6, we have n—1 elementa ¢, ,, ..., ¢, ., and looking
ot (A.14), we obsorve that e, o, e, 4, ¢, .4 6nd ¢, { =1) fail to satisfy (rimmnl-
tensousty) (A.11). Thus, (A.10) does not hold for # » 6. This can also be
verified numerically with the specific case of » = 6. Here, (eg,gs +o1s €5g) =
(31/18, 72{13, 117/11, 120{7, 1), and for (A.11) %o hold, we require that k{k-1)
[eng—€n 1] i2 & constant, for every k= 2, ..., 2—1 ; in this case, we have

k k{k+1) [eq 22y k41]
2 —-21.6

3 —81.175

4 —~130.130

5 +484 285

This clearly shows that (A.10) does not hold for » = 6, Thuns, the ourrent

method of establishing admissibility does not work for the Pathak estimator,
for n » 6.
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