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SUMMARY, The notion of mixing is extanded to flowe of o-algabras. Bappose a Bto-
chastic process is mixing in some sen<e. Conditions under which thie process, observed
at random timos, inhorits mixing proporty are discussed. Boment inequalities for mixing flows
of o-algehrag aro obtained. Applioations to rundom fields are studied.

1. INTRODUOTION

The coneept of strong mixing for sequences of random wvariables wea
introduded by Rosenblatt (1956) fo sfudy long range dependence or indepen-
demce, This concept was generalized and several applications are discussed
in. the literabure. Oumr aim here is not to give » survey of these results bud
to study a& more gencral concept of mixing for g-elgebras. For a nice survey
of mixing sequences and their properties, see Rousses snd Toannides (1987).
In order to motivete the reason for developing the noting of mixing for
o-algebras (not be bhe confuged with mixing transformations on measure spaces),
let us consider the following problem.

Suppose {X(#),¢ > 0} is a stochastic process defined on a probability
space {Q2, &, P) and the finite dimensional distxibutions of the process are
dotermined by a parameter . If the process X iy eontinuously observable
over [0, T'], asaymptotic properties of maximum likelihood estimator and other
types of ostimators of & are studied for certain classes of processes by several
authors. For instance, see Basawa and Prakass Rao (1980), Kuboyants
(1984), Grenander (1981) and Karr (1986). Nonparamefric inference for
stochastic proccsses, based on continuous realization of X over [0, T, is
dizcussed in Prakesa Rao (1883). In practice, the emtiro sample path iz not
available and suppose the process is observed only at random fime pomés
{r.}. The problem is to infer about the characteristics of X based on
{X(r), 1 € ¢ < n). In general, {X{r),d > 1} does not possess all the infor-
mation about X. For instanoce, if 7,4 = 7,13 for all » and some s > 0, then
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it might not be possible to get information about (X{0y, X{(#)) unless some add;.
tional information om the procees X i¢ aveilable. This problem has heep
considered earlier by severel people. We will discuss nonparametrio ang
parametric inference aspects of this problem in a separate publieagion,

The problem of interest in this papor is to find out whether a mixing condi.
tion on a process X is inherited by the scquence {X(,), » > 1}. In general,
it need not hold. We extend the notion of mixing to flows of o-algebras and
obtain some consequences. We restrict our attention to extending the notipn
of d-mixing (or some times reforred to as uniferm mixing). Other conospts
of mixing can be developed and studied in this larger frame work of o-algebras,

2. MDmNg FOR I'LOWE

Tet (Q &, P) be a prohability space. Let {4, ¢ > 0} be an increasing
flow of o-algebraa contained in sand {f, £ » 0} be a decreazing flow of
o-algebras contained in 2, that is,

FC &I 0 8 <,

and GO iF 0t s <m.

Definition 2.1 : The inereasing fiow {4} is said to be d-miving weakly
with the decreasing flow {&;, if for every 4 ¢ 5. ¢t > 0,

|P(A [ By—P(A)P(B)] < $(js—t])1P(4) B3
for evary B e §,, 8 22 0 where ¢{¢) | 0 08 w—> 00.

Definition 2.2. For any real-valued non-negstive random variable 7.
defincd 5%, to be the o-algebra generated by sets 4 ¢ & such that A N [r £ 8
e & ¢ > 0 when {54} is an increasing flow of o-algebras and §, to be the
o-algebra generated by wets B e & such that B(Y[r > sl ey, ¢ » ¢ when
{{s} i3 & decreasing flow of o-algebras.

Definition 2.8: Let {r,,n » I} and {S,, # > 1] be increasing seqnences
of nonnegative rondom variables. The increasing flow {} is said to be
$-mizing strongly with the decreasing flow {{;} with respect to {r,} and {S.}
if, for every d e &, " = 1 and Bsﬁ'ﬂm.

| PUAB)—P(A)P(B)| < Big(|1,—Sm | }P(A) . (29
snd E{¢({|7,—Bm|)}— 0 whenever |7, —8; | 5 coas m — 0.

Definition. 2.4 : If the incresding flow {4} i3 ¢-miving abrongly with
the decreasing flow {{;} with respect ¥o every pair {r,} snd {8,} of increasing
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goquences of non-negative random variables, then the increasing flow {&) s
said to be g-mizing strongly with the decreasing flow {{J.

Definition 2.5: Let {X;t > 0} be a stochastic process defined on a
probability space (L, &, P}. Suppose {Xy, £ 2> 0} is progressively measurable
and {r,, # > 1} is an increasing sequence of non-negative random -variables.
Define sF and &I as in Example 2.1 given helow. ¥ {5} is ¢-mixing
strongly with the How {{¥} with respect to {r,}, then {X,} is said to be ¢-mixing
strongly with respect to {7,].

Example 2.1: Let {X, ¢ 2> 0} be a stochastic proceszs defined on a
probability apace (0,4, F). Define

FF = o-algebra generated by Xy, 0 u £
and £Z = o-algebra generated hy Xy, ¢ > 5.

Clearly {&I} is an increasing flow and {{F} is a decreazsing flow of
o-algebras. 1f {X,, > 0} is ¢-mixing in the classical sense, then {7} is
¢-mixing weakly with {£X} in the sense of Definition 2.1,

Brample 3.2 : Buppose (X ¢ 0} is a stationary ¢-mixing stochastic
process defined on a probability space (Q, &7, P). ILet {r,.n > 1} be an
inereasing gequence of non-negative random varisbles defined on (£}, & F)
independent of {X;, ¢ 2 0}, We agsume that {X; ,n > 1} is well-defined and,
|75 —Tagm) -2 o0 as m~> o for every » » 1. TFurther assume that the condi-
tional distributions indicated iz the following exist. For any n » 1,

P{X'li é m:r E:t-]-ﬂ ﬂ y}
= J{i P(X‘k <% I‘H-n LYl = T = 3]‘11"":#’ 13:4.1-:.(#’ 5)

where P, s is the joint probability measure of (73, Ti,,).
. W+TE

Henoe
KX, <aXy <9
= LK <o X Syln =Ty = ) Gy, (59
+

=, PE < K <y o

(by independence of {X;} and {r })
= { (PLX, < &) P(X, < )10, £ )] By, (60

Ry
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where

s, 52, )] < S(Je—t| ) D(Xe < @) (since X is g-mixing)
= ¢(}s—E[ X, € #)  (by stationarity of X).

Therefore
[PX, <2 X,  <y—P&, <o) PZ, < g)

<{ L o=t . 9} PX, < 2)

= B¢l re—Trrn| )] P{Es < 7). e (23)
Note that, for any £ > 1,

PE, <o) = | P&, <2|m=ia.l)
+

—_— I P(Xs & ﬂ:ITF.' = t] dﬁﬂ{ﬂ
k.

= [ P(Z: € %) du ()
Ry
= [ P(X,< ) d#,,‘.{f)
By
= P(X, < ®). e (2.4)
{2.8) and {2.4) imply that
PX, «x X <y)—PE <HPX, <yl

< PX < @) Bg(|me—Trpal )] o {25)
Observe that
B | te—Trspn] )] 0 88 n— oo for fixed £ 2 1

by monotone convergence theorem since () | 0 and |Te—7r,,| LAY
n— o0, It can now be shown that, for any Aeaﬂfhand Be{s

i 3T
1 P4 N} B)—P(A)PB)| & PAEIH|e—Thyn| N

where H[@{|7e—73.[}]> ¢ 88 m—s o0, Hence {X,} is ¢-mixing strongly
with respect to {r.}.

Bromple 2.8: Suppose {X ¢3» 0} is a stabionary ¢-mixing process
defined on a probability space (£, &, P). Let {r,,» > 1} be an incressimg
sequence of non-negative random varisbles defined on (Q, &, P). Leb &7
be the o-algebra generated by Xy, 0 s < £ and £ be the o-algebra generated
by sets of the form [ > 4], 3> 1. Suppose the fows {&F, ¢ > 0} snd
{€7, 5 3> 0} are r-mixing in the sense that

[ P(4] B)y—P(d)}] & gl|i—s])P4)
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for oll A£5% and Begl and ¥{s) > 0 a3 8 = o, With the same notation
as in Fxample 2.2, let us compate, for n > 1,

PX, <55, <)

.f P <X, Syl =t =s8dp, . (s
RE
= [P <2 X Sy)+HEE s 20082, o) .. (28)
+
where | Hylfs a5 2 )| < P(li—s]) P(X; < 0 X < 9
Similarly
PX_<z)= ;f PX < wlr=0du ()
4
=a:[ [P(Xe & @)+ Hy (b )] dp, (E) e (2T}
where |H, (¢ 1 2)] < $(0) P(X, < =). .. (28)

By stationarity and ¢-mixing properties of stochastic process X, it

followa that
| P{X: < 2, Xy < 9)—P(X; < 2) P(X, < )]

< Plli—s|) P{Es < %)
= ¢{|¢—2|) P(X, < ), . (2.9)
| Byt 8 12, 9 |
< w(]t—s|) [P(X; < o) P&, < y}+e(li—2]) P(X, < @)
=ir( -5 | Y (X g a) PIXy L)+ (| b—s| } b{| E—o [ P Xy}, ... (2.10)
Belations {2.7) and {2.R) prove that, for any k > 1,
PX, <) = PX, < 2)-Hylw), ... (2.11)
where | Hsl) | < ¢ (0) P{ Xy < ).
Relations (2.6), (2.9} and {2.10) show that
P{XT.e £ &, ITM“ < ¥)

= [[P(Xy € @) P(Xy < )+H M, o5 090t s 529014, (59)

& (2.12)

where | Hyft, 850 9| < d(|2—2]|) P(X, & ). e (2.18)
Hence

PX <z X <y =PI, < 2P <yt oo (214
wheie

| Hilz, )| < I’Iﬂﬁ(lf —8]) P(X,  #}-9({t—8|) P(X, < 2) P(X, < 9)

FHlte]) $ Qtms]) PE, < o) dp, - 9)
< P(X, < 0 Elp(|74—7x4n )] (218
where 3 = P-+gr+yg.
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Nofe that, from (2.11),

P(Xy < 0) PXo £ 9) = IP(X,, < 2)~Hy2)][P(X, < y)—Hyy)]

=P(X, < 2) P(X, < y)+Hz,y)
where

| Hylw )| < |HolZ) | +1Hsly} |+ | Hylz) Hyly)

£ ¥r(0) [PUX, € #)4+-P(E, € )+ (0 PE, € o) P (X, € 9)]. ...

Belations (2.14)—(2.17) show that
PX, %% X, <9-PX, <DPX, <)

= I (=, ),
where i

| Halw, 1)1 < [ Hele, ) | + | Hol2, )|

< P(Zo < ) Bli{re~Tiay)]

Henes P {0) [P(X, < 2)+P(E < ¢)+ Y {00PX, < 2)P(X, € 3]

1P, € eX, <y)—PE, <oPX, <yl
< {PEX, < 2)—Hy(e)} Bl |re-7, 1]

+PO)P(E, € 2)+P(X, < )
+90P(X, < 9)P(X, < 9)).

H, in addition y(0)= 0, then Hy(x) = 0 and

|PE,, S2X, <9—PX, <oPX <9
S P, < %) Bipl|me—Tean )]
where B = ¢-+¥-1-9v.

. {2.18)

(2.17)

oo (2.18)

. (2.19)

.. {2.20)

Thie proves that X is y-mixing strongly with respect to {r,} provided ¢(0) = 0.

Example 2.4 : Leb {X £ > 0} be & stabionary ¢-mixing process and
Ty = EII‘} where ¥y are iid. non-negative random variables independent of
{X, ¢ > 0} with E(Y,) > 0. Then {X, ,i»1} is $-mixing strongly with res-
poect to {r,}. Assume that the conditiomal distributions in the following

axiab.
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Note that
P[X,.r % ‘-?;xm_ % ¥)

— }jﬁ PR <X, Syln=tn,=ads, &3

= Ii;a P2, X Qylne=1E1e,=23) d’f‘mw{f& 8)

+

= J'E P, < o, X, S y) dps

T Thin
2

{(By independence of {X,,t » 0} and {r,})

= P& <o X < p)d, &, s—i)
Ey

=1 PE < K o), O (5

(. 8

Tk Tepp—TE

(By independence of {¥;))
= PX,< x5 X, S y)dp, () dp,

122 Tk
+
(By stadionarity of X)

= R£ {P(Xe € &) PXse < )0 s )PIX, < o)}
+

(s—7)

duny )i, . 88
(By ¢-mixing property of X)
= P(X, & 2P, 4 P(X, € 2)0(F {1 mey—Te )3}
= PX < o)PX, <N+ PE | < 9081 —7:])]}

ginee
PE <z =] P&, < 2lne=1du (¢
By
=§ PXiszlre=0du, &
By
= [ P(X, < 2)dpe, ()
E o
= | P(X, g =) dpe ()
By
= P (Iu =~ )

forall k2 3» 1. Hence
IPX, <= X,  <9)—PE, <P, <)l
< P(X,, < %) BIG(| ran—rs| -
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Sinee Tp,, —T¢ —» 0083 % —> co for any fixed % and ¢ (s) } Oass — 0o, an
application of monotone convergence theorem implies that

X, t2 1} is ¢-mixing strongly with respect to {r,).

Definétion 2.6 1 A process {Xy, ¢ 3 0} is said o bo ¢-miving slebly if,
for every set B with P(¥) >0, and for every Ae¢&F and Beif,
0 t<s <0,

| P(4 (y B|EYy—-P(A | B)P(BIE)| < ¢(]t—s|}P(4|B)
where ¢(-) | 0 a8 s— < snd ¢(*) not depending on K.

Ezample 2.6 : Suppose {X,, £ > 0} is a progressively measurable stationary
shochastic process adapted to an inereasing flow {2} of o-algebras defined
on & probability space (), &, F). Let {r,, » » 1} be an increasing sequence
of discrete-valued mnon-negative stopping times adapted to {&). Further
suppose that, for all ¢ 2» 0,

PX, <2|ne=a)=PX, <2
and P KYiThn2ln=a=P&X__ <y

Assume that {X,} is $-mixing stably in the sense of Definition 2.6. Then
{X; % 3 1} is ¢-mixing sirongly with respect to {7,}.

As in the earlier examples, let s consider
=EJ;P{I,., QE=0;X, <Y Tha > eine =g, (6)
(here #, () is the probability measure of 7x)

=R{P(-Iw Some=aiX LY T > ot = a)dp, (a)
=EI;P(E¢ <z,mp=o|=aPX__ <¥;ma>oin=a)ds ()
+ 1 {fOGb—al )P < 2.7 = @)k, ), O i, (@)

= PX, <2t =X, 5o > el = o) dug, (o)
L L O@(b—a NP, < alre = @) i,y |, (00 i, (0
=P(X_< 4P, <y)
+{f OBI$(|7en—a |} | 7e = al) dp,, GRPX,, < 2).
=PX, < HPX, < 9)+OEK | 50—7s])]) PE,, < 2)-
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Remarks ;  If the process X in Example 2.6 is ¢-mixing but not necessatily
¢-mixing stably, it is not clear how o relate the finite dimensionel distributions

of stopped sequences and the original process. One expects the mixing to
hold for stopped sequene if {1x] < K¢ < o a.5. a0d lim” = 0> 0 o4

We have not been able to formulate the result under shese conditions.

E4u—TE
R

3. Mouent INEQUATITIRR
Theorem. 3.1 .  Suppose {Fy} is an increasing flow and {{;} i3 a deoreasing
flow of o-algebras defined on a probability space (), &, P). Further qssume
that [} and [} are d-miving weakly in the sanse of Deflnition 2.0, Lel ¢
be pemensurable and 9 be {y-mensurable real valued random varicbles such thed
EE|P<<oo Blgit <o with 1fptife=1, p > 0. Then
| EG—EC)EM)| < 20¢(|t—2| FP(E]E | 2)VP(E 5] )e. v (31)
Remarks : Proof of this theorsm is the samo as the classical proof for
$-mixing processes as the standard proof does not make nse of the fact thai
the o-algebras under consideration are generated by a stochastic process
{&s ¢ > 0h. For g-mixing processes {X;, £ > 0}, see Theorem 5.1 in Ronssas
and Ioannides (1887), We now give a sketch for completeness,

Proof 1 Let

K
E=ia-E-1 EfIA‘:AiEKFhP{AF)}ﬂJl qiik?

i
and ?}=jEl1HfBjr,B:€§s.P(Bﬂ}0,1€j€3=

whare £; and z; are real numbers and I, denotes the indicator function of a
get A. Note that

| Bn)—BE) B}
= 15 3 EnfPde () B~ PUAOPEY)
= 12 35 P P 40—PE )
= IS BP0 | (whero gy = 2 14 [P(B,1 49— P(B)

= | BEF)|(where ¥ = éy;f
]l A‘
& FJEY|

< (EE[P) (B] Yepse, we (8.2}
Al-2
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Tt can now be checked by arguments similar to those given in Theorem 5.1
of Roussas and Ioannides (1075} that

(B Y |9V < 2[B([8—a|)]¥n (B|q)ojin . (3.3)
and, hence from (8.2) and (3.3), it follows that

| BEn)—EGB)| < 2d(|t—s]) V2 ({8 v}/ (B|qjep,

'This proves the theorem a for simple 2.-measurable random variable £ and a
gimple {;-measurable random variable 5. The general cass again follows
from Lemmas 4.1 and 4.2 of Roussas and Toannidea (1987).

Theorem 3.2 : Suppose {5} and {§,} are f-mizing weakly as in Theorem
8.1. lat £ and v be grrmeasurable and (pmeanwrable veal valued vandom vayi-
ables respectively suckh that

|E.v[ Q Ml -5, I"?t % Mg 2.8,
| BEN—EE)EMm) | < 20(]t—s|) M M, e (34)

Then

Remarl  Proof of this theorem ie same as that of Theorem 5.2 in Rousses
and Ioannides (1987) by replacing &% by & and &£, by ;. A more general
version of Theorem 3.2 is as follows.

Theoremt 8.3 : Suppose an increasing flow {F} and a decreasing flow
{La} are p-mizing weakly as in Theorem 3.1.

Further suppose that
£1 98 &, -measurable,
&1 88 F, -measurable and £, -measurable for 2 € ¢ & n—1,
and % 18 {, -megsurable
where b T and 5 .  Assume that
18] < Mias.,1 & n.
aes (B L, oo £0)—E () BlEn) ... BEN

ﬂ{zlséumr-m}g M. . (38)
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Progf : The regult holds for » = 2 by Theorem 3.2, Supposs it holds
for n—1. Then

| BG1 Ba --- Bo) —H &) Blp} ... EEL)|
% | By &y .o Bp)—HEq o oo Ty B E, |
B [Gn) [ BE .- Bpd) —BEY) .- BE, )]

= I]_"!‘I: {H&F}.
Qbzerve that
EqiniBpq I8 &'rﬂ_l-maa.surable,
and Lqi8 £, -meagurablo.
Hence Iy € 2| 8y—tury | JB &y | B 1By £, |

& 2| ay—tyy|) M My M, . (37)

By indmction argument,

n—g
| By Eua) =B B}l < 2{ E flloa—t])] My Moy ... (38)

Hence 12 & 2 B ol )} MM, M, e (3.9)
Combining (3.8)—(3.9), we have
1B Gy B pd— B )G BEH

< 2 {“ﬁ‘ d(laca—tel)} M. M, OO . (3.10)
=1

Theorem 3.4 : Suppose the flows {F} and {{s} are as defimed in
Pheorem 3.3. Define &, 1 < @ < n as before.  Further suppose that

2a
Elt|#i<oo, py>>1 and & & —1.
i=1 ™t

Let r, = mox (py....b,). Then
| B(Ey.. E)—EEy).. . BEL)|

<2{ B ot} L (RGN
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Progf : Clearly the thieorem holds for n — 2 by Theorem 3.1. Assume
that the theorem holds for n—L. Then

| BE1Es- En)— EE,) BE,)...EE,}
Q IE(ELEE‘ “En)_E(‘il) E(gﬁ ' 'Eﬂ-] |
+E 5] | BEs.. £,)—B(E,). .. BE,)|

= I .-, (say)- e (3.12)
Note that

I, < 2{6([sa— 0 )] "HE £, | B E,.. £, |9 P(where 1p+1fp, = 1)

< 2 [ sa—ta )T B | P B8 T B, 1P L (313
by Hélder's inequality. On the otherhand

|B(Es.. E,)—EBEy).. . BE,)|
& 2"S ([p(]sip—ts] A1 TT (B g} M e (314)
dual =8

by induction hypothesis where ry_; — max (g, ..., g): & = %, 2 i %

(note that Ifg,}-...-1fg, = 1). Observe thabt #; ; < #,. Furthermore

ElE| < (B1E ™™ e (315)
a8 p; > 1. Honce

I, g 2{ E [gﬁ[]af_l_l_t‘”]lfm}(E]Ei|F1)”.F"1“_{EIE“!PH )lfpﬂ . (3.16)

Rolations (3.12)—(3.16) prove the result since », > p;. [

In the light of Theorems 3.1 to 3.4 obtained, it iz olear that one can obfain
the following results for flows of o-algebras {5} and {{;} which are ¢-mixing
strongly with, respect to sequences {r,} and {8} as defined in Definition 2.3.
We omib the proofs. One has to replace ¢(|t—sz|} by Bd(|7,—Sm{) at the
appropriate gfep in the argament.

Theorem 3.5: Supposs {r,, » > 1} and {8, n > 1} are incregsing
sequences of non-negative random variables and the incrensing flow {F i
¢-miming strongly with the decreasing flow {{;} with respect to {r,} and {8,} in
the sense of Definition 2.8,



MIXING FOR FLOWS OF 0-ALGERRAS 13
Let § be &, -meagarable and 4 be gsm-meaaurahla renl-valued random
variebles such that
Bla|? < w0, B|g|7<w,p > D,%—+%= I.
Then
| BE—BE) B | < 2(B[H | 7.— 8w ) (B |E|2) 2 (B 1920

Theorem 3.6 @ Suppose {5 is d-miving strongly with (L} wilhk resped
to sequences {r.} and {Sp} as in Theorem 3.5. Further suppose that & and 9
are 2, measurable and o -measurable real valued random varicbles such that
" "

5] < Myee ond (7] < My as
Then |EEN—EE) BE)| < 2 Bld(17,—8m)} Mo,

Theorem 2.7 : Suppose { S} 15 d-mixing skrongly with {{} with respeot o
fr.} ond {8y} as in Thearem 3.5. Further suppose that

&, is .af:l-mm-swable,
E; t9 3Ti~memmble and §Si—nmumb!ﬂ Jor 2 € i n—1,
and £y 18 {g -mensurable.

Further suppose thot
|E¢] & M a5 1 &8 1
Then | EE g L) —BE).. BE,) |

< 2% 2p18a—re}]) Mo
=1 f=l

Thoorem 8.8 :  Suppose the flows {F} and {{s} are os defined in Theorem
39. Define {E;} as in Theorem 3.7. Suppose that

Bl <o, pr> 1,
and

no]
n —=1.
=l P

Lot r, = max (py, --., Py)- Then
Bl Ead—H(Ey).. EE|

< 2};’ B ¢(| Sepa—s| P g IR
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4. REMARES ON MIXZING FOR FLOWS INDEXID RY DIRECTED SETS

Tet (Q, 5, F) be & probability space. ILet {5, t6l} and {&n, 861} be
indexed families of sub o-algebras of . Buppose I has & partial ordering
< puch that

& C &, if 7y << Ty and f;',l = ;,2 if 7y <y

and &) is & metric on I. {&e tel] is said to bo an increasing flow and
{&y, s€I} is said to be a decreasing flow of o-algebras.

Definition 4.1 : The increasing flow {5, fef} ie said to e ¢-mizing weakly
with the decreasing flow {Ts, sel} if for every 4 e gy tel,

| P(ANEB)—P{A) P(B}| « $(dit, 8)) P(d)
for every Be{, whers ${d(t,#)) | 0 as d{f, s)— .

Eromple 4.1. Let I = %% d » 1 denote the set {z = (..., zg) r2¢ =

{0, +1,..} ¢ =1, ..., & squipped with the maximum norm )jz|| = max z.
1sigd

For 20 = (&1, ..., 20} and 28 = (B, 201 in g2, define 0 <o if
2 L 2P for ]l i L d Lot X = {X,, 2 ¢ 2} be o family of random variables
defined on a probehility space ({}, &, P). X ia calied a d-dimcensional random
field. For any ze &%, define &, to be the o-algebra generated by Xy, u <<z
and &; be the o-algebra generated by X;, v >z The d-dimensinal random
field X is said to bo m-dependent if for any finite subsets U, ¥ (T A, the
ot {Xy, ue U} is independent of {X,, ve ¥V} when ||[u—o| > m for all uel/
and ve V. It is clear that {5} is ¢-mixing weakly with {f;} where

Pllul) = 0 3f {iul| > m.

Remarks : It is easy to see snalogues of Theorem 3.1 to 3.4 hold for
the flows {&,¢6 I} and {§;, s ¢ I} whenever they ere ¢-mixing weakly. In
particular, one can, obtain the following moment inequality for randorm fields.
Discussion of anslogues of other results is left o the reader.

Theorem 4.1: Define {3, Z e 59} and {2 XY as in Beample 4.1.
Suppose {&F;,2e &%) is ¢-mixing weakly with {5,z &%) in the sense of
Definition 4.1.  Lei & be sy-mensurable and 3 be {y-measurable such that

EZ|? <o and B|y|? < w0, 1jp+1jg=1, 2> 0.
Then

| BED—~BEE) | < 2d(lu—ri)]Ve (BE|9)/2(E|q| M.
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5. BREMARES

We have goncralized the eoncept of mixing and obtained some moment
inequalities. The problems of obtaining moment inequalities for sums of
random variables measurable with respect to or-slgebras which are ¢-mixing
strongly, central limit theorems, Berry-Esseen type boumds ete. remain open,
We hope to come back to these problems in & foture publication,
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