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SUMMARY. Asymptotic rep ion has beon obtainoed for euitablo linear fonctions
of order atatistics of i.i.d. observations which strengthen the previously known results. Tho
representation haa been mede nse of to obtain some ife rates of g to

normality of tho statistios.

1. InTRODUOTION

Let (X, X;, X, ...} boa soquence of i.i.d. random variables with E| X | < o0
and X; having continuous distribution function ¥. We define the e.d.f.
(empirical distribution function F,(-) at the n-th stage as

,,(a:)_n"ZI —0 <z < 0.

X <2y

For some bounded function w on [0, 1], consider the following linear combi-
nation of order statistics

= [ =P, ()P, )
and the correaponding parametric value
L = | mw(F)dF().

Lot V,(u) denote the o.d.f. of U¢ = F(X,), which are of courso distributed
uniformly on [0, 1], and @ any inverse of F. Then, we can also writo

= f Qa7 v ) s

L- J‘ Glutu)in,
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Further, let us define
1
Z =|'>[ ("—I(U, < ")w{u)dG(u)).

Noto that the Zy's and L are well defined in view of the condition E| X| < co.
By Z we shall donote & r.v. having the samo distribution as Z;s.

Moore (1068) provides an elegant proof of asymptotic normality of
n}(L,— L) by showing that if w is sufficiontly smooth, then

n
By = |(LaL)=nt & Z4| = op (n-}).
w1 N

Later Ghosh (1972) proves that if w has bounded socond derivative (this condi-
tion is slightly stronger than those in Moore, 1988) and

T [a(1—w)]Ye2dg) < o
[}

for some § > 0 (this is equivalent to assuming that E| X |+ < o for somo
8> 0, see Lemma 2.2 of this paper), then

R, <€nYlog2)? as.

(Vingrodov Symbol £ is used for 0 whenover it is convenient.} In particular
this later result trivially yields the law of the iterated logarithm for L,

Section 2 of this paper contains somo results on representation of
L-statistics which strengthen the result of Ghosh (1972), and provide answer
to a question raised there. In Theorem 2 of this soction, Moore’s technique
has been combined with guantile representation which leads to the representa-
tion of L-statistica for a much wider claas than the one described above.

Turning to rates of convergence to normality we would like to mention the
papers of Rosenkrantz and Reilly (1972), Bjerve (1977) and Holmers (1977)
which obtain Borry-Essoen type bounds for L-statistics. Rosonkrantz and
Reilly (1072) used Skorohod’s representation to show that the rate of conver-
gonco for trimmed typo L-statistics in 2—1/4,  Bjerve (1977) usos Fourier-trans-
form method and shows that the rate is actually n—+. However, Bjerve's
method heavily dopends upon the i.i.d. structure and the statiatios considered
are again of the trimmed type.
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Helmera (1977) shows that the rate of convergence is n-t for L-statistios
with cortain smooth woight functions which are not necessarily of the trimmed
type. In Section 3 of this paper we establish some non-uniform rates of
convergence to normality and few intoresting corollaries of it under the above
sot up. Tho set up is similar to that of Holmers (1977) but the results are not
direotly comparable.

In a subsequent paper, Singh (1979) we oxtend tho resulta of this paper
to genoral mixing random variables.

Throughout, /5 and 3 donote (log n)* and (log log #)* rospectively and
by's are absolute constants.

2, REPRESENTATION OF L-8TATISTICS

Let us say that o point x €(0,1) is & jump point of the function w if z
is a discontinuity point of w but w is either left conti or right conti

ata.

Theorem 1: Let us assume thal w has bounded second derivative through-
out on (0, 1) except possibly al finitely many poinls a,, ay, ..., ax which are all
Jump poiniz.  Further, assume that, in a neighborhood of each of the poinls
Glay), Glay). ..., Glag), F admils a density which is bounded away from zero.
Then

R, €n W, as.
if E|X |14 < o for some 8 > 0 and

R, €n )Y as
Jorall y>0if E|X| < 0.

{We do not require any density condition on F if there is no jump point).
We bogin with a few lemmas.

Lemms 2.1: [f

E, = 11 =) | Vi)t
= (07| VAl

Jor 0L r < 4, then
Eyjy € il 7as. ..o (20)

Jorally > 0 and for any } > f> 0
E,_»€nt g, . (22)
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(2.1) follows from Theorem 3.1(11) of Cegki (1976) and {2.2) from the
theorem in James (1975). Alternative proofs can be found in Singh (1878)
which are quite flexible for woak dependence structures. Csérgd and Rovész
(1976) and Cséki (1977) also contain stability rosults for woighted empirical
processes based on ii.d. v.v.’s

Lomma 22: fi) EjX| < oo=)j!u(l—u)d0(n) <.
v

(i) } (ta(1 —w)y2dG(n) < o, for some r>0 and 0 <& <r, implies
0
E|X|"r < o0
(i) E|X|r+* < co, for some r and & positive, implies

i (1 —2)rd@(w) < co.

The assertions seem to be well known. A oroof for (ii) ord (i) can be
found in Singh (1978) fsee Lomma 4.4.1).

Lomma 2.3: Let F7M ) denote the right continuous inverse of F,. If

E,, = sup |F.Fity—t|, then E,, < ljn as.
061Gl

Proof : Since 0 € F (Fi\9))—s < sup | F (0)—F ()], it follows in
1el0,1]
view of the independence that
|FFM8)—s| K tn ws.

for all s¢[0, 1].

Proof of Theorem 1: Tor the soke of simplicity in writing, we assime
that w satisfies the smootbnoss condition everywhere except at a jump point
a, 0 < a <1, where it 13 right continuous. Undor theso conditions it follows

that w and w’ have both left and right limits at a. It is plain that tho prool
works for all weight functions with finitely many jump points.

Lot ua define w*\u} = w'(n) for u # a and w*a) = 0. Similatly w**(u)
=w"(u) for w32 a and w**(a) — 0. Following Moore (1968) and Ghosh
{1972), we write

L,—L=1,+14+1,
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whore

Ly = 1 Glupe Ve~ | Gruyomd(V fu—)
0 o
1

Iz = [ Gl ¥ ) —wlu)—(V (u)—w)w'(w)]AV (2)
0

1
I = [ Gw )V (u—u)d(V (u)—w).
L
Now, we argue in two steps as follows.

Step 1 : We first prove the theorem assuming that w is continuous at
@ but. not necesearily differentiable. In this case, since

} Guyw* () V (u)—u)du = j’l Glu)(V ,(u)—u)dw(u),
[] 3

it follows, by integration by parts, that
1 n
Iy = — § wu)V (a)—)dGn) = 2" T Z.
[} (£

To anulyzo I ,,, lot us fix a 4> 0such that

lim sup nMI;VBE) < BI2 as.
L X

and dofino B, = fn—MI2. We can express I, as

) G(u)

I"E = ((o_!—lﬂ]+(u—l{_ a+ﬂ,,]+ (AJ,,,I)
[0V o)) —w(w)—(V o) —upw*(u) AV (x)

= I+II4+111 (say).
By the choice of 8, it follows that, for all n sufficiently large,
I+I11 € B} | G(u)dV (u) <€nl, as.

Further, since w satisfies the Lipschitz condition of order 1 on (0, 1), we have
that
Il €E, { Glw)dV (w)

(@-By at+8y)

L B[V fatf,)—Vala—Ba]
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(G(u) is bounded on the interval for all sufficiently large n)

= BV y(a+B)~a—B~(V fa—B)—a+B.)+28,]

€2, as.
Thus if £|X| < o0, one has /,, € »n~M,. Coming to I, lot us note that, as.,

! _[1 G(u)w'(u)li(V,,(u)—u)z-i-z%’ Il Gluyw*(WdV ().
[

=75 |

Clearly, if E|X| < o0,

} Glu)w (u)dV (u) €, as,
0

L
n
and it follows by intogration by parts that
1
[ Gleyw* (wd(V () u)
[]
s — GV () —uldwt ) — [ w(u)V (u)—-u)dCin)
= — [ G(u)V (1)~ ww0**(w)du—Gla)(V (o) —af(we+)~wla—))
— [ w(u)(V (u)— )G (u)
1
< E’§+Efof | w® () | (a1 —w))*rd i)
for any 0 € r € §. The theorem now follows in this case in view of Lemwas
2.1 and 2.2.

Step 2: We finally relax tho continuity of w at a. Lot us supposo wfa)
—w(a—)=b 3 0. Defino & new continuous weight function w, as follows :
wy(u) = w(u) for we(0,a)

=w(u)—b for wela, 1).
Using tho result of step 1, if
L, = [ Gluywy(V (w))dV ,(n) and L' = | Gluw,(u)du,
we have the a.s. representation,
Ly— L'+ [(V (u)— whwy(wdG ()
< n~U for all y > 0, if B|X| <o,
<n, if B|X | < oo for some & > 0.
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Now, the claim is established by showing that if E| X| < oo,
(L= L) —(La— LY+ [ (V (1) —u)(0lu) —w)(u)}dG(w) € n-Mll, as.
To this end, let us note that
(=L —~(L-L)=b
(7l 1)

=Ubf Gu)d(V (n)- -u)—bd (i[ —f ) Gl

vy e, 1) a1 gyl

GV (u)—b |  Glu)la
fa. 1)

Since @ satisfies the Lipsachitz condition of order 1 in s neighborhood of a,
tiv second term in the sbove exprossion can be written as,

—bC(a)(VaNa)—a)4-Om-1,) as.
Further, by intogration Ly parts, we have

bf GL(Y (3 —u) = —bOVIH )V (Ve — Vi)a))
v, b
~5) (P )= u)dG(1).

vy ey, 1)
Thus. up to a2, an.,

(Lo~L)—(La—L) = —b (7 o) — )l

trptan
+H(G(Va'a) = Gla)( V3! (@) —a)
—hGV NNV (V3N a)) —a)

= b{ (F () —u)dQ(u)
9,11

using Lomma 2.3. The proof js complete.

In particular this rosult implies that trimmed moan ean Do linourlized
up to a romainder of the order n~Y!, which is impossible if one tries to do so
using ssymptotic repressntation of quantilo processes. Also, ono roquires
oxistence of density everywhere for the ropresentation of quantilo processes.

In the noxt theorem, wo combino the above represetnation technique
with Bahedur-Kiefer reprosentation of quantile process to eatablish the
represontation for L-statistica with a much wider class of weight functions;
howover the remainder is less sharp.

Al-10
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Theorom 2: Assume thal, for some redd numbers 0<a <f <),
F satisfies the conditions :

F* exisls on the interval (((a)—e, G(B)+€), for some €,
where F’ is bounded away from zero and F* is bounded.

Lot IF bo a function of bounded variation on [0, 1] such that W =1
oxists on (0, a+y) U (f—7y, 1) for y > 0 and has bounded second dorivative
on thi# set. Define

L2 = | Fawmdwv, L0 = | omawe
] [
and

7 - { (=1, < WV FIENWIG)

+ (of +,[l } (e—1ly, < "])u(u)zlGIu).

Then, if E|X| < o0,

Li—L* = n' T 23+ 0=k as.).
1

Proof : 1t follows from the reprosontation of auantile procosses (soo
Romark 4.2 of Babu and Singh 1978) that

zrr;'u)-eu)wvu) = "T’:(‘g’)” A 40 BRI ws. . (23)

Considering tho intogral f (FR0) —~GUY)w(t)de, wo noto that, since w satisfies
0

the Lipschitz condition of ordor 1 in (0, a+y) and E|X| < oo,

all

N )
{ FlOw(t)dt =cj‘“.v:wri‘,,(z))di',,(.r)+ 20(F (2))dF (2)+0(n) 8.
0

[-1)

Now, following the proof of the previous theorem, we see that

ol

(40}
{ 2w0(F, (2))dF (2)— [ 2xw(F(x))dx
0
=°} Gluyw'(u)(V () —w)du+ }G(u\u(u\rl( V (w)—u)+0n1E) as.
o

= J wlu—V 6w + 0@tV @)~ + 01D s
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Therofore, if we show that, as.,
Rl
J 2w(F (o)NAF (2)+ wla)Ga) V (o) —a) € a2 .. (2.4)
a
then it would follow that

T (F3) — GOt = T ¢~V (A6 +0(n-13) ss. (2.5
] 0

To prove (2.4), wo noto that the following atatemonts are true up to the order
aoi A

Rl
Llus. of (2.8 - [ [xw(F (x))—Glahu(z)dF (x)
Gl

PRl

< (:(I» He—G(2)| |w(F (x)] 4 | G(@) | | w(F (x))—wla) | 1dF (2}

L [(F(G(2))—aMFFN () — G(@)] ~-(F (G (a))—a)+a
< n Nk ws
proving (2.4) and henco (2.5).

Similarly one shows that
ji | P ~G)]w(t)dt = f(l— V(OG-0 1Y) as. ... (2.8)
The statements (2.3), (2.5) and (2.6) yiold the theorem.

3. APPROXIMATION TO NORMALITY

Theorems 3 and 4 of this section, which study somo rates of convorgenco
to normality of L, resemble Theorems 1 and 2 of Michel (1976) respectively
which establish similar rates for sample mean of i.id. r.v.’s. The thcorems
aro stated as follows.

Theorem 3: Let us assume that all the conditions of Theorem 1 abou! w
and F hold. Further assume thal E|Z|M* <0, 0<ot=VZ) and

E| X |5+ < 0 where ¢ and & are some positive numbers. Then for all z real
such that 2* < (o 1)1,

| Ptui(L,,~ L) € az)~®(z)]|

< b=l exp (~(1=8)%2) + by || -840 n P(| Z| > bynt|z]) ... (31)
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where ¢* = mindc, 1)f2, ¢ =c*r+1)"t and b, b,.b, are prosilive conslants
independent of 2 and n.

Theorom 4 :  Let w and F be ag in Theorem 1. IfE|Z|*¢ < 0,0 < o?
= V(Z) and E|X|1M‘° < 0 for some ¢ and €, poxilive, then for all r such
that x* 3 (c+1),,

| P(M L, — L) € a0)—Ox)| & bpn-c2] x| = 1 nP(] 2] > byu-"2| 2])
where b, and by are posilive conslants independent of z and n.

Proofi of the above theorems depend upon a fow lommas which we stato
and prove below,

Lenuna 3.0 : For any given positive numbers a, b and r sulisfying the
relalion
0K r < min{(2242)4 6N, .. (3.2)

there ocists a pogitive constant k = k(n, b, r) such thal if y* 3 K,
PE, > n-ly) € n-ay™>.
.
Proof : Lot ux write (0, )= 1J Jig whero J,,==(0, n710y2),
=1

Jow = (7100 4), Ty = 41— -8y=b) and J,, = [1—-n-1-8y=%, 1), Now,
Y, (n=1-%y-8) = ¢ implios that for y > 1 and all n large enough

sup (1= | V (N —t] & 27— t1+80-11=b0=n < 1} (3ince r < §).
Loy,

Consaquently
P map =)y Fy—t] > nh)
tedy,

< PV -0y~ 3 n) < n7iy?
using Markov's inequality.
Dividing the interval J,, into subintervals of longth
Vo = notbraae s/
and using some elemontary approximations wo arrive at
oy O =)y V,0)—t] < 27 max (&7] V(s)—8|: @ = w10y dyly,,
=12 .., 2} +0nY)
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which along with Bonforroni & inequality loads to thoe inequality
P ( sup (=0T V. (0—t] > n,"y)
i3z

< "uunmysb/t Knp p(| V"(,)._” > lu—iy,r) e (33
te(n—t-a,70, 3u)

for all # large onough.  For £ in [n=!-2y~8, 3/4], wo conclude by using Markev’s
inequality that

P, (=0 2> daly) C exp(—Ha-tb-F2)1, +0)| E exp ((Vy(D-0)]»
(3.4)

where 3= G(a+b-+2)-"n-dy=3(! +1y), and I, denotes log y. Noto that if
te]n =170 34 ) and r satisties (3.2), then z is Younded above for n 32 1,4 > 1;
let us say it isbounded by &,.  Now using Taylor's oxpansion and tho inequality
log (1 +a) € @ for all @> —1, wo find ‘that the above probability bound
vun not exceed

oxp [—Bla+b+2)(1,+1)+ 18e N a+b+ 2ty +1y)].

If > Ixa“(a+b+2)’l_. then l&k‘la+b+2)’-y"(l,,+l,,)' < 2(,-1y) for all n
largo onoigh and hence lh.s. of (3.4) € n-3-3 y=3_ Similar bound holds
for —n(V,(f)—!) and hence for n|¥, ()—1| Thus, Lhs. of (3.3) € n 8y~
for an appropriate choice of k. Wo obtain similar estimates in the cases
led g, and leJ,, imitating the abovo proofs to conclude tho lemma.

Corollary 3.1: Taking b = 2 in Lemma 3.1, it follows thal for any a > 0,
if 0§ r <(20+42)", then there exists a k = k(u,r) s.l.

P(Er 2 kn-il}) € ns. kX 11

Wo require only this special case of Lemma 3.1 for proving Theorem 3. An
important converse question here is whethor the bound r< (2r+42)~'is the best
pussible for & moderate doviation bound like (3.5). We offer & partial answer
to thia question in the remark that follows. By a, > b, we mean b, € a,.

Remask 3.1: If r> (2a-+2)), there exists s y > 0 such that for any
k>0,

P(E, 3 kn-ill) > a7at,
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Proof : 8inco Ey is a non-decreasing function of r, we asmume w.lg. that
r<1/2. Lot us choose y> 0 such that y < (l4-a)—(2r)t. We actually
show that for any k > 0,

PU| Y ()=t 57 > 2kn ) 3 ety

whero ¢, = n-1=**Y_ To this ond, we first note that 15" < n—-* for a positive
¢, and hence it suffices to seo that

P(V (47" > kn3E) > naty,
Since #-11;* = n-¥*% for a positive &, we have for all » large onough

PP (t )5 > En-d3®) > PV (2,) > nh)

= P(Uyny € ta) = 1—(1—=L,)8 ~ n-ot7

where U, ,, in tho above expression denotes mini of {Uy, ..., U}

In the boundsry casc, i.e. when r = (224-2)-1, wo are only ablo to say
that for & k large onough

P(E,, . s > knolift) < nwolive
and for any k> 0,
PUE o1 2 bn ) > nooifi-e,
Lemma 3.2: If B, = sup |V5'(=t|, then B, < By
Proof: For any y> 1,
t—yB, < V) <t+yE, forallogtg],
= Plt—yEy) < ¢t forall  te[yEy, 1+yE,)
=3 Vo) > s+yE, forall 0gs< L.

Similarly V;1(s) » s—~yE, for all 0 € 8 < 1. The lemma follows from theso
conclusions, sinco y > 1 ig arbitrary.
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Lemma 3.3: Let §, 9 be two r.0.’s (in general dependent).
(n) For any € > 0,
1Pty < 2)—0(2)lle < IP(§ < 2)—O@)lo+e(2m) 1A+ P(|7] > ¢
(L) For any € > 0 and x real such that € <|z| we have
| PE+9 < 2)—B(=)|
< ez |PE Q=0 +P(l9] > e)+en)tezp (—(|z] —e)).
Proof of this lemma is trivial.
Wo now prove the two theorema of this soction.

Proof of Theorem 3: We present tho proof in two parts; in Part I we
got a doviation bound for R, and in Past II we complote the proof nsing the
bound obtained in Part I.

Part 1. We show here that the under tho set-up of Theorem 3, there
oxists a constant b, auch that

P(R, > bgn~1,) L n-cit-4 ... (36)

for a §, > 0. To prove this, let us fix b, > 0 using Corollary 3.1 such that
P(Q§) € n¢ where Q, = {E, < b,n~W3/%). The proof supplied for Theorem

1 rovenls that on Q,,
R, € (B340 |§ Gu)dV ()| +Ey+Eon it + B
+E? [ (u(l—u))¥dG(w)+E,, - (37

whore 7 is some non-negative number and E,, = sup [ VAT —t).
osr1

As a consequenco, (3.6) follows using Lemmas 2.2 (iii), 2.3, 3.2, and Corollary
3.1, if wo show further that

PUES+nY)] [ GV (u)| > Byn-il,) € n—li—h

for a 8, > 0. But since on Q,, E < bin-Y,, we essontislly have to show
that

Plnt ‘g | 6001 ~Elow > b €rhs. of 38 .. (39)
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We conclude (3.8) using Theorem 3 of Sen (1070) in the casa 0 < ¢ <2 and
Theorem 5 of Michel (1076) in the case ¢ > 2.

Part 11, For|z| & I; wo uso Lommu 3.3(a) with § = n~i )5 Zg,n = wR,
1

and € -= n=H,. In this caso tho conclusion follows using (3.6) and KatzPetroy
thoorom (seo Ktz (1963)). In tho case || > 1, we apply Lemmn 3.3M) with
the samo choice of 3. g and €. If 1] > 1,

127)=be oxp (—( | 1] —€)/2) & bygn™¢"' cexp (—(1 —ENEf2). - {3.9)
For y — x-te or x—¢, if y* > (c+1)l, we obtain by an appesl to Thevrem 2

of Michel (1976) that

n |
Ip (11_1‘2 n< ay) —O); K net|y| -2 LuP(| Z] >bynt|yj)
: -
< a7z | ML aP(| 2] > byn' R 2]) — (310
and in the other case, i.o. when y* < (e 1)/, we apply Theorom 1 of Michel
(1976) and find that
Lhus, of (3.10) <€ 0~ oxp (1 —2)y2)+nP(| Z] > byt |y()
<K~ oxp 1—e)Y2)+alP(| Z] > 2yent|x]). ... (311)
Now, (3.7), (3.9) and (3.11) wlong with Lemua 3.3(L) complete the proof of
Theorem 3.

It is obvious from the above proof that I, in r.ha. of (3.1) is unnecossary
whon 0 < e < I,

Proof of Theorem 4: Wloyg. we assume x> 0. We break the zono
£t > (c4- 1), into two purts namely Jy, and Jy, whero

Jow = {le+ 10, < 2* < ')

and
Jan = {22 > 09,

(This division of the zone may Do avoided if w has no jump points). Wo have
differont arguments for tho two parts. For zeJy,, we write

P(L,~L > n-iz)
= P(Z,—E(Z) > (n)Ln$)oz) LP(| R,| > n~¥%).
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Now, we follow the proof of Theorem 3 to see that both the torms in the right
hand exprossion abovo are
K n~0 ) UL 0 P(| Z| > byyx).
The condition 22’ n!** is needed in choosing Q, = {E; < byn-4}} such that
P(0F) & n-c/2-2340) If 22 > 2'4 we use the bound
P(L,~L > n~ix) < PZ,—E(Z) > n-loz/2)+P(| R,| > nhoz)2).

Sinco in Jg,, 2/2 > (c+1)I, for all % lurge enough, it follows from Theorem
2 of Michel (1976) that P(Z,—E(2)) > n3x/2) is of the desired order. To
estimate P(|R,| 2 n7lox/2) for z in Jy, wo use a crude bound for R,.
Obviously, if w is continuous at its jump points, then /,,<€ E,Z, and hence
the arguments of step 2 of Theorem 3 show that at r, = 1/(24¢)

[R,| € (Bytn )| Z, | + B+ B2 4-BoBut By B J (ll—u))"0dG(u)

K Eotn)| 2, + B2 407,

due to tho facts that B, < E,, E, > E, for any r >0, E,, < n! as. and
E|X|% < oo,
Therefore
P(|R,| > nlozf2)
K PIEy 2 0n12¥)-1-P(| Z,| > 08¢+ P(Efje40> n162)
whero 0 is some positive number and ¢’ = €(2(24+c+€))~1. The proof is con-
cluded now using Lemma 3.1 and Theorem 2 of Michel (1976).

Remark 3.2: If L is s trinuned type L-statistic, i.e. w(u) = 0 if wf[a, f]
for somo 0 < & < B < 1, then Z;'s are bounded r.v.'s; moreover [ (u(l—u))"
| w*(x)|dG(un) < oo for all » > 0. Consequontly, Theorems 1 and 2 do not
requirc any moment condition on £ and X; also Theorems 3 and 4 hold for all
¢ > 0 without requiring any moment restriction.

A fow interesting corrolaries dorived oasily from Theorems 3 and 4 follow
now.

Corollary 3.2: Let t, be a sequence with t,—co such that th—cl,—
(- 1), is boundeed above. Then, under the restrictions of Theorem 3,

P(L,—L > onit,) ~ (2n)45" exp (—13/2).
Thie is an analoguo of Theorem 4 of Michol (1876) for L,,.
Al-11
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Corollary 3.3: If Theorems 3 and 4 are valid, it is immediaie that
IP(H(L,—L) & o) —~(a)lp < n=*""l,
Jor any p 2 1. This is of course a Ly version of Berry-Esseen theorem for L,

Corollary 3.4 : Let g be a symmelric continuous loss function such that
g(z) i3 non-decreasing in z 2 0 and sup g(z) (1+2)~*+) < co. If Theorems 3
23>0

and 4 hold, then

| Egfo—tnML,— L)~ Eyg(z)| € n~<"L,.

In particular the corollary yields convergence of moments of (L,—L). The
result is obtained using essentially the idea of Theorem 6 of Michel (1676).
Details are sasy.
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