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QUANTUM STOCHASTIC DIFFERENTIAIL EQUATIONS
WITH UNBOUNDED COEFFICIENTS AND DILATIONS
OF FELLER'S MINIMAL SOLUTION

By ANILESH MOHARI
Indian Stobstical Inaditute

SUMMARY, Quapium stochastic evolutions are oonstructed for unbounded egoffnfonts
and infinite]l7 many noise componants. A suffisient eondition for the evolotion to be sonzer-
vative iz obtained. The theory iz then need in dilating Fellar's minimel procees, nesocigted with
an unboundad Markov genorator, in bosen Fook epace. A necmmary and sufficient condition for
the dilation to ba conservative iz cbtainad. It Iz slsa shown how to roalise the rainimal prooess
a4 o coramutative stocheatic flow, A notion of quentum exit gbep time i introducsd.

j. INTRODUOTION

The basie tools for bosonic stochastic caloulus were developed and &
necessnry and suffictent condition for existence of a unitary evelution, satis-
fving & quantum stochastic differential equation {g.s.d.e.) with bounded
eoefficientz waa pbtained in [17]. In [23] these results arc extended to include
the ecmses where infinitcly meany noise compenents are present,

This theory has many applications : the dilation of dynamiezl semigroups
7], the construction of yuantum diffusions in the zense of {9] end modelling
physicnl systems [4] ele.

However, in the context of [2-4, §, 10-13, 18, 22}, the cosofficients are
irregular and therefore there arises the problem of cxtending these results.
In [11], improving the basic inequalities concerning iterative integrals, a suffi-
clent condition on the cocfficients is obtsined to guarantee the existence of
a unitary evolution. In partiewlar it suceessfully deals with the guantum
harmonic ogeillator. On the other hand in [10], equicontinumity method has
been employed to goarnutee the existence of o unigue contractive evolution
apsocisted with a pure birth (pure death) process and a necessary and suffi-
cient gondition for the evolution to be unitary is obtained. Model dependent
studies have been carried cut and some more results in $his direction can be
found in [3, 5, 6, 12, 22).

Paper recoived. Juns 1981,

AMS dlasificaion, 60EL0R, 46150, BIDHS.

Koy words and phrases. Quantum stochastis process, guantum stochastic diffetontisl
squation, quantum harmonic secilator, Markov process, minimal saluticn.
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Tn this paper we consider & olasy of q.a.d.e.8 with unbounded coefficients
and infinite degrees of freedom, In Section 2, mostly, we review the basie
results in quantum stochastio calculus with regular coefficients [8, 9, 16, 17,
18, 23, 24, 25]. In partioular we recall the ‘time reversal property’ indicated
in [18], which allows 1 to derive some analytioal properties of the evolution
from that of the dual process.

In Bedtion 3 we exploit the method outlined in [10] to ensure the sxistencs
of a contractive cperator valued process satisfying a quantnm stochastio
differential equation with unbounded coefficients which admits an approzi.
mating sequence of reguler elements. The spirit is similar to that of semi-
group theary developed o in [27]. The spproximating sequence of avolutioms
being non-commutative, it only guarantees & contrachtive solution as a “weak
operator limit * of a subsequence of the evolutions, Analyticity of exponen-
$ial vectors (Wiener chaos expansion) playes an important role in setting up
an induebive procedure to get a sufficient condition for the solution to be
unigue or isometric. Analysing the dual proocess we also obtain a sufficient
condition for the evolution to be co-isompetric, It is worth noting that the
condition for the evolation to be isomeiric (co-laoraetrio) is similar to that of
Feller’s condition for the minimal process, associated with a Kolmogorov's
differential equation, to be faithful. To emphasise this point we sholl deal
with two clagses of dilations assovisted with countable state Markov prooesses.
To thiz end, in Seotion 4, we review a construction of Feller’s miniwal solution

and aome basic analytic facta from the literature ([143, [19], [20]) on classiost
theory of Markov processes.

In Bection 5, & gensralised quantum harmonic oseillator [11], associated
with a Markov generator, is construsted. Xt is & confractive process eatis-
fying a cocyele property in the sense of [18}], and the induced family cf Evans-
Hudson maps dilates Feller's minimal solution in ock space, Feller's con-
dition ia still necessary and sufficient for the dilation to be conservative, For

an unhounded genmerator 1t i not clear whether this dilation admits a diffu-
sion equation in the senge of §pl.

In Section 8, we continue the programme begun in [21]. In a series of
papers [24, 23, 10], it has been shown how to realise & classical Markov proosss
with countable state space as & commutative Evans-Hudson fow. Bub it
is restrioted only to processes with bounded Markov generators, Here, 1l
Section 6, we consider the gemeral sibuation and realise Feller's minimal
aolution a3 a commutative Evans-Hudson flow, Motivated by the construs-
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tion of Feller’s minimal solution, ag outlined in [20], we introduce a special
sequence of commutative Evans-Hudson flows which approximates the
indaced Evans-Hudson flow on a snitable algebra in the strong of operator
topology. A hecessary and anfficient condition for the flow to be conservative
is obtained. A nofion of guantum exit stop time is introduced. Ti is 5 com-
mutative adapted family of strongly ocontinuous incressing projeciions on
Kook space. Feller’s exit atop time iy realised as the vacuum expectation
of thege projections. In view of Weller’s boundary theory [14] we expeot this
stop time to play a crucial role in describing the dilations of other solutions
assoctated with Kolmogorov's first and second differential equations. In
the apirit of [19] we hope to deal with the dilation and non-unigqueness prob-
lems associated with birth and death processes. Finally imposing & weak
hypothesis on the Markov generator, we show that the dilation admits &
diffusion equation for agitable slements.

2. NoTATIONS AND PRELIMINARIER

All the Hibert spaces tha¥ appear here are assumed to be complex and
soparablo with inner product < .,. - linear in the second variable. ¥or
any Hilbert apace H, we denote by I'H) the symmetric Fock space over H
and B(H) the C" algebra of all bounded linear operutoms in H. For any
ue H, we demotis by e(u) the exponential vector in D{(H} associated with o ;

uy = @ uln
ARl
I =10
nl
where i = 1 ua“*-n.yl
vl ’ '

The family fe{u): « e #} is total for any dense linear manifold .4 in H
s linearly independsnt in, ['(H). So operators may be defincd densely on
{H) by giving their action on each e(#). Thus, when € is 8 bounded operstor
on I and u i an element of H, the second guantized [{C) of C and the Weyl
operator Wiu} are debermined uniquely by the relations :

[0) elv) = &[Cv)

W) efo) = oxp [~ [l — <, 0>} efu-+o)

for all v ¢ H.
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Fix two Hilhert spaces k, and & and write [}, [pp for I{E) whey
H = I%1, k) and I = R,, [3, I} respectively, Sed

ﬁ =R @T,, Eﬁ = hy @ Ty, E{i = It
we heve the decomposttion, H=1 1 @E[,. The Hilbert space E] will be
identified with the subspace Hy, ® @, of H where (b is the vacuum vectar in
Hy. Every operator defined on a tensorial factor of H will be identified with
its canonical smpiiation to the whole space and denoted by the aame symbo],

Fix dense linear meonifolds & in A, and A in L* R, k). The algebraic
tengor product B § e (L #) i3 dense in, H, where & (.4} is the Yinear manifold

generated by the vectors elu) : u e A

Definition. 2.1 [17). A family X = {X{f) : ¢ » 0} of operators in H i
oslled an adapied process with respect to (&, ) if

W) BEO)DERe(

(b} X{f)felupion & Hy and X(Bfe(u) = {X(e)feurion)} ooy« for ol
i>»0,fe B, ue A

It i3 said t0 be regdar, if in addition, the map i— X{f) fe{x) from #;
into H is continuous for each fe.%,us # An adepted process is oalled
bounded, cantrective, isomelrie, co-isomelric oF unitory sccoxding ss the operators
X{fy are bounded, contractive, sometric, co-isometric or unitary for every
t= 0,

For 0 & » < ¢ denote by ag¢ the von-Neumann subalgebra of & = B{I'y)

given by
{W(u) : supp « C_ s, £}

This is simply I, & B @ i The family (¥ :— e, @as:
0 % 5 < &} forms & filtvation of the Von-Neumann algebra N : — a, @ o whero
@y : == B(h). Vacuum econditional expectations {&:¢:0 < s< i} on sach
of those aubalgebras exigb and are characterized by
85, [B® Wiw)] = < &0}, Wupm)eld) > B @ Wiyig
where [3, ¢ = #2;\[8, t]. They sabisfy the relations :
d;’j 0 ﬂﬂ', = ﬂ;ﬁg

where [s, £} [s',¢]. We also write &, for &g
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Definitior 2.2 [25] . A bounnded operator valued process X' = (X(5}: ¢ » 0
in oalled & martingale if

2+ {X()] = X(e)

for all ¢ £ 5 & ¢ and & regular mertingals if there is a Randon messuxe #% om
#2, for which

WX ) —X@OWIP+HIXE — X (6 |12 < sils, MR
whenever 0 s ¢ and e, @ @y,

We fix an orthonormal basis {g:1 ¢ § in b and o6 B = Je; > < ¢]

i,jed. The basic quantum stochastic processes {A}:i,7ef:= F1J{0})
are defined by

-~

Axon @ B d,.5e8
alon@e ;ied,j=0
X ®e) 5 i=0,je8

Al = 4

u tf ' 'l: = () =_'i.
Then guantum Ito’s formola can be expressed as:

dAREAS = SHAY . 20)
for alt 4,4, &, 1€ 8 where

. 0 :I=0ori=1
B =

8f : otherwisc.

Weo denote hy wis) = << ¢, ul(e) >, w(s) = uwle) for je8 and o le) =

ty(s) = 1. Choose +# = {u¢ H :u#.} =0 for sll but finitely many je &}
and sob N(u) == {j; w/{) o 0}. BodfNu) <o for ue A

Defindtion 2.3 ([L7], [26]). L = {L}(&) 1 i,j¢ 8} is said to bo a (B, )
adapted sguare integrable family of processen of each Lf is (8., .#) adapted and
for each je &, fe B, ueMand t > 0

f?ﬂ f L§a) el dvela) <o e (3.2)

2
byl = g {1 - [jufa)[[¥)de.

Whare
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We dhell denote by o (%, J#) the olass of all such square integrable familiey.
For further details on these definitions and quantum Ito's formula the reader
ia referad $0 Hudson-Parthesarathy [17], Evans [8] and Mohari-Sinha [23].
A complete account in available in Parthagarathy [26].

Theorem 2.4 [17, 23] . Suppose L e LB, H). Then
z
X(t)= E_ [ Li{s)dAiz)
t325 ¢

extsls in the slrong sense on B @R e (M) and defines o regulnr adapted protess
satisfying for f.oe B and €, vef

< el Xelo) > = B § dafa)os) < Jol), Zifogets) > .. .3

HE@)felelf 3 2 exp (2(h) | Z “Il IE{s)felel® dugls) ... (2.4)

UL T

It M is another element in J£2(2, H) ond

Y@= T [ Mis)dAils)
{788 0

then

< ¥(Ofelu), Xthgeto) > = I f doug (SWHEY, << Y(s)felu), Lifalgels) >

Cat

+ < Milo)felu), X(elgelw) > + 5 < MY@felw), Lffelge®) >} .. (2.4

Progf. This iy a generalisation of the bavic result of Hudson-
Parthasarathy [17]. We omit the proof sines, in this generality, it is presented
in Mohari-Sinha [23] and & complete and sed-conteined account ia included
in Parthazarathy [261.

Denote by &g the olass of clements Z = (Z}:4i.j¢ E} where Z ¢ 8k,

for a1l ¢, j ¢ § and there exish non negative constants (depending on Z) ¢y, j¢ 8
patisfying

SIS o 1S I - @9

for all fely Also denote by J the class of elemants Z ¢ ¥ satisfying for
all ,768

P 3 (BB =0 . (27
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'he necessary convergence in (2.7) follows from (2.6) and the following
Lemma 2.5,

Lemmsa 2.5, Suppose {dply 1 and {Byhia, are two families of bounded
operafors in fy such that T Ady and T BiB: converge in strong operator

topolngy. Then Z AB ;IZ; converges Ef; :rtrﬂﬂ.g operaloy topology,
Proof. For a proof, see Mohari-Binhe [23].
For any Z = {2} : j ¢ §), denote by Z = (Z 4,4 ¢ §) where
Zi— (7.
Alao set ?HE{Z:EeyR} anud, _E;E{Z:EEJR}

Theoremn 2.6 [17, 22, 28). Suppose Zep and Ze Jp Then there
exisls a unigue sirongly condinuous co-isomelric operator valued (hy, i) adonted
process ¥V == [Pit} 1 > 0 satisfying

dF(t) HAEE V) ZidA{(e) ; V{0y =T e (2.8}
an k@ e ().
And (&) for el fehy,nve HMOL s LE<T
he [LV{t) — Vi) felu}l® < K(f, u)vult)—vuls)] e (2.9
where

Ry(f, ) =2 cxpbulMetw)l® % ISP

(0) ¥ s also tsometric if and only if £ e .Jy.

Proof. T is essentially a restatement of the basic result in Bosonic cal-
culus developed in Fludson-Parthassrathy [17]. For this generality, see
Mohari-Sinha [23] except (2.9) which follows from the basic eghimate (2.4)
anct e fact that [|[V{n)] < 1 for all £ 3 0.

Denoto by # the righti shifb on L2 (#2,, k) so that for all 4 35 0
w(x—1) ; 2t
(Gpae) () =
1] LR A

For any bounded operstor 4 in H, [(6) AI(B) takon hy @ Py @ Hy into
itaslf, Danote by I‘(E;]AI”[H,?} the canonicsl amplistion 0 the whole space H.

Definition 2.7[18]. An adapted bounded procoss ¥ ={V{f)::3 0}
18 8id 0 be o cocyele if for all o, > 0

Fit+8) = V(OT@I 7o) . {(2.10)
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For a cocycle set Py : = & JV)) and observe [1, 18] that P={P:i5 g
is & seraigroup. ¥ = V(i) : { 2> 0} is aaid 60 bo » regular cocyele if P i8 nosm
continuous,

We guote the following theorem without proof.

Theorem 2.8[1, 15]. Suppote ¥ = {V{t):t > 0} iz o strongly condiduonys
confraclive cocyole. Then there exist two weakly® condinuous semigroups

T={r it 0}, F = {¥% 1 0} of posiivily preserving comdractions on @(h,)
such that
B} = &, V() (B ® I} V)"

Ti{B) = & [VIYE & DHV(H)] e (211
Jor all B e 8{ky).
Denote by I, the time reversal operator on L3, &) so that for ¢ > 0
ulf—x) ; 05 s ¢
(R} (z) = {
wr) i<z

and & : = D{R). TFor any bounded adapted provess V ={¥(f) : { » 0} we
write ¥ = {P18) : £ 3 0}} for the dual process ([181) deflned by

Vity = 2.V &, . (219)
Proposition 2.9 {18]. ¥ = {V{t}:¢ 22 0} iz a {regular) cocycle if and only

it V=({Fi):t > 0 iz 4 (vegular) coeycle.
Progf. Since T:;: V. it suffices to show ‘only if’ part. As in Joumé

[18] observe that

{a) for Xe&RRAE(T,:) and Y = T(0;)XT8) we have #,X¢7?
== ﬂ!qifﬂiﬂ

(b) for X 6 8(AJRE(E, ) we have

e X W5} = VOV X&)
and

——— —_aarm =

= ¢, V(8)" &P T(0,) 2L, V(1) € TS

= V(e Pine)
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when (8} sud (b} have been used to get the second equality., 8o Fisa cocycks,
Now st Pr:= &V({#)1#> 0 and observe that ;= P:. Hence this
completes the proof,

Theorem 2.10[16]. ¥ ={V{f):t > 0} iz a regular unitary cooycle if and
only if it satisfies (2.8) for some Ze I () S The choice of Z it unique.

Proof. ‘I part is sumilar to Proposition 8.1 in Hudson-Lindsay [16],
To show the conversé we shall adopti‘the method outlined in Hudson-Lindsay
[18]. First ohserve that P = (P :t> 0) is & norm continuons semigroup
with P, = I, hence it has a bounded generator, say ZJ. Define the bounded

adapted process
t
X(g) = Fit)— £ V(s) Zids.
Now exploiting the ococyole property and boundedness of the generator Z)

ag in [168] observe that X = (X{f):! > 0) is a regular martingale. Bo by
Theorem 8.8 in Parthasarathy-Sinha (28] we have the representation

dP) = u‘?s Vie) ZiigldAln) s o) =1 . (2.13)

on kR & {A) where Zi(s} are bounded (A, #) adapted prooesses for 4,7 8
and for je 8, the series
PRETIED e (214)
L=

converges in strong operator topology. Now employ the method nased in
(16] to conclude that Zj(s) are independent of # > 0, say Z;. 8o by {2.14)

Z E{E}:i,jeﬁ is an element in %% Quantum Ite's formula (2.1} and
P Fig) = Mt > 0) imnplies that Ze Jg. To show Z ¢ Ig, consider the dusl
coeyole ¥ snd employ the above argument to get » representation
Wiy = T ViLasye ; ¥o) =1 . (218)
38
on A,@ e () for some L e gp. The proof is complete once we have shown
that L= Z, To this end we introduce for any fixed f,gehy, %, v& X

Aty = < felu), Pitigelv) > — < folu), gefv) > (£ > 0)
wa have from (2.14)

=% f wnlsui(s) < feius), TioVLigeln) > ds . (2.18)

A -3
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and from (2.15)

AlH) -_-”}35 w{t—eyof{t—8) < fe(u), ﬁiﬂa?{s}*ﬂ?’ge{ﬂ} >de. .. (20

MNote that for %, v continugus at 0, lim—i
0

limiting values one gets from (2.18) and (2.17)

A(t) exists and equating the

EE‘WW}”’{'}} < fALI—Zy > = 0. e (218)

£56

Sizoe (2.18)} holds for allf, g ek, taking {u = 0, v = O}, {u = 0,2 = yp,., ¢},
{# = X, et v = 0} and {& = X, 119, ¥ = Xip,11 & I {2.1B) we obtain the
reguired result.

Theorem 2.11 (Journé’s time reversal principle). Fie any Z e Jo (Y Jn
V == {Vit) 1§ 2 O} és the unique unitary colution for (2.8) with coeffivients Z if
and only if ¥ == {V) 12 > 0 ia sa for (2.8) with coefficients Z,

Proof. It follows from the Yast part of the argument employed in Theorem
2.10. [

Tet _4 be s unital  subalgerba of &(A,).

Definition 2,12 [0, 23], g = [} : 4, j € 5} is 5aid to be a family of regular
structure maps if it satisfies the following : For =z, ye A

(1) #5 is linear on _A;
(2) si) =0;
(3) mjlx)* = ") ;

(4} for each je §, there exist constant ¢z }» 0, a countable index set 35;
and a family (D} ¢ e &) ¢ & (%) such that for all feh,

SN L | o DyfIf

whore
I [eDff I < o 1
-ISJ

(6) pliay) = Py +eapi)+ T pile)dty)
whore the necessary convergence in (5) follows from {4} and and Temma 2.5.
We dhall quote without proof the following result.
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Theorsm 2.18 [0, 23, 24). Let g be e family of vegulor structurs maps.
Then there exisbs a unique confractive (hy, ) adapted family {je :¢» O of
ulentiry preserving + homomorphisms from A into S (H) sabisfying : for
re Mt >0

dis () = L _idelle)dA) s ) = =
on By & € (vH)-
And if 4 iz commulafive then for 3,2 0,2, ye A

2y)salw)—7 (eljsly) = 0.

3. A QUANTUM STOCHASTIC DIFFEREWTIAL EQUATION (QBDE)
WITH UNBOUNDR®D COEFFICIENTS

In this seotion we shall conaider stoshastic evolutions satisfying a q.8.d.e.
with unbounded coeffidents, To thiz emd we introduce some notations.
For o dense linear manifold 2 in &, we denots by Z(%) the class of

densely defined operators Z == {Z}:4,je 8) sabisfying
(@) BCRB(Z);Eje8); o (@1

{b) There exists a sequence Z{n}e Xy ﬂj;;,n} 1 2o that for all
fed,5,jel8

'E-lim E.;(nlf= ﬂjf [ XN {3#2}
L
and for cach je 8
pup || Zin) flP < . . {2.3)
nEzlitd

Lemma 3.1, Let Z == (%} : 3, j € 8) be & family of dengely defined operators
satiafying (3.1) and (3.2) wheve Z{n) e Snin > 1. Then (3.8) holds.

Proof. Z(n) ¢ Jg implies that for each fized j eS8

ZNZmf(F = | ZYLNIP— < Z{u)f,f > — <, Zimf >
< || Z5 P2 S 2 () ) o (84)
Now the required vesults follows once we apply (3.2) in (8.4). [
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Lemma 3.2. Lot Z ¢ &(3) maﬂfﬂrmcﬁfea&,jﬁ;ﬂ-memm:amm
edf) 2> O such that

Z 125 £ 12 < e5lf)- v (3.85)
Proof. A simple applicstion of Fabow’s lemma m (3.3) and (3.2
establish (3.5). ]

Fix Z e 2(5) and Z(n) ¢ Xr ) Fz satisfying (3.2) and (3.3). We denote
V) = [V&i{) : £ » 0} the unique oo-isometric operator valued (%, &)
adapted process satisiying (Theorem 2.6)

TR IR LT OUYCURR LRSS SR
on A, E@ { AL

Following an idea cf Hrigeric as outlined in Fagnola [10] and Mohari,
Parthasarathy [22] we shall investigate the asymptotic behaviour of {Fin?}
28 f—s o0,

Proposition 3.8. The sequence {V'™} defined as sn (3.6) admrls o subse-
quence {V8y)} satisfying the following :

i) w-fim V%) = V(e) existe for oll £32 0 ; . (37)
(ii}y V={V{l):¢3 0} iz o contractive (k,, #}-cdapled process for which
lim sup | < ¢, [P0~ Vio)lfen) > = 0

E—xig T

Jor O < szm,yﬁ'eﬁ,fsfﬁ,ua.ﬂ;

(iii) For each 0 T < o0, fe B, ue A there eriziz o consbant ¢c=
e(f, w, T) such that

IV —Velfelw)l € elvaft)—vale)P2; 0L eSS T, o (38)

(iv) V=(F{):t > 0} is a strongly confimuons (h,, I} adapted process,
{V{6) 23} € £ B, A) and

arl) = Ei VO ZidAL) ; PLOy =TI .. (38
kolds on B @ € AH) ;

(v) I (3.9) admits a. unigue contractive solution then ¥ is & cooyck and
w. Hm Vi) = (O 6 > o)
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Proof. As in [22] consider the sequence {pa} of continuous functions on

#, defined by
Aulty = < i, Vit felu) >

where ¥re j, JeB,ve i are fixed. By (2.10) and (3.3) we have for
0 e =T
|2} —pals} | < WLV — VW) felulf
< Wil elf, %, T') [vu(l) —vul(s) ]2

where o(f, #, T') i3 a pon-negative constant independent of . Furthermoro
I 0| < Nilfelw) for all ¢ 3> 0 and » > 1. Hence by Arzela-Ascoli theo-
rem {p,} I8 eonditionally eompact in the topelogy of uniform convergence gn
compacta. Using the seperabality of the spaces involved and usual diagonal-

isation provedure extract a subsequence {F[ﬂk}} satisfying (i) and (i), For
(iii) observe that for any ¢re A fe B, ve K

|< ¥ [VO—Valfelw) > 1 = lim | <3, (V26— F " fe(a) > |
% ]hﬁ“ﬂﬂifm %, T]I"'ﬂ{'t} _""ﬂ-{'ﬂluua'

Bo taking supremum over all unit vectors ¢ we get
¥y — Vis)lfelulll < of, o, T) Ira(t)—wal3)]2.

V== {Fi§) :# 2 0] heing contractive, strong continuity follows from
(3.8) and also {V(£)Z]} ¢ LB, A) is immediate from Lemma 3.2. Now by
(2.8) and (3.8) we have for esch foe B, v, veHand £ 2 0

< felw), Vitlgelr) > = lim < fow) V"8 el >

= < jeiw), gefv) > + lim X § dsuels)oi(e) < fetu), V™ (@) Zianigetr) >

kaymijed o
F
= < felu), gelv) > + ZI f dsuysyv¥(s) < felu), V{s) Zige(v) >

whioh Emplices (5.9) and proves {iv).

Fix any ¢ > 0 and define ag in [16] the contractive adapted prooess
Fe={Vut) ;¢ > 0) by

{ Vig) » 0L EQ 9,
Foll) =
VNGV e—aIoh ; t> s
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The proof of “fivst part’ is complete once we have shown that ¥, is alag 5
solatinn of (3.9). ¥ being a solution of {3.9), the following holds for ¢ > 4.

AVyf) = Vis)[(G) V(- 9) { ﬁf; 5 ZAN—8)I0,)}

on B @e(f) Also observe that (@ dANt—s)T(8]) = dA {f) and
11‘:'9:)1‘{‘93} =1I. Bo

2V() = F(s)IV0,) F(#——a}l“{ﬂ:}{ T ZNG A —s) ) ]

i

Hence we obtain the reguired result. The "second part’ of {v) follows by g
standard subsequence argument. []

Lemma 3.4. Suppose X = {X(t) : ¢ > 0} is & strongly continnois bounded
operator voldue {ky, M) adepied process satisfying

dX(t) = % _ X(@ZHALL) ; X{0} = 0 o {3.10)
e

on B Q). Then for all m, n20,f g6 a,vs ..aﬂ' and L2 0 the
following kolds :

< fa'™, X(tgo'™ > = I f doufa)i(s) < ™ X > .. (3.1

{488 O

where w3 = 0 and for anyg n 2= 0
#w o, =10
Ny =
n—I, 1e#.
Froof. X boing strongly confinucus, forany P » 0, sup X < ce-
oste T

Now use the fact; that 8— e{ax) is real analytic for any fixed % ¢ & and domi-
nated convergence theorem to get (3.11) from (3.10). O

Lemma 3.5. Suppose T'=(T({): » 0) is ¢ fomily of strongly coniiuons
operators tn h, such thal Fﬂ 1T << oo and
1) = THE &, T() =0 oo (312}

kolda on &, If K is the generalor of o condraction Y -semigroup with B as &
core then T(@) = 0 for ol £ 3 0.

Proof. & being a core for X, for all A > 0 we ge.

(E=2) .8 = Bk o (349
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Define bounded operators B, ;» > 0 by

B, = n}" oM (et

and from {3.12) observe that

AR, = R\ K . (8.14)
on 5. Hence by {3.13} and {3.I14) we have B, =0forall A > 0,80 T({#) = 0
for all ¢ > O

Proposition 3.8. If 20 s the generalor of o controciive Cy-semigronp with
% as o core then euation (3.9) hae o unigue condrackive solubion.

Proof. Let ¥ ={V'{t):{ 2 0} be an another comtractive process pabia-
fying (3.9). Using the basiec estimate (2.4} and (5.5) observe that ¥’ also patisfies
{3.8). Hence ¥’ 13 strongly condinumous. Define X{f) = Fi}— V' ¢ > 0).
To show that X{{) = 0 > 0) it ia cnough to show that for any u, ve A

T o o = 0 . {3.15)

whare Tu{m,:ﬂm (§) € £ {A;) in defined by

AT oy g O > = < fu, X oo >

In view of Lomma 8.5, we are to show shat T, ., .. (¢) satisfies {8.12),
Wa shall do thig by induction on m,n > 0. For m = 0= n i Iy Imme-
diate from (3.11} (@ = 0 = #). Assume that {3.15} holds for all &, v e & and
i, % 0 anch that m4n < & Then by induction hypothesis and (3.11)

observe that T, .. ... {8} satisfies (3.12) for all #, ve /i and m, 2 2 O where

()

m4n = k+1. Now an application of Lemms 3.5 completes the proof. []
For sny Xe&(A) we dofine the bilinear forms £(X)(, 5 e B)
on, 2 @ e {A)
< felu}, £5(X) ge(y) > = < felu), X Zj gel) >+ < Z} felu), pelv) >
+J;;Bﬂ < Z% fe(w), X Z% gelv) > e (8.16)
where the necessiry convergence follows from (8.6} and Cauchy-Schware
ingquality, In order that the solution ¥ = {V{) : ¢ » 0} of (3.9} ba isometric

it in necessary that (1) = 0,7 ¢ &). Here our aim iz to get a sufficient
condition for V = {P{8) : { > 0} 40 be isometric. To this end we introduce
& few more notations :

I={Ze&(8): &) =0;ijeR
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and for A > 0
Ao={B>0:Be8(hy); MB) = AB}

Lemma 3.7, If ZeSthen for sl m, 022 0,f. 96 B u, v e o and £ 0
3
<Sulw, Xt > = B[ dsu(s)ols) < fu™ o (R > L @

where my, ny(s, 5 & E} are a2 in (3.11) and
X(ty=T—V{E)*F({E) (£ > 0).

Froof. Ze 0 and quentum Ito’s formula implies that for all figek,
s veffand £ 2 0

2
< felw), X(t)ge(v) > = EE {d&m (@) < elu), LH{X()ge(2) > ... (3.18)

We obtain (3.17} from {3.13) and analyticiby of the map s — e{sv) {for sny
v € o, where the necessary convergences follows from (3.5).J

Froposition 3.8. If Ze J and 5, = {0} for some A = O then the solution
F ={V{d): ¢ 22 0} of (3.9} 1s isomedric.

Proof. Note that 0  X{$) € J, X(0) = 0. Denote non-negative opera-
tors ¥, & BiH) and BPlu) e Blly) (A > 0,0 > 0, u e M) defined by

¥, = [ eMX (0t
0

and
< f; BiMulg > = < fu™, ¥gu™ =

Observe that for any fixed » = 0, u € %, BPu) = 0 for some A > 0 if and
only if X(@)fu™ = 0 for all fehy and ¢t > 0. We shall shew by induction
on n 2 0 that for all feh, we K, ¢t 2 0

X{t)fuimt = 0 .. [319)

Taking u =0 = in (3.17) observe that BON0)«B,. 8o (3.19) follows for
# = 0 by our earlier observetion and the assumption that g, = {0} for some
A > 0. Now assuming {8.19) for n—1(n 2 1) we get for (¢, j) 7 (0, 0) and
t> 0

< ™, & g™ > — o,
Hence (8.17) implicen that B™{u)e 8, for all we K, A > 0, 50 B¥x)=0

for some A > 0, which by the observation made earlier implies (3.19) and
oomplates the proof.
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Now our aim is to exploit the time reversal principle o obtain a sufficient;
condition. for ¥ = {F{{} : 2 0} 0 be co-isometric, To this end we impose
gome additional conditions on 2,

Assumption 39. Tor the triad (&, Z, Z{n) ; n 3 1) satisfying (3.1)-(3.2)
and Fim)e jﬂﬂjg there exists a derwe linesr manifold I in b, such that
[ﬁ, E, f{-n] . n 3 1) also swbisfies (3.1} and (3.2).

If % satigfies Assumption 3.8, Lemma 3.1 implies that Ze 843} and
Zewg) For any X ¢ AUH) define the bilinear forms E(X}{i,jeﬁ} on
ﬁ@e{uﬂ] ag in {4.168} with Z replaced by Z and st

I={Z: LN =048
angd for A > 0

£, ={B> 0:BeBlhy): LHB) = AB}
Sinee Z(mnde M) jg[n = 1), Vil = {V»)t) ;¢ = 0} defined as m (8.6) iz &
regalar unitary cogyele and by Theorem 2.11 the dual unitary cocycle
Fon = [Py ot > 0} satisfies

avwigy = Pt Zim)daile) s Poo) = I .. (3.20)
on hﬂ@ﬁf.ﬁ}. Also from (3.7) we get
w. lim PP =P s o (82D
k= on

wheare ~
V() = €L, V{)* &' 2 0).

Proposition 3.10. Zet for Z Assumption 3.9 be valid. Then

@) V={Vi):£> 0l is a strongly continuous (hy, M) adapied process,
(F1Z8) ¢ £ (8, A0) and

aPity= S T BdM@: Vi) =1
. jEN

holdz on B () € (A

(i) V*={V{)*: > O} is strongly continuous.

(i) If V is co-isometric then Ze ).

(v) If Ze Jand B, = {0} for some A > 0 then V {8 co-isomelric.

Proof. 7Zex{B), so i) is immediate from Proposition 8.3 and (3.21).
(i1) follows from (i} beoause ¢—> &, is continuous in sirong operator topology.
For (iii) and {i¥) observe that ¥ is co-isometric if and only if ¥ is isometric,
Hence the required results follow from Proposition 3.8 ard {i).0]

i 8-3
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4. CLASSICAL MAREKOV PROCERSES

Here our aim ig to recall gome bagic facts from classical theory of Markey
procesges. In particular we shall gquote without proof the constrution of
Feller’s 'minimal’ golution as outlined in Ledermann-Reuber [20] and a noge.
ssary and sufficient condition for the minimal solution o be atrietly
stochastic.

Defindtion 4.1, A family of matrices = () = Qg H: 4,56 2): £ 0
ia aaid to be regular Markow if the following holds :

@ ByO>%6~); Wib=— 5 : i)
(b) &— Ly; (¢} is conginugpus for each ¢, 7 ¢ Z.

For Qi = Q, Q =)y ; 4, j ¢ Z), independent of £, 0 will be called s
Markov matriz. For any % » I denote the family of finite matrices

Q= [N = (Qy () : —n & 4,5 < n) 313 0}

and P ;= (P {5 § = (FiP (s, ). —n L, j & n; 0o, the unique
solution of

aa? F{ﬂ]‘(‘g’ [;] —_— F{'ﬂ}(a-___ ﬂ ﬂtﬂ}“}: Ffﬂ[‘g‘: g == I ; ] % b4 Q t.

Lomma 4.2. Forall 2 1,0 st <oe, —n < i, € 1 the following
holds :

i) FEis ) =da . (42)
ey O -
@) s, t) = . ‘1} ‘. FP (s, 8) Qe it) e (43)
) ZFReo=—_ I QuEFpen . )
{i‘?’} Fs"l“ {-ﬂ', t} == ﬂEji E%} {E: "}Fﬁ} [‘I‘, t} 3 {3 £ ¥ i 'ﬂ s (4'5}
. . 48)
™) FPen>0 % Ky <1
(v} FgH(s,6 > Fide, 9 L

(vii) If @ (=0, set FR(O=FNO, 1), then F(s, ty=FD(t—s). ... (A8

Bo 88 n - co. Fie ) tonds o a Limis say File i), From Fopunn
4.2 we have the following theorem,
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Theorem 4.3. For any fiwed s > 0, Fyle, i) +8 absolulely continuous in

t, for any fxed t 3 0, Fals,t) is continuously differentiable in s. For off
02 & E <00 and i, kel the follmoing holds

(i) Fals s} ==0g . (4.9)

) g Pale ) = 5 Py, ) 00 o (410)
for ahmost all ¢ 3> & (¢ Reld flwed)

(1) -% Fy (5,8 = *fﬂﬁ (5) Fyuls. i) e (411

(iv) Fals, ) = %Fﬁ(ﬂ ) Fplr, 0) - {412)

(v) Fals, ) 2 0, ?Fﬁ{& n<l . (419

(vi) If Q) == as in Lemma 42 (vil] sel Fait) = Fiel0, ¥), then

Fals, §) = Figlt—3s) e (414}
and (4.10) t3 valid for all £ » 8.
Theorem 4.4. If o fomily of matrices Pla,t) = {Pufs,t) 14, ke Z :0 &

& & < o) sabksfarng
Pila, 8y = dp, Pals. ) 3 0

and aither (4.10} or {£.11) #hen
Pyl t) 2 finle. 1) e (4.15)
for all 0 < s & & < 00,
Proof. For & somplebe account of these results see Lodermann-Reuter [20].

Congider the situation when 0 {{} = Q and get Pyull) : ¢ » 0 sa in Theorem
4.3 {vi). Ttis clear from (4.13) that for all ¢ > D

‘%Fﬂ{nq 1 e {416

The following theorem indicates a noeessary and sufficient condition for equa-
lity in (4.18).

Thooremy 4.6. For oll ¢+ ¢ Z and t 2 0 equality kolds in (4.16) if and only
ifﬂ;a{ﬂ}ﬁ}rmmﬁ = () where

By={x>»0,2el (Z) Qx= Az

Proof. See Feller [14]. {1

¥or a more explicit description of Feller’s condifion for birth and death
procewen, the reader is refered to Kariin-McGregor [19].
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K. A QLASS OF NOR-GOMMUTATIVE MAREEKQOY PROCERIRE

In thia seetion we shall deal with a class of quanturn atochastic Ovoluiigng
inttiated by Feagnola [11]. Some restuts in this direstion will be fuund in 8],
Woe extend the results obfained in [11] and improve some unsatisfactory perty
in {6].

Fiz a Markov matrix Q= ((yy;¢jc &) and chooso complezx numberg
ntyy (3, § € &) such that

|y ] L
Ly = L o (5
— jmul®; 1=

snd 8¢ Z\{0} so that for all ke Z,id 8

mpgit = 0

S0 for each te¢&,—0Oy= X )y holds. Also fix an orthonormal basis

jr 8
fs 1 k ¢ &) for b, and denote by % the linear manifold generated by the basgis
vectors. Defne u¢itary oporators 8¢ (fe8) amd projections ¢plkeZ),

Sife = fraer
e = |fe > < fil . [82)
Me= Z ¢
Ik % B

and denote hy 4 the von-Neumann algebra gemerated by {dz ; ke Z}. Alw
consider the normal operstora Z (i & 9) astiafying

Zife = mppa fa-
Observe that for each fe & thers existy & constent c{f) 3> ( such that
"B N SIF < elf) o (83)
ied
Now oonsider oporators Z = (2} 4, j & 8) defined by
"0 ; t, el
—'—E E * 4 =
] 124 ;tel, =10 4
H=+ I8 ri=0,jeH
1 " . ]
Y ]EH Zily ;4=0=j}
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Taking Zin){n > 1) 28 in (5.4) with Zy(i ¢ 8) replaced by Z{M: = Z; iy &
routine verification shows that Z satisfies Assnmption 8.9, B ia & core for 23

which is the generator of a contractive C'j-semigroup. Also Ze g0 7.
Theorem 5.1. Suppose operalors Z = {E; D5, EE} are a8 in (5.4). Then

(i) there exists o wnique srongly continuous (hy, 4 adopled conlrockive
evolution V = {F(#) :1 = O} sakisfying
dV{ty = _Eg VityZi dMjit); Vioy=1I

|

on A @ e (A)
(il V 48 o cocyele and for oll i.je J¢. t 2 0 the folisuing holds
{(a) < fu, 1o lehs) fr > = Fyld)
(b} < for Tl fs > = Fyglt)

where T=(Tja¢:% 2 0} and T o [;;:t} 3] are as tn {2.11) and Ff)=
(Fylty 1 4, 5 ¢ Z) i5 the minsmal solution for the Morkoy madriz (L

(fii) The following slalements are equivalent :
(a) V ={V{):¢ 3> 0} 42 isometric.
(b) V={¥{t):t» D} i3 co-somelric.
{e} By =0 for some A = 0.
where By(A = 0} are defined us tn Theorem 4.6.

Proof. {i) is immediste from Proposition 3.3 and Propesition 3.6. For
(ii) set matrices PimaNE) = {PYW)(1) : —n £ 6, ] € n} ;m > n defined by

Pime(ey = < fy e(0), V(ty* ¥ W) e(0) >
We shall ghow that foreach n 2 1 and m > «
Py — Fiayy v (B.5)

Where Ftit > 0) is described in Lemma 4.2 (vii). To show this first
observe that (5.5) i3 4rue for ¢ == 0. Quantum Ito’s formula (2.1} implies that

é‘:L Plm, wI(1) = Qi) Pim, #l(3) - (8.6}

where %) = Q2 —n & 4,5 < 0,
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But (5.6) admits & unique soluticn, so (6.5) ia immediate. Now uiing
the fact w-lim POt = V{E}t > 0) we have for all t > 0, {4 2
R—¥ra0

lim P = Lm Lm PEoQ) = < fi, rdalfe >
n—jrmm H—For Th-Ppmd

Hence (b) i (i) follows from Theorem 4.3 (vi). (a) in {ii) follows by an idensi-
cal methed and we omif the debaile. For (iii) we shell show that (a) &= (e},
a similar method will yield (b)&=>(c). For (&) ==4(c}, ohserve thag
F={F({) :£ > 0} being an isometric procesns we have from (ii), for each
1e &, ;E Fy(f) =1t > ). Hence by Thoorem 4.5 we pgot B, = {0} for

gome A= 0. To show the converse recall she suffivient condition for
V ={TF{&) > 0} to be isomeiric, deseribed in Proposition 3.8. Let Bej,
for apme A = 0. Denote z = (x(%) : k¢ Z) defined by

B(k) = < fr, Bfs >

A simple compubsation ahows that x e B;. Hence by our hypothesis & = 0, B
being a non-negative element we have B = 0. Hence £, = {0} for some
A = 0. This enmpletas the proof,. ]

It 13 known [6] that {op) : = V{E)gV{E)"; £ 2 0; dbe 4} i8 & non
commutstive family of bounded operators. By Theoremn 5.1, o is an
identify preserving homomorphism if and only if B, = 0 for rome A = 0.
For sn unbounded Markov generaror it ir not clear whether it satisfies a
diffugion equation in the sense of (8].

6. A CLASH 0F COMMUTATIVE QUANTUM MARKOYV PROCEIIEE
Here we ahall continue the programme initieted by Meyer [21], shudied
subsequently in & series of articles Parthasarathy-Sinha [24], Mohari-Sinha
[23), Fagnola [L0].
As in Seefion &, £ i3 & Markov matriz and operators Z;, Sifs ¢ §) and

Iz 2 1) are a3 in (6.1)—(6.3). Now consider operators Z — (Z {,ie8)
defined by

{8 —1)8y 14, 5e 8,

—Zy ;1e8,i=0,
B = < o (B1)
z;'ﬂ; : 'I.l= ﬂjjﬂ Eg

__itfsﬂzﬂk Pi=0=j.

-
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Taking Zn)}n > 1} aa in (6.1) with Z(i ¢ §) replaced by Z{ = Zll, =
rouiine verification shows ehat Z satisfios Assumption 3.8 and 2 e.ﬁr’]j:
Moreover 2 is & core for Z§ which is the generator of a contractive
{semigroup. Exploiting the results proved in Section 3 and Bection 4 we
have the following theorem.

Theorem 6.1. Suppose the operators % = (F!;4,76 8) are as in (8.1).
Then

(i) There existe o unigue strongly continuous (h, ) adapled isometric
euolution V = {F{I}I} ol A ﬂ'} satisfying
dVit) = E Vi) ZidAd(5 ; F{0) =1 o |62}
on B @ e{A.

(i) V i2 a cocycle and for oll i, je Z,§ 2 0
< fo P it > = Fylt)

where T == (1 1 L 2 0) is as i (2.12) aad F({) = (Fyll) : 4, e Z) i the minimal
solution for the Markov matriz ).

({ii) V={P{t):¢ 2 0} ic colsomelric if and only if B, = {0} for some
A0,

Progf. (i) is immcediate from Proposifion 3.3 and Proposibion 3.6 except
that V is isometric which follows once we verify the sufficient condition indi-
cated in Propogition 3.8. To this end let Bef, and sefi 2(k): = < f,
Bfy > (k6 &). P being an element in #, we have from (8.16)

Axll) = —% immlﬂ-‘ﬂ[fﬁl—-—% | g2 x{l)t T g pag| 20(k)
e
= (B, Qulell) = 0

Henea f, == {0} for all A > 0. This completes ¢he proof of {i).

(i) follows by & similar method empioved for the proof of (b) in Theorem
5.1 (ii). Now for the ‘only if’ part in (iii) uso (ii) and Theorem 4.5. For the
convers® recall the auffieient condition indicated in Proposition 3.1¢ for
V={Fi) : { 3 0} to be co-isometric and observe thab it is the same as that
for V = {F(§):¢ » 0} in Theorem 6.1 to be codsometric. 8¢ B, = {0} for
0mé A 0 impies f, == {0} for some A > 0. Hence this completes the
proof of {iii).
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Consider the family of maps & == {& ; { 2» 0} defined by

xdg) = Vi) Viti'(g € A) (8.3)

It is shown in [23, 24] if the Markov generator i3 a bounded operator ja
sup | £g| < co then o = {ny ;¢ > O} is the unique family of strongly conti-

nuous identity preserving® homomorphistos satisfying :

da(g} = T a0 ($)AA[0) 5 oyl = & v (8.4

iNE

otr k8¢ (L), where & = (6} 1, jed) is a regular family of structure maps

on A given by
r (Prt—Paiby 4,568
Mgk Dot —ME, b APR ,4e8,§=0 {
Filde) = 4 _ B | * . (8.5}
j ﬂﬁ‘ } m*—jlk #k-j_mtrhf?!'k . = ﬂ':-j £ 'S
Es {me_re| e s— | mtax ) 2Pp, , $ =0 =
e

o

Furthermore {odgd) (i > 0, ¢ e A is a commutstive family of bownded
operabors.

Here our aim. is to drop the boundedness sssumption of £ and investigate
the family o = {a; : £ > 0} in detail.

By Theorem 6.1 observe that o = {og : ¢ » 0} ia a family of atrongly
eontinnous® homomorphisms and it preserves identity if and only if B, = {0}
for some A = ¢.

In[22] the ssymptotic behaviomr of the induced Evans-Hudson flows
F(B) 1 = POBSVOHY (L > 0, ¢ & L) as n—> oo has been invesbigated but it
is not elear whether it approximates the prooess o == [o : £ 2> 0} in a reason-
able topology. Here we shall modify the approxmating sequence to ensure
it and conclude some properties of & = {&, : ¢ > 0}. In particular, we shall
show the commutativity of the process and prove thet the differontial
equation (6.4) is satisfied in weak sense. Finally with an additiona) hypothesis
on £, we shall show it satisfies {6.4) in strong sense. To thi# end we intro-
duce some notations.

Define bounded operstors 8{V({ e 8), Z{n) = (Z¥n) : 4, j ¢ S}{n > 1) Y
H{H[_ﬂ"i—f—“[_n ' 'i - 0
g =
Sl AI~Twy , 40
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where 1 - . o g
[-8 — ka_“ﬁﬁh 8 = e P
and .
O (&) —Ddy » hjes,
— Zm e85 =0,
Zin) = 4 e (6.8)
{E}ﬂ‘j}*{ﬂ;_ﬂ}]i , g ﬂ,j' g ﬂ*

1 . ;
| L mErp,i-o=;

A simple computation shows that for each n 2 1, Z(n) e % N Jg end satisfies
(3.1)—{3.2) where Z is defined as in (8.1). Also for all §,5¢ §

[SWI[J‘?{?}}‘_I }311:- 1::.? e d,
o)+ 24" + 5 24 B = {.;, :

b

, otherwise,
Ho for Eﬂ-ﬂhjﬁ‘gﬂrﬂd fe s me have

E_ 1 ZmfT* < TAIP-H| 251+ 21 D2y

and (4.2) implies (4¢.4). Denote '™ ={0W{}):¢ » 0} the unique eo-igo-
nmetric aolution of (3.8) where Z{n) (n > 1) are as in {6,8), So by Proposition
3.3 and Theorem 6.1 we have

glim OB = Fit)(t » 0 - (ET)
L o
Now consider the maps a8 = (of™9 : ;2 0) m, n » 1} defined by
o™ () = O (DCIME®, b A

We also write e'®) for o't {n > 1),

A simple application of quantum Ito's formula (2.1) shows that

dug[m,n;uwi) = EEE’_H asﬂi,ﬂ}({m.nl#;{.;ﬁ}]d‘ﬁﬂ;} ] mirh']'wi] — ¢ {ﬁ.gj
whera X

( (o4l — Py , 5,58 8,
o)1 B — 2 L ie8,i=09,
G) = 4 (B op)—H I i=0,js 4,
| % (ZN oAV -5 BN T
L —3a(zimy 2z b= 0=3 .. (6.10)

TH$) = (S PEM, ke 8,
A 34
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We ako write "W for '%lg for each n 3 1. For 21 denots
f = {5} :{,j6 8§} the regular structure maps defined by (6.10) where
m=n and oup) = FPS(bel). Bome algebrsic relations among thege
mapa are listed in the following lemma,

Lemma 6.2. Fix any n 2 1. The following folds for all ¢.je 8 :
(8) for pe A
. Hiﬂn mlﬁ}{'ﬂ » i:rj } 0,
i) = |
I1.; "™Nd) , otherwise ;
(b) for 1k|€Snm
W) ul(dy) = m.nd }‘_ﬂiﬁt]

Proof. Note that for all ie 8, n 2 1

() SPZP = & 24,

(ii) for ke

Min Pa—a—ox), >0,
(SN P S —gy = +
Il (a_s—a), £ <0

i) for [l <€ m
(S PaSi™ = (877) @8y,

With these observations a routine co-mputation implies (a) snd {(b).[]

Lot Ay be the linear manifeld generated by {fr:be}. 8o 4, i
woakly dense in 1,

Proposition 6.3. Foranyn » 1,

(8) o' = {af :£ > O} is a family of » homomorphisms. The fomily
(™) : ¢ > 0, P & 4} io commutative.

(by for |k} S m;Ei0

AGr) = o™ hy) o (610)
(¢) forde Atz 0

#- lim (g} = o) e (812)

(d) the family of operators {mdd) ;¢ = 0, & A} iz commulative.

Proof. Bince 9 is a family of regular structure maps Lemma 6.1 (8)
implies that 8z is also a family of regular gtructure maps on 4. [IHenos (8}
follows from Theorem 2.18,
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For any fized f, § € By, 4, ¥.€ o0 2> 1 denote 21} = @) : | k| < »};

P> 4, m P2 n defined by
A = < fe(w), af M{gy) gels) >
From (6.9) we got for m 2 n
% () = SHEIMENE > 0} oo (8,13)
where {4t} = {Qu(f) :—n < 4,5 € ) ;£ 55 0 defined by
{thgl}-+-mgy) (B0 Tyg) 5 i H£
{3 () =

—r‘ii Lirl?) s 8=

Also obgerve that x™Y0) ia independent of m > n. Sinee (6.18) admits a
unique solution we have for all m 2 n 2 |k|,.fi9ch,uvefand £ 20

< fe(u), P Pxigale) > = < felu), af™ drlge(v) > .

Now a standard argoment implies (b}. For (o) it is enough to show (8.12)
for ¢ = ¢, ke &, From (6.7) and (8.11) we have for each n = L]

afdy) = w- lim o Mgy} = F(E)deOi () = 0). e (8.14)

e

Hence we get applying (6.7) cnhos more in (6.14)
w- B aMige) = olge) ([t 2> 0).

H—4 o

Binoe ™ :n 22 1 and et > 0) are * homomorphisms, (6.12) foliows. 'This
completes the proef of {¢}. For {(d) nse {a) and (c) to show that {eld) :¢ = 0,
¢ ¢ A} iz a commutative family. Since A, ia etrongly demse in A, (d)
follows by a standard approximation argument. [

We shail show that « = {a; :$ > 0} is indeed, & quantum analogue of
Feller’s minimal solution. To this end we introduce a few notstions. For
atry fixed % e .4, congider the family of matrices Pls, §) = [Pyls, §) : —o0 < 4,
F<oo}, P s )= (PPMs,8): —n i, 5K n); 0 st and = > 1, QisNp)
=ity 1% < 4,5 < nF ;65> 0 where

FPles) = < fielu), C s} Oy, 0y Cina)fretar) > || efuli
Pifs, £) = < felu), Visy V()7 1) Vis)feeles) > Nefu)f™

{ { gt ()[4 55§

._“E .l=-l
- kﬁﬂﬁ[ﬂﬂ 2

Ho = {8 ¢ A ; u i odntinuocns}

Ly {f) ==
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Proposition 6.4, For any fived v ¢ M the following holds :

() ,Eﬂ PPls, t) = Pyle, ) (0 9 & § < 0)
() {(Pla,8);0€ o 8} +2 the minemol solution salisfying (4.9)—(4.13)
and (4.15) where Of) = {id) : —0 L 3,5 & o0}, 4 2 0.

I == {}
SIS P{o, §) = F{t)

where F=(F(t): 62 0) i3 the minimal solubion for the Markov mairiz
0 = ({ky: —o0 < 4,7 < o).

(d) o=(o(t): =I- VOV ;¢ > 0) is a sirongly coniinuous increasing
projection valued commulative adapted process,

Pyroof. {s)} follows from (6.7} and (6.12). For (b) using quantum Tto’s
formula {2.3) we have for 0 & et < wand n 2 1

;;- Piﬂ]{sj i} = P"“’[&, £) ﬁ"“"[t-} lﬁ,]E]

Bince (8.15) admites 2 unique solution, we have for any 4 je Z
% » max (}3], {i])

PiPs, §) == tIIE . P, )F¥s ; 1) e (6,16)

where Fimhe #) iz the unique solution of {4.3). Now taking limit ag #-— w0
in, (8.16) we get for all +,je 2

Pops, 3) = Fyyls, )

where (4.7} and (4.13} bave been used to employ dominated oconvergence theo-
rem. Henos (b) followa by Theorem 4.3. {¢} follows from (vi) of Theorem 4.3.

Fix any u, ve o and @ 725, Since {6.13) admifs a unique solution, ih
parbioular we have for |k| € »n

< Frelw), afdn)felv) > = 0 (¢ > 0).
Taking limié as n—» ov in the above expression, wo get for all ke Z
< frolu), wlPplfe(®) > =0 (¢ > 0.
Hence for all %, ve . and i 52§
< fidln), o (Dfselv) > =0 (> 0). ... (817}
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go for an elementy = ?ﬁﬁﬂlﬂih where finitely meny ¢; are non-zero,
ay 6 H we have from [6.17)

B VAP = Z | IV el ¢ 32 0) ... (8.18)

For any fixed nwe Mo i16Z,0< s ¢ using (4.12) and (4.13) wo get
§VErhe® = I Pylt) = I Fals) E Fli—9)

< £ Fafe) = [Vis) feetw)] e (0.19)

Now expioiting she fact that 3 @ e { #) ia denge in i, 3 T, (8.18) and (6.19)
impliea that o is an inereasing process. By Proposition 3.10 (it) 7* is sirongly
continuous, hence Theorem 6.1 implies that o 18 & strongly continuous pro-
jection velned process. Commutetivity follows from Proposition 6.3(d).
This completes the proof.[]

For the rost of this section we shall imposs the following hypotheais on
the Markov matrix (I

LA for each ¢ Z, sup (y << o,

Observe that for O satisfying (&), 8 = {8} : i, j ¢ 8} described as in (6.5)
indeed maps A, into 4. PFurthermore we have the following lemmsa.

Lemma 6.5. Let (&) be valid. Then for ¢ e A, the following holds :
(3) S BH)G(d) o (8:20)

is convergent in strong operalor topology for J¢ g,

{b) W-_Eim PN i) = ou(B)(dh)) .- {6.21)
for t3» 0,4,4e 8.

Proof. 1n view of Lemina 2.5 to show {a) it is encugh to verify (6.20} for
$=es keZ. For jel (6.20) is always valid since only finitely many
torms are non-zero. Kor j = 0,4 ¢ S we have

O Pe) Bi(de) = Qu_i, xPu_t+Qp, b idn
50 for each fe ki,
B oi@afit < 2] Qe | + f‘.{%’u Qe il 1

68
Hence this compietes the proof of (a). For (b) note that it suffices to
verify (8.21) for ¢ = ¢ ke Z. For (i, 5) # (0, 0), ‘Wuflgy) being equal te
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Oigy} for sufficiently large n, (6.21) follows fiom (6.12). Proof of (b) will be
complete once we verify {6.21) for { = 0 == 4. To show this ohserve the

following :

(i} ‘"a3(gx) being an element in the linesr span of {§, : |7} < u}, {6.14)
implies $hat

2{P(Mld)) = VI8 (DAGNONH > 0
(i) ®udlde) :n 2 (k]| i8 9 sequence of self-adjoint operators and
s-lim'™ wide) — Goldn).

A standard argument coupled with these observations and (6.7) lead vs to the
required regult. This completes the proof. [

Theorem 6.6. Clonsider the family of maps @ = (e 1} > 0) defined as in
(6.3). Then the following holds -

@) a: A> ARAL,) it 30 15 o fumily of sbrongly comdinuous®
homomorphisma and {o(d) 1 2 0, ¢ e A} i8 a commulalive fomily of bounded
aperalars ;

(b) o is idendity preserving if ond only if By = {0} for some A > 0.
{¢) If A holde then for all ¢ ¢ A,
2y} =, do() = ﬁzﬁ a(FHENEAL () {¢ > 0) . (6.23)
holds on Ry @ e ().
(d) Kor any fehpue M, i 0,620 and o positivity preserving

bounded process §=={j{d) :t 2 0, ¢ 6 A} salisfying (8.22) the following in-
equality holds :

< fe(a), jlifelu) > 3 << felu), ayip) felu) > .

Proof. By Proposition 3.10 {ii) chserve that V* is strongly comtingous,
henes Theorem 6.1 implies the firsb part of (a). For the rest of (a) appeal 10
Propogition 6.3 (d). (b) follows from Thegrem 6.1 {iii),

Firat obaerve that for all figeh, w, ecuf, ety and £ 2 0
< Jelw), alpige(e) > = Um < felu), c4P(plgelv)) >

= < Jow fse)>+ T lim § doua{alo(o)< fofu), o (P ai$el)>

= < fo {u), Pge(v) > Tﬁ? : *j' drug(sjoi{a) < felu), o, (0]FNgelv) >
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where (6.12), u, v € ¥ and (8.12) have been used in the first, sacond and lass
aquality regpectively. Now for (e} it is enough to show for each & e A,
(@ (0N} € £ (o). Adupbedness of the processes is clear from Theorem

6.1 and for sach ¢ & 4, j € 8, a) being a homomorphism we get from (8.20)
i?.i adiP)) . 0i(d)) = ﬂ:fiﬁzﬂ. BHBY (D). o {6.28)

where the series converge in strong operator topology. <« being a confractive
mup for each £ > 0, we get the reqaired resnlh from (6.23). This complebes

the proof of (o).
For (d) we need o show for each feh, we o and | k] 5 =

yr(t) = 2'Pt) (¢ 5 0)
yult) = < fe(w), jilgz)felu) >

wgHE) = < fo(u), aPigx)fe(u) >.

Fix any n 2> 1 obgerve by our asaumphion on j=s{j:§f 3 0

where
and

d{%- y‘iﬂ-]{f} = y{'ﬂl{t} ﬂ(ﬂl{;}+£fﬂl{!}{t } ﬂ} L [5.24]

whare y@'{t) = {nlf) : —n < &k < n} and 2W0) = W) —n £ & < n} I8
given by
) = HE:‘ gelt) Quall) (£ 2 Q)

and 2™ 2 0. Also note that xtwXf} = {#Qf) : —n & & & =} ia the uniqus
solution of (6.24) where zin/f} = 0. With these observations we get the
required inequality by integrating the differential equation, This completes
the proof.[J

In analogy with the clasgical Feller minimal process, we expect sn
operator inequality in Theorem 6.6 {d). However, with an addifions] ssanmp-
tion on j;, namely for all 1 2§ and «, ve K, << fie (u}), J(p)ifre(t) > =0
for alif » 0, we have

i) > adg)

whenever ¢ 2> 0. It remains an open question whether Feller’a condifion ia
also sufficient for the exigtance of s unigue positivity preserving contractivo
flow satisfying (6.22).

Ackrowledgment. The author thanks Professors K. R. Parthasarathy
and K. B, Sinha for posing the meain problom of this paper and gevers]
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