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SOME ACCEPTANCE CRITERIA FOR SINGLE
SAMPLING MULTIATTRIBUTE PLANS

By ANUP MAJUMDAR
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SUMMARY. Several aoceptance criterion are eonsidered for the ecmparison of cost and
disrriminsting power. A linear epat madel for non-destruetive tegting for diecrste prior distribu-
tion of process sverage has been formmlstad. The goneral practics of formulating eampling plans
separately for sach of the characteristics have baen reviewsd with aome proposad altarnatives,

1. INTRODUCTION

Thers are many situations in industry where products are inspected for
more than one atiribute characteristies. Often, in thess sitnations it is reason-
able to agaume that a defect with respect to any of the characteristica oceur
independoently of others. For example & metal closure may be inspected for
surface defeats such es ‘print peeling’, ‘off centre’, ‘dirty facing® and functionsl
defocts such aa ‘damaged’ or, for example, steel tapes may bo inspected for
two quality characteristics such as surface finish (whether good/bad) and
o0l demension (whether off sperification or not). The defecis in rubber
tread and fabrie prep in eycle 4yre cean aleo be considered as independent.
We consider the problems of acceptance sampling in thesc situations.

Weo suppose that there are r attribute characteristice for a product, A
defect with respect to any of the characteristics ocours independently of
othera. The situation also permits us to take a sample of size » from & lot
of size ¥ and inspect for all the r characteristics in any order. This of course
implies that no inspecting is destructive. If x; be the number of defocts of
i-th kind in the zample

(i, iy, onsZy) = 31 Plz). . )

For a process average (5, p5, ..., oy} the probabilily of obtaining » can be
exprensed as

L4 x n—I
Pz) = blo mp) = [, ) s H0—p)" - {2)
We asaume g;’s are small enough to agsume poisson condition, i.e.

blxs, n, pr) = glag, mg) = € omy f() !
Here g = M. Py . (8)

AME (1930) subject classifioations : B2N10,
Key words and phroses : Polsson condition, diserste pricr distributions.
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Fhe purpose of the present study is to compare the effect of differepy
acceptance criterions on OO function and cost. However most of the Tedults
arn restricted to the case of r = 2.

2. BAMPLING SCHEME

Scheme A. We first examine the following accepiance criterion ang
observe some of the properties of the OC. Plan A (n, ¢y, ¢y ..., &) have
the accoptance criterion :

Accept if a4, & ¢ ; reject otherwise

{
where Ty =X a1 1,2,..,r o {4)
Jm=1
The QU function under poisson conditton is given by
b | T Tr=¥ir -1
PAfey, gy vuny O 2 My, Wy, oon, W)= 2 gy, M) I glas, mg).. I glay, my)
y=0 2wl &=l

.. {5}
Theorem 1: For i < j, the discriminabing power of the OO for the ith
characieristic is more than or equal to that for the j-th characieristic.
Proof : To compere the change in O fimction for changes in p; we
compare the PA; obtained by differentiation --(5) with respect 0 my. Thus
—PA; = PA{ey, ey, ..., &r 3 My, My, ..., My)

—Pdley, &g, ..., 65—, 64391, ... cp—1 1 imy ... m,) fOr &5 > 0 e (B)
and

—PA; = Pd(c,, cy, ..., & : M), My, ..., m,) for ¢ = 0 ae (T

Thus the OC function is & dscreasing funesion of p;. OC function decreased
with decrease in ¢;. And ¢, = 0 implies ¢j = 0 for all j < &, It therefor
foliows from (8) and (7)

—PA; = —PA; . o (B}
Thig proves the theorem,

The above property of the plan A therefore allows us to order the charac-
toristics in the order of relative discriminating power.

It is aiso worthnoting that although the sample size has been kept same
for all the characteristios the poisson 00 would satisfy (8) for differens sample
sized for different characteristica.

Scheme C gnd D. Sampling scheme € is the natural extension of
pingle sampling for single attribute. In tndustry it is & general practice W0
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determine {ng, ¢;) pairs for sample size and meceptance vumber for each i.
For mathematical convenience we consider the case ny = » for all ¢ and define
she ¢ kind sampling achems. C(x, ¢y, ¢y, ..., ¢p) With the acceptance oriterion :

Aoccept if 2y & ¢ for all i ; reject otherwise. Under poisson condition the
OC van be exprosged as

PXoy, Cyy «.ny Cp 1 1Ry, Mg, ..., Hiy) =1:I CFicg, ) e (D}
of

Fleg, mg) = Z glay, vy er (10}
=1

The design and opbimality of multi-attribute sampling plans have so far been
congidersd for such plans whose OC cen be expressed by (9) under poisson
condition. However it is difficuld to desigh such plans which would satisfy
(8). Thus sampling scheme 4 has atleast one logic in its favour. Before wo
proceed to compare the cost of 4 and ¢ we consider cne more sampling
sgcheme. We define D kind sampling scheme D{n,c) with the acecepiance
eriterion.

r
Accopt if T # < o ; rejeot otherwise. Note that
t=1

PD{e : my, my, ..., ) = G(c, i m;) .. (113
Theorom %: For r=2 we define a plan B(n, ¢;, 6,) with acceplance eriterion.
Accept &f oy =5 6, T-1 2, < 053 and reject otherwise.
PAe,, 01+y : 1y, 1) +-PBley, ey 2 my, ma)—PO(ey, 0 : i, g)
= PiIXg ¢y i 9y, M) e (12)
Proof 1 PBley, &11¢s, 1y, Me)—PC{ey, s, 1y, Ma)

dg ‘2 1
= I Pilx,) Pty < oy beg—a)— T Plag) T Play)

drpemk *'3!!"":' .-r.‘i—l]'
ey Rt T
= X Plzy) Z  Plxy)
g #1=e1 1l
e
= X Pl Ple, € e;tog—2)
t."'rl‘l'l

_ ol
~. LHS of {12) — EHP[J:l] Ploy < ty—ay)
=

= Plx,+x, £ o,1-¢) = RHS of (12).

We will use this result for cost comparison in pection 4.
B 2-12
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3. (CosT MODEL

Lot 4 be the set; of xy’s for which we declate the lot as acceptable and 4
be the complementary set. X; denotes the number of defoctives of .
characteristic in the lot. Tet the coats be

O) = n 8o+ aSp-h @) Ao 2 (K-t
and = (r, & .. 0ed . (12)
Ofe) = n 8o+ 5 syse+¥—2) Ro+s_£1 (X~ By

® = (g, Ty, ..., Tr) 6 4. e (13)

The interpretations of cost parametera are as follows. 8, is the cost of
inspection per item in the sample for all the characteristics put together. &,
the cost proportionsl to the number of defectives in the sample. The cost
of aceeptance, 4, associated with remainder of the lot is usually negligible op
zere. 4y is the cost of accepting an item containing defective for i-th charac-
terigtic. We assume the loss due to nse of defective item is additive over all
the characteristics. This means if an ibem containa more than one defects,
say for i = 1 and 2 the loss will be the sum of damages for both the charac-
teristics put together. The sssumption is ressonably valid under many

sibuations. However proportion of items containing more than one category
of defeets will usuaily be smeall.

Costs of rejection consists of a part (N —n)R, propovtionsl to the number
of items in the remainder of the lot and another part E{X;—x) B; propor-
fional to the number of defective item rejected, If rejection means sorting,
Ky will give the sorting costfitem for all eategory of defects put together. R,
denotas the additional costé for items found with defective of i-th category
(for axample, cost of repair) and is additive over different category of defects.

Moskewitz et al. (1984) have considered similar cost model when decigions
sre taken separately for each of the characteristics. However the above
formulation is due to the author reported in 1980. (See reference) and i

applicable to any acceptance criberion. Denoting the hypergeometric proba-
bility by

) N-—qn N
e a . 14
P (54X} = ( a:;) (Xi——mf) f (I;) fori==1,2,...,7. .. (14
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The average cost for lot of stze N with {Xy, ..., X,) defects bacoms

T o) Il PefX) + E_olz) 1 PlagXy). e (18)
arzd 1 xreA 1

If the lot quality is distributed as binomisl, ie.

¥ Xy .
R i PR (BT e B N . 08

The process bverage {(py, P ..., Py} is denoted as p then average coat of p
can he oagily shownm ag

K, 7, p) = 8o+ & pO+HI—n) [A+E 4 3y) Pp)+(By+ Z Rs p)Q(p)]
(n

P(p) denotes the average probability of acceptance ot p and {{p} = 1—P(p).
If there are g states for the process average suck that ati j-th state

(i) = @, .., oy . (18}
with probability wy and
%y = 1. . (9)
j::l

Then the overall average cost become
KN .n)=2 K(N,n p) wy. e {200
4

Equation (20} is & general cost model for » characteristios aszuming indepen-
denge. Fory = 1 and ¢ = 2 the model is identical tio the cost model developed
by Hald (1965) for discrete prior distribation,

For our present discussion we will consider the case of two quality charsec-
terigtics r = 2 and g = 2. Introducing the cost functions for j =1, 2

R, ) = S+ T Sy p @)
fml

Ko (P =4y + 5 Apy . (29)
=]

K, (p#) =By + S Rypyh . (29)

K (1) = min [K, (p™), Ky (9] . (29

WO assume
Kp') > Enlp®.



224 ANUP MAJGMDAE

Lat Ea(p) <2 Ke(p™) and K, (p@) > Kdp'*)
then Enlp#t) = Kiip)  forj =1
= E,.[pl;ﬂ} fﬂrj = ¥ ‘e [‘25}

Further let K, K, K, snd K, denote the cxpacted walue of the courpes.
ponding coat funcéion defined m {21}, {22), (33) and (24).

Denoting K = KI(N, a)/¥ sampling inspection should only ho tuken
reconrese to if

E—Kp < min[Kg—Kpy, Kp—fp].
The regret function R{¥, n} is axpressed an

RN, n) = [K{N, n}—Ep(N, #))/(E;—Em) e [26)
En(N, »n) is the average minimum unavoidable cost. Thiz works out to be
RN, n) = n-F{N—n) [v, Q{p™V) +rpip')] e 127

where vy = iy | Ko(pP)— K pM | {(Es—Km) for § =1,2.

R, =8and B;= 8 foralli; K, =X, and »;=1.

4, CoMrPaRISCON OF OOSTE
We will congider the case for r =2, ¢ =2, Let

i"ﬂ} == '[IF:I.: Fﬂ.}
and P = (py, pa).
Lat 3 = p;4-2y, 9" = Py+-po, ' = np', m = np.p = pyfp and p' = o'

4.1 Comparison of scheme A ond D. For a given N the optimal plan
Aln, ¢, ¢2) safisfies fhe following inequality

RA., (1, &, 0,—1) < 0 < By, {52, ) .- (28)
RA({ ) denctes the repret fimetion valuea, Under poisson condition

vaf(Cgs 9" ) ey, Gs, ') ci< gleat-l, m') Bloy e, )
L] g[ﬂm m} B{Gl_l f‘:: P’ ¥y ﬂ[ﬁt+ lJ m} B[ﬂll ﬁﬂ"'l_ 1:' P:-'

and an optimal Di{n, ¢.} satisfiey

(29)

Rﬂ'-:!ﬂ (1, 6g—1} & 0 < Rﬂnﬂ (n, cg) v (30)
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which under poission condition works out as

vy gleg, m' )y glog, m} & 1 £ vy gleg+-1, m'Hy gles4-1, m).
Hore Ble,n,p) =2 bz, n, p) .. {81)
Kol

Theorem. 3 : For an optimal plan Din, K) the RA (n, K—1,K) < RED

(n, &) &f ?
{p1/p)E > (p'[p)EH, .. (8%)

Proof : [BD (n, K)—RA {n, E—1, K)|{(N—n)
= (™' (B[R l)—wy(e~m mfK 1),
== vy K+ 1, m") [{(K 1) {omg )X f{m")KH7)
—vy {K +1, m) [(K+1) mf {(m)E+1].
Since (=, &) satisfies (30) a sufficient condition for RD—RA 3» 0is given by (32).
Vanally p; >p, and pg>p, I now p#p' then (32) implies
(P1/p)) > (BifPs) L0, p < .

It is worthnoting that K ia an inoreasing function. of N. And if for some
K = K, (say) the inequality (32) is uatisfied then for all X > K, (32} will be
satisfied, Thus for p % p° we can order the characteristics snitably %o for-
mulate an A plan cheaper than the optimal D plan for sufficiently large lota.

Theorem 4 : For p — p' there always exist a plan Din, K) cheaper than
the optimal plan A for any given lot size.
Proof: To prove this we first show that for p=p’ and for all
§i=23..K
[RA(n, KE—1, KXY >» RDin, K)) =3 [RA(n, K—i, K) > BA(n, K—1, K)]
(33)
Let a =y, emmEand b = v, e’ ()X then LHS inequslity implies
a2b Now

[RA (n, KE—i, E)—RA{n, K—1, E)]{(¥N—=)

i—1 -1 , )
— ¥ ji Q’{H —j ! ‘mﬂ G{j, mﬂ}_'—"ﬂ ’El F[E _.ii- mﬂ G{J: m‘n)
the j-th term of this series when multiplied by (K —j) | gives

i i
a I (1w 1) (mgfmy)* ﬁﬁ"—-ﬁﬂi (1fx 1} {mgfmy) (m; )5,

Z=0



226 ANTF MAJUMDAR

Since &= b and myfm, = m,fm; and m; > m; the j-6h term is a positive
quantity and thus (33) holds.

Noxt wa note that the optimal plan 4 satiafies (29) which is idendical o
(30) for p = p'. 'Thus

vy g(K, m) vy g{HK.m).
This implies
'R‘D(ﬂ'i E} 5; RA(“:E_I:E}* “4n {34]

From (33) and (34) we conclude that the plan D(n, K} is cheaper than the
optimal plan 4(n, K—1, K) and hence the theorem is proved.

Thus for p = p’ we prefer D plan to A plan. And for p £ p" we prefer
A plan to D plan.

4.1 Numerical swomple 1 Nofe thaé under poisson condition the OO
function of a plan D(x, c) & (py, Pg) is given by that of a single sampling plan
for single characteristios st » = py}-p,. The regret function is dependent on
only four parameters p, p’, vy, vo. Henoe the tabulated cptimal plans for gingle
sharactorigtic with the above perameter, can te used aa optimal Din, ¢} by
matching p, ', vy, ve values,

Lot (py, p,) = (.002,005) and (p], p) = (.02, 03), v, = 1, v, = O.T.
Using the table of optimal single sampling plan {(# = 1) for p = .007, and
p’ =.05,p; = 1,v, == 0.7 (See Hald, 1965} for lot size {N)— 6000, we got
n = 285, and €' = 6. The exact value of D(x*, £*) under poisson condition
works out as IM284, 6).

The regret function value (equation 27) RD(286, 8) = 359.3678. Here
p#p'. To verify the inequality (32) we note that for K > & plan
Ain, £*—1, K) will have lessor regret functien walue. The actual
RA(286, 5, 6) works out as 359.28565,

Ezample 2: We ohoose (p,, py) = (0028, 0042) and (p], p;) = (02, .03),
N =6000, y, = 1,2, =047 Here p=p'. The optimal 4 plan works out 28
A(286,5,6). To see that this is optimal we work out BA{287, 5, 6} == 850.5697,
RA(285,5.68) =— 359.5410 and RA(286, 5, 6) = 350.5306. RA(286, 4,8) =
362 9882, HA(286,3,6) — 306.53068, RA({286,2.6) = 597.0200, RA(286,1,6}=
1397.9816, RA(288,0, 8} = 3438.4856. Algo, RD(286, 6) = 350.3678, Thus
the inequalitiea (33) and {34) are verified,
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4.2 Comparison of C kind plan with other plana,

Theorem 5 : For a given lof size

RAn, ¢y, e} +EBin, 04, +0)—ROW, €4, 63} = BD(n, ¢ r¢a). ... (36)

Proof : TFrom (12) we obiam

A8y, ©1+6q, Wy, M)+ QBley: 04, My, mp)— Q0 ey, &5, my, M)
= @D{o11-05. 7y, ) . (87}
RA(n, ¢y, 61-104) = n--(N —n) [v; Qd{oy, 031Cq, : My, )
+vaP A6y, 61405, t 1y, mg)]

and similar expresgion holds for regrof. function of the cerresponding B, ' and
D plan. Combining (37) and (12) we immediately get (36).

4.3 Comparison of plan O and D. Case 1: p=p'. We shall first
show that it is posaible to conskruct an equivalent plan D{n,, K} for any given
(n, ¢,, c4) such that the OC function will have approximately same values

a6 (py, py) and st (p}., Pj).

Sinea Qc,, ¢y, 1 My, My} i8 & function of m alone for a given oy, ¢y, and p,
wo denote this as QC(m). @C{m) nas the same properties as a dishri-
bution function. We shall call —FP(*{m) the OO density and — [ m* dPC{m)
— B(m7) the OC moments of order . We shell now prove thatb

o I
Theorem 8; Em)= Z 2 by, x,p)

. (3B)
E e e ]
gt
E{m") % g‘ﬂﬁ 2(x-+-1) blzy, %, p). - (39)
=0 x=y
Proof : PO(m) = (Hey, mp).  Gleg, m{l—p))

8 oy
= I gloy, mpe) L g2, m{l—p))

2 =) =T

where & = «,+x,. Using

{?':-Tl-} 'm'l} H(EE! ma] = g{ﬂ:, 'ﬂl] h[ﬁl, Ty P)
wo gob

— P (m) = —3¢'(x, m) b(z,, 2, p},

8§ denotos the summation with respect to #, and x over the domain indicated.
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Hince

ng'{m,m}dmz =1
2

:;f mig’ (2, m) @ m = —2(z41)

tha result follows.
We can however express these in terms of binomial moments, It
¢
B.E{ﬁ: 1, P} = E BE—-l{mr R, i}) Md Bﬂ{ﬁr n, JP} = b[ﬂi R, P}
then 2wed)
Bim) = (') {og-+ 1)—(pp' ) Bylegt-6, 13, p)
B(m®) = 2eg+-2) 6+ 1)p" 1 —2pp" (Ga+01+3) Byley, ta-t-¢,+2, p')
+2pp" )W p~ —p"") Byley, 09-+65--8, o)
—2{pp'y o2 —p'~1) Byley, €312, p').
The derivation of these expression has heen omitted. From the Theorem 6
it follows that for p = p" a simple and rather accurate approximation of the

OC of any € kind plan can be obtained from the OC of the plan D(nry, K) by
equating the mean and the variance. This gives

Kyd-1 = B¥m){V(m) s (20}
Ty = % Eim)| V{m} e (41}

80 that X, and nfn, are uniquely determined from the given (¢,, ,, p). Usually
nfn, comes oul to be << 1, clearly

BD(n,, K\) €, ROn, ¢, Cy).
Case 2: p< g,

Theorem 7: Let F(m, 6, ¢} = Glo;, mp) oy, m(1—p))—G(c,, mp')
ey, mi{l—~p')) Then Fm, oy, ) & 0 for o, > 6,
Pfﬂﬂf: Ifﬂl=c’=ﬂj ﬂ],m

%G{E, mp} Gle, m(l—p))

= —mglo, mp) Ho, m(I—p))+-mlHe, mpo) gle, m (1—p)).
The ratio of absolute values of the 2nd term o the lst tarm

=[ 2 ot ][ £ m—pregert),
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If p < .5 this rabio is greater than 1 and G{c,, mp) (e, m(1—p)) is an incressing
funotion of p and hence F(m, ¢, ¢} < 0.

Fim, c41, )—Fim, ¢, ¢)

= gle-+1, mp) Ge, m (1—pY)—gle+1, mp") Ale, m{l—p')).
The ratio of absolnote values of 13t term to 2nd term for 6 = c+1, and o5 = ¢

<[ E et ) /(B e
< 1.

Thus Figm, e-+1,¢) — F(m,¢,0) 0. This proves the theorem.

Theorem 8: For ¢, 2 ¢, F(m, ¢, ¢,) undergoes atmost ons change of sign
from -ve lo-Fpe. Writing

ey, mp') Glog, m(1--p'))

o Gey, mp) Qiey, m{Ll—p))—mip’--p) gloy, mp) Giey, wil—-pY)
+-m{p"— p) gleg, m{l—p})) Glcy, mp)

e note
a . _
= Fom)d = £ m [1—-p)'" 5" fro—i} Lo}
—(p " (L—p* (ey—i) L gl}]
+ 7 fm(1—p)efe 3 pe, |
Tmpg—e) -1
where A ={emm 'y m(p'—p) = 0,
We note

(@) The 2nd serjes fanction is >> 0.
i
(b) TIf for any values of 4, the coefficient of m @ in the first serieg =0, then
(=) fpT = (g2 (y—2) [ f{ea—s} T &y 1) < \ep—i+1]e,—i4 11

Thus {Ll—p)fp < (g~ ¢ +D)fle;—i+1) << tog—i)f{e;—£). Hemce the oceffi-

. eg~#-1
cient of m = 0.

(©) For i =0, the coefficient of m'% " = 0.
B 2-13
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From thess it follows that #{m) undergoes atmost ohe change of Bign and
F(m) = 0 will have stmost one real positive root. This proves the theorem,

We now coustruct two D kind plane using \¢;, ¢, p} and (&, ¢, ') and
oall them D(n,,K,) and D{n, K. If now
(8} F(m) < 0 for m = n{p,+p,) and for m = n(p;--p,) then
QDK : mfpr-+pa)) = QC(ey, 03 = my, my)
PI(E, : mfpi+p,)) < PCloy, c3 2 my, my)
for no < n, RD{n,, K} & BO(n, ¢,, ¢,).
{(b) F(m) < 0 for m = n(p,+py) and Fim) > 0 for m = n{p; 4 p{) then
QIXK, ne{p1+po)) & QOU0y, €y, 2 10y, 1y
PIKy, ny{py+pa)} & PC(ey, oy < 1y, my)
For ny < 0, BD{x,, K) < ROn, ¢, ¢,).
(©) If ¥(m)>0 for m =n(p,+p;) and Fim) >0 for m = nip;+p;)

then for both D{n,, X,) and D(ng, K} the regret function will be higher than
thn regret function of the corresponding € plan.
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