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SUMMARY. For row sums of independstt rendom variables in & trisngulest ey
(Xt 1 Gty 5 50 1} ; under certain conditinng on the random warisbles which smsure thet
all the momenta of Xy exist but $he moment generuling funetion of the rendom wariables do s
necessarily oxishk, noan uniforom rates of sonmvergence to normality are studisd. Indlnded ag
apocial casen are rated of standardised mums of Lid, rendom verisbles. An applitations of thess
pon ugiform rates, probahbilities of large deviations are found. Necossity of the asmamptions made
are slae proved. The rates ate further utilized o dewl large deviations of the type il o 0
in limiting form, to prove eertain moment type convergences and in deriving non aniferm I,
vargiong of the Berry-Fassan theoremn,, The results are extended to general non-Tinesr statistics,
Applications are made in the case of I atatintios

1. INTRODUCTION
Consider a double sequence {Xg:1 <4< n, n» 1} of random var.
ablea where variables within each row are independently distributed and satisfy

EXg=0, sup max K XLg{Xy) <o e (L1)

nEl lgign

(or that sup ﬂ?‘ E EX2 olX o) < m)

el

whers g(x) is & non negative aven funciion. We further assume that

inf 5% 4% > 0 where o} = zmxﬂ e {18

n

Denote F (#) = P! 8, < £), {real, §, = > Xqe. Under the abeve amsump-
=1
tions 1t is known that, in the i.id. case with g{z) =1,
hm gup | F(#—F )] =0
E

nal

where Off} = I (27} exp(—2?/2)dx iz the standsrd normal distirbution fane
tion. The mufurm rato of convergence of | F, (B —@{F) | to zex0 WaB studied by
Borry and Esseen and Iater waa extended by Katz {1963).

AME (1980} subject olassification: B0F99.
Xey toords and phrosss; Nop-uniform retes; Non linssr statiutiss; Moment converpmst
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The non uniferm rates of convergence of the above are of great Intereat
with applications to the probabilities of deviations end certain types of mement
comvergences. With g{x) = |2|®; ¢ > 0 Michel (1978} obtained non uniferm
pounds in i.i.d. ease which later wero extended by Gthosh and Dasgupta (1978),
for glzy =]zl ule), ¢ 2 0, wlx} <|z|*+L, ¥ € > 0 snd some & > 0 for in-
dopendent r.v.5. in a triangular array. (Ghosh and Daesgupta also extended the
results for general non-linear statistics. Under different set up Stetulevicius

(1966}, Batrov (1972), Nagaev {1979) efe. huve resulte on deviations. See
also, Linnile (1961, 1963).

1

This paper studies the non uniform ratws of convergencs to normality
onder (1.1) and (1.2) with

K{c)| | ¢+-Lie) < glz} < expla]|z|), ¢ 0 o (1.3

ahd some & > 0 where K{c) and L{c) ere constants depending only on ¢ and
1 Jog glz) is non lucreasing for @ > ap ( 2 0). This may he relaxed by
the weaker eondition, iof z'log glx) = =1 log gix,) (1+6(1)) for a sequence

* ¥ (T, Dn}

z, = o and some x, fixed, This includes funetions g for which =1 log g(z)
is8 non increasing with sruall oscillations.

In other words the cases when all the finite moments sxizt but the momernt
generating fonetion of the random veriables de not necessarily exiet ia the
subject of study. Tzamples of such functions are g{x) = exp (log®(1--|x}),
m > 13 g{w) = axp{log{l—| x|} log log (et [2()), g(z) = exp{[#] 0 L 0 < 1
etc. Nagaev (1979) assumed g to be differentiable to prove deviation resulte.
Such, assumptions are not required in the present paper,

As applicativus of these nonuniform hounds the range of valwes of ¢,
where 1—F_ ()~ D{—f )~ F, (—t,), §, = o0 is found. This gives a clear
picture ahout the variation of the normal approximation zons depending on
the functional form of g (Theotems 2.3, 2.15). Immedistely after theorem 2.15

it is shown that the zone computed here is Iarger than those obtained by
Previous suthors {see e.g. Nagasvy {1979)).

Thaet the assomptions are necessary are also shown in Theorem 2.9--2.11.
The nonuniform bounds are further utilised to obtain more stronger form of
the Ly versions of the Berry Essean theorem vompared to those obtained by
Erickaon (1973) and to prove certain moment type convergences. Apark
from large deviation it is ulsc ghown that large deviation of tha form ¢ ni/e,
€ > 0, (#ee Bahadur, 1960} can be obtained in Jimiting sense {Theorem 2.4).

A2-4



48 BATAN DASGUPTA

Resnlts on trinngular array are proved in Section 2. In Seotion 3 exten.
gion. of the above resmlts are made to general nonlinear statisbics. As gy
example we include the L-statistic in Section 4.

9. THe RESTLTS ON BOW SUMS OF BEANDOM VARIABLER IN A
TRIANCOULAE ARBAY

The following theorem states the rates of convergence of F,(f) to
depending on = and ¢ when ¢ is in & neighbourhood of the origin.

Theorem 2.1: [Let (1.1}, (1.2} with (1.3) held. Then for
1< 2 2 (og {6 +Hog glr 5,8) BRNEEY

1with |t] < €5 v/n, where 65 (> 0) is small, there evists o constant b > O depending
on v, 0<r << 12 such that

|F, (6 —0t)| < b exp(—2f2) ] 7| exp(@n3]2|0)—1]
+5 exp{—i24 0%~ | #] %)) a1

+ & P(|Zum| > o, |4} . (29)
=1

Remark 2.1 : The 2nd term in the r.k.s. of (2.2} can very well bé dropped
but it is written in conformity with Theorem 2.3. For @ < 1, one may use
unforra bound O(nY2) ginge all the moments exist ; this ecomment holds for
Theoremn 2.4 also, In (2.1) we take 2 » 1 so that log |#]| appearing therein
in bonunded below.

The proof of the theorem follows the lines of srguments in Ghosh and
Dasgupta (1978) on observing that for 0 < e, &> 1 and max (3, %) < * <
r agl, the inequality (13-c) < 2, | =] - log (x¥%(x)} holds.

Remark 2.2 :  The 2nd part of the condition (1.1) may be relaxed. From
the proof of the theorem it follows that instead of (1.1) it is sufficient to adsume
s woaker condition,

B =0, sup — £ B X% g(Xns) < . . (28

fiml T il

Remark 2.3 : In some gpecial case of ¢, ¢ while selecfing r can be made
zoro i.o, r = 1/2 in those cases c.g. if g(x) = exp (|#|) then for # > ¢

|| ® expl#| x| f5,) < F glz), 0K g << w <1l
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. ! —32
if tlx] jon < 2] —(p—2) log [=] 1e., if ¢ < &, (1— npl—mi—lng '|x|) which ia
plways trwe when

—2

-

t(‘:aﬂ-( ]mn[hgl'mﬂ|)'

It may further be noted thet for general g the region {2.1) may be made

401 < 1t M{og [t] Hlog glrs, ), M > 0 large by o small choice of ».

Remark 2.4 :  The value of ¢, in theorem 2.1 i3 immaterial when g{z) = ¢
(exp(e| [ ))%Fa>>0, for in that case (2.1) asserts I = o(n'®). But when g{r) =
exp (s|x}) 8 > €, (2.1) asserts £ < 35, ; hence the value of ¢, mattera in the
case. Proof of the above theorem leads us to conclude that &, iz basically
determined through the oounstant § in the relation ¢, = b6y to cstimate
(2.11) of Gbosh and Dasgupta (1878) and b can be taken o be

(cf8) nt § EiXue|* exp(e[mps]) if t < 58,8 <8
§m1
(Bee expangion of fi(t))
where ¢l = inf (a,/+/ %)%

aal

The ultimate value of &, constrsining the value of e, turns owb to be

2 |
[-_f: wl B[ Xp!® oxp (6| Xl }] such that | B,{f)] < U8 £ 5l
ok
Thus Theorem 2.1 ia valid for
L —1
F< [{en T B Xul® oxp (6" Xnal)} Avets] w8, o < s
fml

when g{z) = exp (s|2|).
Similarty the order of Ist and 2nd terma of the rh.a. of (2.2) ie.
oxp (O{n-112|2[%)) == exp (En—3{2(%) with

K=cal¥ E)Xy|? oxp (8" | X}
=t

For Theorem 2.2 similerly we have, K =¢ :r'r1\i E1 EX%; oxp (8" Xnyf ),
o= inf (/P
nal
Noting that moment generating fanction (m.g.f) of & r.v. X existy aronnd

& meighbourhood of the origin implies E (exp (s|#])) < oo for some s> 0,
s few observations which are immediate from theorem 2.1 are listed below.



148 EATAN DASGUPTA

Corollazy 2.1: If the mg.f of {Xnt, n 2 1, 1K i 5} exict qng e
mean of the mg.['s iz unaformly bounded oround a flxed nbhd of the origin then
under (1.2)

11— {‘n] ~ Pt} ~ Fn (1) i':ftn = o(nl/5), fo =3 0.

Remark 2.5 : 'When X '8 havo identical distribution the above reduces
to & theorem of Cramer (1938). Bubsequently we shall show that svep in
the oase of triangular arrey the conditions of the Corrollary 2.1 esn be gyb.
stancially relazed to obtain the same conclusion (sec Theorsm 2.4).

Proof of the Corollary 2.1 1 In view of the well known result B —z)
m~ (2712 2 pxp {—23{2), x—> co, it suffices to show that

t, oxp (13/2) (1—F{f,)—D{—£,. ) = o{1).
This follows from Theorem 2.1 alongwith remark 2.2, au p-1% 18 — o(1) and

£ Pl Xy| > rof) & 5 (glre, 07 63 3 EX30(Xas) (] Xue] > 12,0

= ({F2 exp (—ra, £)
= off~% exp (—#{2) ay § == o{n1/6}, e (2.4)
Remark 2.6 : From the proof of the theorem 2.1 it follows that the

trineation of the random variables is not necessary when the m.gf. exist.
Hence the calenlations (2.4} may be omitted in the case.

Remark 2.7 : The normal approximation wzone can be extended to

o(nV4) when EX3, =022 1,1<i<n e (5

Then we have the following
Theorem 2.2 1 Under the assumpbions of Theorem 2.1 and (2.5) for
1€ E< 2 (log|t|+log glre, t) with [H] < oy w12, where 6 (> 0) is zmall
there exist a constant b depending on », 0 < v < 1)2 such that
|y ) D) | < b exmp (—142)) | #] 2| exp (Ofn2 84) —1|
+b exp (—32-1-O(n~1 14)) n 14

+ B P X| > ra,)E]). . (8
im]

Bemark 2.8 1 Say that the 2nd erm on the r.h.s. ensures that the oversll
order of #, (—o0 < # < o) cannot be less than n—12,



NONUNIFOEM EATES OF OONVERGERCHE 14D

The proof of the Theovem 2.2 essentially follows the ssme lines as that
of Thecrem 2.1.

Using Theorem 2.2 and following the lines of proof of Corollary 2.1 when
the meen of the m.g.f. of X /8 are uniformly bounded around & fixed nbhd

of the origin one proves remark 2.7.

As & conssiuence of Theorems 2.1 and 22 we may obtain normal appro.
gmation zones for gensral g which will be helpful to obfain normal approxi-
mation results known so far under weaker assumptions.

Theorem 2.3 1  Under the assymplions (2.3), (1.2) with {1.8} for o seguence
f1,} eutisfying
(i) £, = ofn'’)
(i) #—20og k +log glr s, &)+ —00, U<Cr < 12 the following holds
1—F, ()~ D(—1,) ~ F, (—;) a8 $,—> 0.

Hurther if (2.5) is eatisfied, (i) mey be replaced by
£, = o(nlA),

r may be taken 10 be 1/2 In some cases aceording to Remark 2.3,

Progf : The proof is immediate from Theorems 2.1 and 2.2 along the
lines of Corollary 2.1 with the fellowing comsideration

S P Ky > re, £) < b2 (glrs,, ) sup o3? % BX2,0X0)
-1 nal =1

X H| X g]| > reg i)
= O (g(rs$)7Y) - (2.7)
— oft-1 exp (—12/2)) .. (2.8)
as §==f_ asatizfles (ii).

Remark 2.0 ; I the sequence [XT, g(X,)} is uniformly integrable then
the conclnsion of Theorem 2.8 holda even if Lhs. of (ii} is bounded above,
Hinece

El P(|X ) = rogd) = olt-Hglra, 8™ (2.9)

0 that vase.
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Let us ¢alonlate the normal approximation zons when g(x) — oxp (3] a9
8> 0, 0 < asl Letting $ =+¢.— <0 from (ii) we have '

P 2afre, 6% 10

ie, £ 25 n¥8 A where A? =Inf (s2fn) ie., t & (Qur® AWViT0) pusiag
r= %

i 1 1.,
Note that * — iz =

32—y 6 4

2 .
— respectively. Therefore iy

bl ot

view of Theorem 2.3 we have the following

Theorern 2.4 : The conclusion of Corollary 2.1 remaine valid (i.e. 1—F
o B(—t) ~ F, (—1,), §, = o(»¥%, £~ 00) under the reloxed condition

1 B
aup — B B[XE exp (9] X[ )] < o0 for same 2 > 0. e (210
azli B gml

Yimilarly, under (2.5) the conclusion of Remark 2.7 holds fie. 1—F, it}
~ Of =t )~ F (—i,), 3, = ofnV8), i, > 00) evenif

Bp EiE[Iﬁiﬂxpfﬂ]I,,ﬂm}]-::mfﬂr some 3> 0 ... (2.1)
nzml T =i

(We assume EXp=0% 2321, 1 i n and lim # sf > 0 atongwith
(2.30) and (2.11}).

Remark 2.10: Since g has growth more than any power hound, it
immaterial whether we consider 2? g(x} or g(x}. We preferred to consider
#? g{z) rather than g(x) because of following two reasons. Firstly it is koown
that the conclusion on the rutes of convergence cannot he achisved uxlost
we assume 5 bit move than the existance of the 2nd moment {see o.g. Katz,
1863). 'Therefore we wanted to base our conclusion ¢n rates solely on the
excess of 4* viz. g{z). Also the estimates in corsputation take nice form if
we congider =? giz).

The following theorem says that deviations of the form ma/n, @ >0
can be tackled in the limiting form.

Corollary 2.2 Under the assumption of Theorem 2.2 for i, = ev/%, ¢ >0
4 (2.1%)
1—F,{t,) < b2 exp [ —20-K e)] -
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ynder additional assumpiion (2.5)

1—F, (t,) < 6 exp [~ g‘— (1—K e“}] e (213)
Further in special case of iid. random variables, one has

[ % (140 1-P, (t) < bt —l%—(l—K (2.4
exp | — 5 (IH+OEN ] 1-F, () <beitexp [~ 2 (1-Kq] ... (239)
and under (2.6)
s 1 b
@xp [—-? [I—E-ﬂ{ﬁ’*]}] o 1—F_(5 )< b ﬂ-:q.l[— E—{I—EB“}] . (2.15)

Also for i, = o{b%) = g, 1/ where 6, - D aa n = 0

1—F,{,) < bigl oxp [—-;_5 (1—K E.-,,J] .. (2.18)
uitder addifional assumption (2.5)
) g2
1—F, ¢,) < bl exp |2 (1-K eﬁ)] e (207
wher X, are Lid. r.v. ona may further have
- il
1—F\ () > bexp |- % (1+0(1)] e (2.18)

where K is defined in Remark 2.4

Proof . Bimee the m.gf of X exist, the third term of r.hs. of (2.2}
i3 absent (see Remark 2.6). Hence from Theorem 2.1,

1—F, (1) < $(=)+b ! axp[-— % + Kpli2 ﬁ.]
= & 1 exp [-— % {I—EE]]

Similarly (2.18) follows from Theorem 2.3.

For lower class inequality in special case of iid. random variables
w.olg assuming HX2 =1. We have from Chernoff’s theorem,

lim - log P(X, > ) — ; log inf Het )

n—ypm G (331



142 BATAN DASGUPTA

Now == :
| PR E[i+t{11—5}+£§f31“512+ ; {Il*ﬁ)’]

i o
= l—ait 5 {144 5 (Hy—Be—eB), .. (2.19)

Minimiss the r.h.a. wr.t ¢ and see that the minimum ia attained at f — &+-ofe)
if gy # 0 and § = e+o(s%) if gy = 0. Putting these approximate solutions tg
the T.hs. of (2.19), {2.14) and (2.15) follows.

Proof of (2.14), (2.17) are similar to those of (2.12) and (2.13) : we only
prove {2.18),

Note that for large n, ¢, = nV%t, = o{l) < e( = 0) fized. So

2 a
lim inf — log P{X_ = lim lim —— log P =
m inf og P{ E“]}Hun_m =y log (X, > ¢ 1

Henoe 1—F, (2,) 3 b exp [—-‘::z. (1+0(1) |

The next theorem provides the nonuniform rates of convergence in the
complementary zome of Theorem 2.1

Theorem 2.5 : For £ > 2{log|t| +log glre, ) with == log glz} — 0

a8 *— o0, we fape
| F (5 —0)) = ﬂ[!tlgiﬂﬂt}]—m“"+‘§1 P K] >0, ]]) - (230)

whare ent = O(F? 551 log {tglrés,))) > 0 as n — o0,
Proof : The proof follows by the Bernstien inecuality
P8, > #) & I1 § oxp (s, . (280
where f; = Elexp (RY¢}) and A = 21 5 log (ig(rs, ).

Remerk 2,11 : Tn the casa z-1 Tng glz)—> af > 0) a8 200 g when
glx) = exp (8% ) then for £ == o(n*} we may use Theorom 2.1 or Theorem 22
snd for

2  2log {t| +log glre ¢ K )i (le. |#] > 8,K, = 0 (#))
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b have

P () —0)| = O(1¢|glrs,d E,,.n‘“'““""f—‘dr;_?zl P(| Xni) > 78, |8]) ... (2.32)

whers K, i8 any seqoence — o as ¥ — .

Proof of the ahove remark follows the same lines as that of Theorem
2.5 with
h = 21 8.7 log (Sglrs, iK,)).
As & consequence of Theorems 2.1, 2.5/Remark 2.11 we may obtain
following nonuniform bound over the entire range of , —o0 < # < 0.

Theorem 2.6 : Let (2.8), {1.2) and (1.3) kold. Also let for some Ay, Ag, Ay,

positive constanis, [g(rs,, {71+ & An~V? [gld, O for all sufficiently large n
when oL log g(x) = 0 ez 2 < o0 with § safisfiying

# 5 2ng 1| +log glrs, O)glrs, £ K, )7
< A 17 [glAg 9] .o (2.28)
for all aufficiently large n when x1 log g{z)— o( > 0) a8 = = 0 with T satigfiying
2 2 2 (log |t]| +log glra, t K))

where K, is some sequence converging fo zero. Then e (2.24)

|F—00| < bt [ghy 0] H 2 P(| K] >0, l2]). .. (2.26)
Further if

[Bglrs, )1 < b VE [g(Ag )] for all § 2= g > 0) e (2.26)

thei | F ) —0@) | < bn~1* [g(dg H1 . (227)

Proof : The 15t and and terms of the rhs. (2.2), sre of the order
exp (—o#*f2) with 0 < p << 1 (p < 1 latting { — a(n'/®) therein) and

oxXP (—-—% t“) < a2 exp (—aff), 0 << o << p{2if 1 > (p—2a)L]og u.

Since exp (—af?} < b {g(A, 6] from (1.8), (2.25) in the case & 3 (p—20)L
log » follows from Theorems 2.1, 2.5/Remerk 2.11 with K, = oflog a)y1 say,
slong with asmsumption (2.23)/(2.24).

For £ ¢ (p—2a)~" log n, note that | exp (Of | §{* 2~ V8))—1| = O3]}
Henes
| Z, ) — @) |  bn-s e +E P X | > 75,]8])

A2-5
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for pome #, > 0, for § < #* £ (p—2a) log » with some § >0, For # <
the assortion follows from the uniform bound O(n=17) of | F {6)—d(|.

Finally (2.27) follows from (2.25) and (2.26).

Remark 2,12, Assumptions (2.23), (2.24) and (2.26} intmtively follows
from the fact that g has growth more than any power hound.  AM these conds.
tions are sstisfied for glw) = |z exp (log@(i+jx(}), m > 1, gla} = 2]
exp ({#|v}, 0 < v < 1 efc, whore A; > O can be made arbitrarily large and
¢ > 0 arbitrarily smal.

From (2.27) it iy eagy to obfain the following non-uniform L, vemsion
of the Berry-Easeen theorem.

Theorem, 2.7 :  Under the assumptions of Theorems 2.6
lg(Ay 8} (14 [£] 92, =Dy = Ofn?) . (2.28)
for anyg p> 1 and ¢ > 1.

Theorem 2.6 may further be utilised to find the rate of convergence of
expectations of some funcéions based on ¥, = js;' & [ fo that of
T= |¥{D, 1)]. Related results are due #0 Von Bahr (198%), Michel {1976}
and Ghosh and Dasgnpta (1978).

Theorem 2.8 : UUnder the assumplions of Theorem 2.8 cmdé [%2 g(=)]

& A, giAg @) (L +a) 94+A; ¥ =2 Oand some A, ;> 0, g = 1, A, some as thal
of Theorem 2.6, one has

| E{YEg( T N—E(T? g(T))| = O (n-372) .. [(229) .
Proof = Let k(x) = 2® p{z), ¥ = 0 wibth the representation

| BRY ) — Eh(T) | ﬂj B P(|e738,] < H—P( N, 1)| < t)]dE

the theorem followa from (2.27).

Wo now proceed to show the necesaity of the assumptions made to prow
the earlier results. Let X2 be the symmetrised random variables ohtadned

from X 1.6, Xy = Kgg— X Where Xpy and X; aroiid. Let 8 =2 Zuld

the sum of symmetrized random variables.

Lat BEu=0%npl lgign . (@850



NONCUNIFOEM RATES OF CONVERGEN(R 1565

By weak symmetrization inequalities (see Lodve, 244-245) and (5.9), (5.11)
of Feller {p.147) we obtain

EPtlxﬁl > (14e) € B PUX4) > ) Pt I Sul >yfter) (@3

Forther for {, = /2 8, sabisfying (i) and (ii) of Theorem 2.2 we have
Pl [ 8l > wi2em) € 851 exp (—8{2) € 8577 (9(rsyd,)) ™ whenever 0 < 1* <1,
g ia such that

gx)fglkr} >0 sz o0, 0 < k< 1 ... [2.832)

and (ii) i more stringent than (i). o (2.33)
Then,

857 :31 Pl Xu| > 3) | 4% (glr*y/2(1 L))yt @ 43 {glrty/2ht ... (2.34)

Henee by noting that 0 <7 +* < » <12, we have for 0 < & <1 and for all
auiciently large u, say 1 3 1y, 62 5 EX2 ("% Xpsf2)
sl

<14 E_l{m+ 1) glr*Eim- 1)/2)m—8 (glr*m/2)1 (2.35)
£1.
under the condition
glkle+l) € glz)a? T forJarge 2, § > Oand 0 < k<< 1 ... (2.30)

which is stronger than (2.32).

Binee the above is true for any ¢*, 0 < r* < rand 0 < k < 1 i8 arbitrary
we heve

sup 5% B BXE gl Xne/2) < 0, 0 < 1* < v < 12 . (2.37)
nan, =1

for some n, 3= 1.
Summariging the above we have the following theorsm :

Thoorem 2.0 : wunder (2.30) and (2.36), condition (2.37) t¢ necessary o
obiain the conclusion of Theorem 2.3 for normal approwimation of both lower
and wpper tovi probabilities provided (i) fa more slringent than (2) therein. This
wsdertion remains valid when (3} da replaced by &, = o(n'%) under (2.5) a3 in
Theorem D3,

Note that by the above theorem to obtain 1—F (5} ~ Pl—,) ~ F (1)
by & an'® ( = o[nl®})) it 15 necessary to have
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::P o E: BX3,ef 1 Z0e1™ < o for some 8 = s(a) > 0 which implies for any
ng
finite p » 2

iup E“E‘E B Xui|? = flp) < 0. e (2.38)

This fect is to be used later.

Now congider the case g{z) =exp (s|2|"%) or glz} = exp (2]x|*™) for
some s> 0. Im this case (ii) in Theorem 2.3 assetn that ? < (Zezamiaza
n¥Z W), g =1/3, 2{3 (see the caleulations in hetween (2.8)—(2.10})
io. £ 8* ntPort g & nl for some ¢ > 0, whereas (i) asserts ¢ = o{pi)
or {=p{n¥Y)., That in unlike previoud cese (i) is more siringent than {id).
In this cage under moderate assumptions, we propose to show that the condi-
tiong of Theorem 2.4 are essential too.

Consider g(z) = oxp (s}%|V™), s > 0, the other case follows similarly, If

BUP &g ) EXZ2e |1 Eul*® = oo, 4 g fixed > O o (2,89
T g iy fal

then there exist a sequence ¢,-» 0, £, == 0 % % such that

sup & E Bxe ™ o . (240)

3 1y
proof of the above follows from the following general resuls,
Lemma 2.1, If &n, 3) be a funclion suck thal sup hln, &)= c0 ¥ >0

=21

fized, then there ma!saaaqmmc,—}ﬂ,ﬂﬂr,éﬂ#ﬂmwﬁ-#mta:%ﬂﬁ{ﬂ,ﬁ,}=

Proof : We construct such a sequence c,. If supremum of Afn, 3) i
attained for any fixed & at a finite »” = (s} then the proof is trivial, consider
& saquence converging to zero with firat term as s then

sup kn, ¢) > hin', ) =
i ]

The remaining case is lim sup Afn, 8} = 0, ¥ g = 0 fixed. In this oage for
overy fixed X > 0 get ng such that h(ng,é) > K wolg let mg T 0
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1
Define Cpg = j%r gnd for Ag RN, Co= X Clearly ¢_—+ 0 and suxp hin, o,)

1
5 o g ) = 30 (. ) = > s K .

Weo next show thaé calenlation (2.35) can be extended for the funetion
of the type
o) = g @) = & 6, = 0.
Clonsider

B EI BEg(r*k X [2)

&£ 14 EA g, lm-1)/2) (g, (Fmf2))y? o3
=

E 1
— 14 ) Sellrbin IHHIA— 1t w3 g
m=1
= 1—}-l'.='-ﬁ'ﬁh'-mk’m:'lI2 E ﬂﬁ'{ﬂmmm[ﬁm_”.M"
m=l
o oif b« k-2 e (2,41

Therefors if we have 1— P (£} ~ B(—1,), ~ F (—L,), 1, @, {, = o(x!%) even
when (2.39) holds, then we must have, taking g(x) = e2sl2'® in (2.41) and
congidering the case

201 K |ME

by
ﬂ“ "ﬁ E’w: nl/% = ﬂ{ﬂm}: o> ﬂ;- AuUp 3;5 P Eﬂ Ll + R {2.43]
- T PN =]

Now,

n
% Exﬁiecnlxnll"’ < iil (B X4,) {Elﬂ eﬁﬂnlxnll“ )

=l

<{Z

2 mxy ) (i= g WIESRE

by Cauchy—Schwartz ineqguality, i.e.

* X iE
3;1 E Eziiﬂﬁ“] 1|.'I|

4 Eﬂnliﬂl‘-")m
ful

< (5% Ex8)" (5° £ B
fwl

fmil

o

aup &o% T EXE ™ X o oo from (2.88) and (2.42)
gt By =l

conbradicting (2.40), hence we have the following theorem,
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Theorem £.10: Under (2.30) fo obdain 1-—-F_ (f,) ~O(—1), F{—t)

9
m~ Q{1 ), t, = ofnl®), {,—» 0, e following assumption ﬂt;il 3;5.*21 EXX
L -

e1Xui’® o0 for some 82> 0 and some my > 1 43 necessary. Similary
under (2.5) and (2.30) fo obtain 1—F, (6} ~ ®(—1,), F(t) ~ @ (~t),

L, = 0 (844, £, —> 00, the following condition. sup a3 ;El X2, fIFm™
ngen, b=

[ ]
Jor some 8 > 0 and some ng > 1£snﬂﬂm&m~y,wﬁemsﬁ=ﬁ BXY,

Similarly Under (2.30), (1.3) and (2.36), the following assumption

n
gap 672 B FX3, glr Xpef2) <00, 0 <y < 12 o (243

szl fal

is necossary to obsain (2.2)/(2.6) for 1 <1t < MQoglt|-+log glrs, i),
0<<r< 12, M<ri

Ome may note that under s <€ n neocessary and safficient conditions are

the same, vide Theorem 2.4 excepb for first fow arrays. This is satisfied e.g.
in the iid. ocase.

The next two theorems generalize the results of Linnik (1961 and 19632).

Theorem 2.18: Let (X1l <i<n 2>1] be a sequence of vndepen-
dent random varighles in a driangular array. Let {1.2), (1.3) and {2.3) hold.
Leet ©* be the largest value of || safisfying 1 < & < 2(log |§] -+log glra, £)). Define
¥e = yre (nd), the bth order semi-invariont of Yi= Ypq== Ko I Xi| & ra ),

0<r<12and ¥ = v () —= o= ﬁim ().

Then for the Zone (2.1) ie. 1 & #8 < 2(log|#} Liog ¢{rs, 2)) the following

| F 0| < Il+f,+fa+§1 P{| X | > 13, t*)

| =

I, < b~ axp (—#4/24- !;?:2 V-0t {ra_ #))) e {244)

B

a0
2
=3

I, < b g*f’ml BXD { £ U%) ﬂ:;_i Y +0E* 1 (rs t"‘}}}-—-—ll

k=8
plpe gr=1 1 = 1 k
g 2 oy a2, o s 90 )]

e (248}
whero o5(f) = w183 4...... S ¢
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and
s LT 1 AR o I
Lttt mep (50 (S ot (1) B0 o (e, )

Lp-L gt [axp { % @ (i:i (k_lfm (;i—} t_agfr:) + O g2 (ra, l‘."')}}—l ‘
e (2.448)

Note that to obsain the normal approximation zone upto ofxl/®), it ia
]
necegsary that sup 532 2 EXL exp (5] X | Y2 <2 oo for some 8 > 0, vide (2.16).
f{i=1
Henee the I-th order semi invarisnt f(ns) of X,y are finite.

Thaorem 2,15 : Under the assumption (1.2), {1.3) and (2.3) olongwith
Wit =a3% & ) = ol 2ty | ) for L= 3, 4, oo, B—1 .. (247)

where "Yra(ni) i8 the 14k ovder semi-invariant of X i, and for a sequence {£,} salis-
jying

(@) 1, = oln-23k)

(i) B—2 (logt,+logplrs, 1) > —w0 ;0 Cr<1f2
we have he following

I_Fn{tm. m ¢{_-£m.}: F(_-iﬂ) Hin ¢'{_ -ﬂ.-} a4 #ﬂ. —» 0,

If (i) is more stringent than {ii), c.g. for g{x) == exp (] x| *DHF-1) for
gome s> 0, them {2.47) is equipvalent 0 ‘P {n) = o{n1-¥¥), [ =3, 4, ...,
k—1.

The normal approximation zons compnted o far hy different auvthors,
ste o.g. Nagaev (1979} are smaller than that presented here, even in the special
case of iidrv's. With the assumption of the form BEX? g(z) « oo vide (1.1)
or (2.3), ¢ {n, F} of Nagaev (197%) turns out to be the solution of
wi=3 log x+log glsg x). The corresponding normal approximation zone is
0 <2< dir, F), wheress we have mnormal approximation zone uapto
g 200g (¢ Hlog {r o, ) 0 <7<} which is certainly a larger zome
ueing the fuct that 1 log gix) i3 non increasing in = (with small oscillation)
and therefore (r o, )1 log gir snt) 3> (s, 8" log g{e, o << r << }.

1 3 1 1

Noto that as & — oo the numbers (5—2)/2& — T e

It is also possible to obiain the neceasary conditions for Theorem 2,15
along the linea of Theorems 2.0 and 2.10. The proof virtually remains un-
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changed with slight medification. In partioular we obeerve from Theorem. 2.14
that in order io ohfain normal approximaiion zome upto o{w¥-22F) H 5
necasgary to have y¥y(n) == a(nC-¥5) for I =3, 4, ..., k-1, 1s,

Prin) = ofn--40), I = 3, 4, ..., b—~1.

The nocessary assumpiions for Theorem 2.15 o0 hold are stated below,
Sinoe the basio technique of the proof remains the same as that of Theorems

2,9 and 2.10, it ia omitted.

Theoremr 2.16 : Under {2.30) and (2.36), condition (2.3T) is necessury
to ghlain the conclusion of Thevrews 2.15 for normal approximobtion of wpper
and lower sl probubilities, provided (i3) s more stringent than (i) thercin for
gome &, &= 4, 5, 6....

Theorem 2.17 1 Under (2.30},

aﬁé Ylni) = om0 for 1 = 3, 4, .., k—1

H
and sup 3% El EXZ exp (g] Xgq |21y 2 00 for some o> 0 and some

f B Ny
g @ 1 are necessary assympbions fo obtoin 1~ F (2,) ~ O(—£) and F{—t)

m~ B(—L) for &, = ofn'® 5§ 5 o0,

Unlike Linnik’s (1961} division into classes, Nagaev (1979) considered
genoral ¢, but the condition sssumed on g is more restrictive than that
sesumed in the present paper. Also the deviation zone for normal approxi-
mabion by Nagaev (1979) is smaller.

Our resulty on necessary and sufficient conditions on devistions are shar-
por than Linwik. Wo show in i.i.d cads the necessary and sufficient assumptions
for doviationa o(n-k-222%), k= 3, 4,... are samse, wheteas according to
Linnik, these ave different ad he obtains a Zone while computing necessary
condition and a different zone under sufficient condition, viz. [0, n*pnll
for necessary assumptions and [0, #*/p(n)] under sufficient assumption,
pln)> .

In goneral, the gap betweoen these two Zones [0, Aln)p(n)] and [0, Aln)
p(n)] obtained by Linnik are wide a8 p(n)— oo (Theorem 1 and 2, paper II),
whereas our necessary and sufficient conditions for the same zone, differs by
a factor 1/4 inside the function g(zee (2.37)).

Under the necessary sssamplion (2.37) we have the zono {(see Theorem

2.3, 2,15).
2—2log ¢.—log glrs 2 4))— —0
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whereas under sufficient assumpiion we had
ts—2(tog §,—log glre. i, ))— o0,
In Limnik's notation o%g(x) = oM. 8o for 1i.d set up, (i) of Theorsm
2.5 and 2.15 of this paper reducs to
12« Alog t-+-log gra b))
= 2h(ra4)—Oog n) as & <€ ns
= 2h{rn*A §) (14+-0(1)} 6o ed® = w2gz) 3 o¥ for k arbitrary large.

Therefore, consider a partieular case where (i) is more stringent than (i) in
Theorem 2.3,

1 4
2% gla) = A® = ¢!®! ;0 a2

then, from above, the normal zone in positive axis is upto | (2repe-=
af/83-a) ¢ — § whereas Linnik goets

[0, Aln){p(r)] = [0, o(x/ir-=)},
Aln) = n* 219, alp)— o,
a amaller zome than the one we ohtained.

Qur results are for independent random variables in a triaugular array,

but Linnik's results as are for independent and identically distribubed random

variables and he considers the normal density function elso whereas we deal
only normal distribution function.

3. RATES OF 0ONVERGENCE FOB GENEBAL NOM-LINEAER BTATIETICN

In this section we consider non-linear statistios of the form
T, == a! §, R, where 8, = T Xy .. (81)
fml

Zgy, Xogs.oorr X, being independent random variabies satisfying (1.1). (1.2}
and {1,8).

Under suitable assumptions on the momenks of R we shall show results
of earlier section may be extended to include 7,

Jupposs that B setisfies
A 2-0
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B{RE™) & c(2m)n-m{log n)t® for pome 2 2 0, m =1, 2, 3... .. 3.3
where cf.) iz constext depending on m, under appropriate remtrietion on
and % we shall obiain non wniform rades for T,. w.olg. let § >0 Kye
that due to representation (3.1}

[P(T, < )0 <[P 8, & tLa, B} —0ita.d))]

+ | DlELa, N —0E | +P{| B, > it .. (33
where g () = 0 will be chosen accordingly. Now
Pl B,] > a8 < oxp [—A 0, (0)] B lezp (A, | Ra]}] ... (3.4)
It will be shown that: if
e(2m) < (2m} | LA forsame L >} o (38)
then
sap Blexp (4 | R, | << oo for 4, = e 2 (log ny™7, O X
2

for gome & > 0.
First note that
SR LA L

oxp (4, | By )+exp (— 4, | B[} = 2 |14 5 T2l

{81

Taking expectation hoth sides snd noting that B exp (—d4_| B, |)>> ¢ Ws,
kave, in view of (3.2) and (8.5)

B oxp(d,| B, ) < 2[1+ = (eZpm) (88

Henee for e <~ L1 p.hos. of {3.8) is & convergent geometrio series free from #,
therefore we have (3.6) under (3.5).

As a congoquence of this result let us obtain normal approximation zone.

Leb a,{t) = »* whera ¥ > 0 will be chosen later. Then for the first teem
of the r.k.a. of (8.3} we have from Theorem 2.1 with ¢ satisfying {2.1).
1sb term of r.hs. of (3.3) & b exp (—{t+n "2} tLn~"]

X oxp (O} |® n-m)]_1[+'§ P X5] > ro V457"

< b oxp (—£/2){exp (O(| 3w~ 12))—1| 1:;-1+§1P{1x.1} A i) ... (B9
for t = Ofn*), with some 0 < A < 1
2nd term £ bn~" exp {—£/2) . {320
drd term & K exp (—enl2-r (log »)~»3) [ill]
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(3.9)—(3.11) with ¥ = % implies the following theotem along the lines of
Theorem 2.3 aad Remaric 2.9.

Theorem 3.1 : Led (L.1), (1.2}, (1.3), {3.1}, (8.2) and (3.5} hold. Then
fﬂj“ 5 ae,gwnca {tﬂ} mﬁafying

(i) ¢, = o) ifh =0
< &'n6 (log ny ™8 §f h = O for aome 0 < & < 1
and () 822 (log 3,Flog glr A 8, £,))> —w; 0 <rA <12,
tihe following holds
[—P(T, £t )~D(—t)~P(T & —1i)ast, — 0 .. (3.12)

Furiher if the sequence {X3.9(X. )0} ie uniformly integrable then (3.12)
holds even if Lh.a, of (i) is bounded above.

Now lat 18 have a different choice of g i) viz, a.(f) = af, 0 <o < 1.
In that case with ¢ = 0) satisfying (2.1) we have

18t term of r.h.s. of (3.%)

< b exp [-—#—; (l—-u}’—E—Ewrmfa]

1+ %1 P() X 4| > r(1—2) ts,) for some X > © . (318)
i

2nd torm < » exp [—(1—o}® #2] ab o (3.14)

3rd torm < b exp [—x € trY3 (log n)~HF] oo (3.18)

Hence we have the following theorem.
Theotem 3.2 : Suppose (1.1} wilh glz) = exp (8la|) for some s> 0,
(1.2), (8.1), (3.2} and (3.5) kold. Then
PUT, > 1) < b eap [ —2 (1+o1)] .. (3.18)

for t, = aln® {log n)~372), £, — o0,
Proof of the above theorem is similar to that of Corollary 2.2 letting a— 0.

For b = 0, noting that for ¢ = &'+/r, =tnl’? = w®/e’ letting ¢’~> 0 along
$he Yines of Corollary 2.2 with the observation that 1.h.a. of {3.17) in indepen.-
dent of @ (and henoe finally letting a—» 0) wo have the following theorem.
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Theorers 3.3 : Lel the conditions of Theoress 8.2 Rold with h =0, they
for ty=¢ +/n
Hm sup lim sup ($5/2) 2 log P{T, > ¢,) € —1. - {3.17)

el R—3=

Results similar to those in Section 2 hold when 8§, is replaced by 7,,.

4 TRATEER OF CONVERORNCE TO WORMALITY FOR L-BTATIaTION

Let X,, < X5, ... & X, denote the order statistics corresponding
to » iidxve X,... X having & common distribution function #. Consider
linear combinations of the funotions of order atatisties of the form

T, = % O ME) . (4
=1

where (f,'s are constanta and A is some measurable function.

This type of non-linear statistics were considered in seciion 4 of Ghogh
and Dasguptu (1978), It was ghown under assumption (i)~{iv} thersin that
T, can be gplit into a main part plus a remainder £  which is neglibible com-
pared to the main part, Here we propose to find & sharper estimate of X,
with the aame notation used therein. ¥or the main part note that m.p.f.
of exponential distribution cxists; therefore (1.1} with g{x) = exp {(eix|h
g > 0 and (1.2) are satigfied for the r.v.’s a {Z —1).

For the remainder B, calculations therein needs slight wmodification and
correction to obtain a precise bound for ER*®, Immediately before (4.13)
in Ghosh and Dasgupta {1978}, note that K pairs can be selegtod ouk of 2m
pairs in Em"z ways K = 1,..., m, m being the mazimum number of distinck

™
paiTs. Sumtot&ll§1 2w, ways. Now using Stirling's approximation for

factorials, we get

% Em? & Im gm g m for soma L > 1.
k=1 k

Hence & correci version of (4.13) of Ghosh and Dasgnpta {1978) is
Lhs of (411) < (em) 1 B 2 ™ Im gnioam
' ' J=1 [ﬂ—j+1))
L Imctmigm (lop n for gome L > 1.

b i
{In between (4.12) and (4.13) of Ghosk and Dasgupts (1978), ii m

was ‘wrongly prinfed),
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Hemce we obrin
BRI  ofm 1oy & (log p)e g—mEm for gome L = L. o (4.2)

This corveckion, of course, does not effect the resnlta of earlier paper as we

donot need the form of the paré depending only on m there, In other words
(4.2) of this paper satisfies (3.1) of Ghosh and Dasgupta {1978). We now

proceed to find an estimate for P([E;] > a,{#). Note that by Markov
inequality

P{|R,| > a,(t)) € &3*® BRJ® ; 6, = a,(f)
% ayom o'W oy ma-m (Jog p)i® [ o P* aay
log P* = —2m log a,+-5m log m—m log nt-2m loglog ntm log L ... (4.3}
Differentiating w.r.t. m snd equating it to zero

d log P*

0= —p— = —2log e, 1645 logm—log wnt-2loglog ntlog L ... {4.4)

with a value of m = (af ¢® » (log n}-?* L), we couveniently ignore the fact
that m may not be sn iobfeger here.

Hemoe from (4.3) and (4.4) log P* = —b6m i.e. p* = ¢ tm

So P({ R, | > a,f)) = O (exp (—en'™ (log n)? a,,{#))25)) for some & > 0.
(4.5)
To find oul normul wpproximation gone, letiing o.{t) = »n {log n)*;
A, ¥ > 0 to-ba chosen later, we have
P(|R,| > a,(8)) = Olexp (—{enV¥T{log n)-1+3)¥5))
—= of |¢] 1 exp (—1%2))

for b= o(nfB-T (loy ny-LHAp/s v (4.8)
Also
| Dt-La, ) —DE) < bn7 (log n)* exp (—8/2) = of {1 exp (~#}2)
for § = o(a? (log n)~*) o (4)

Now equating w*{log a)~* = (nW™1 (log n) /% which states = 1/12
and A = 1f8, the following theorem follows along calenlations (3.8)—(3.11) of
Theorem 3.1.

Theorem 4.1 : Under ossumplions I-—=IV for T defined 0 {4.1),
I‘P{Tﬂ i tu} e w(-ﬂltﬂ.} o P(Tﬁ % — #ﬂ..] fﬂf

iq = o(nl12 (fog n)y-1%), t - c0.
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With o different choice of o {f) vie
¢, (8) = € 5~V (log n)*]¢], we have

P(|R,| > a,{)) = O (exp (—(e2/5]£)%/5 log m)))
& b~V oxp (—A | 2|27 for {E]| = £,

Also an uniform bound O{n—2 {log n)72) ia awvailable for P, < H—d)y
letting o () =272 (og «) and using PX+Y)—O € WF(X)—8)
+(2r) V2 apyd-P(| 7| > au).

Following the technique used o have Theorem 3.4 we have the following
non uniform bound.

Theorem &4.2: Under the acswmpbions {—1IV for T, defined in (4.1}, for
any A => 0 there exist & constant b == 0) depending on A such that

| P(T, € 6—0()] < w3 (og n}"® eap (—A[2]35) .. (48)

In view of the above theorem we may have the following two theorems
proceeding as i Theorems 2.10, 2.11 end noting thet A in Theorsm 4.2 is
arbibrary.

Theorem 4.3 : Under the assumptions of Theorem 4.2, for any A > 0

| BTy exp (A| T, 1 ¥5)—BT® exp (A| T |28} = O(n~11 (fog n)",
= N0, 1) .. (49

Thecrera 4.4 1 Under the qssumptions of Theorem 4.2 denoting @)
= PT", < ), we Bave, for any A > 0 and p > 1

lexp (A|#])*°) (@, (5D, = (O)n—VE (log u)), v (£10)
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