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1. Imtrodpctian

Let 4; be a sequence of positive reals tending to infinity, let ey and b; be functions definad
of a suitable Hilbert space which satisfy certain continuity and non-degeneracy conditionps,
and let B, be a sequence of independent one-dimensional Brownian motions. In this paper
we consider the countable system of stochastic differential equations

]

dk} =3 op(X)dWi - Ab(XXidt, i=12..., (1.0

J=1

and investigate sufficient conditions for weak existence and weak uniqueness to hold, Nate
that when the ayp and b; are constant, we have the stochastic differential equations
characterizing the infinite-dimensional Ornstein-Uhlenbeck process.

We approach the weak existence and uniqueness of (1.1) by means of the martingale
problem for the corresponding operator

[ = pif 0 or
2 =32, AR F =D bz () (.2
W= ' i=

operating on a suvitable class of functions, where ay(x) = Y00 | er{xjop(x}. Our main
theorem says that if the 4y are nondegenerate and bounded, the b; are bounded above and
below, and the g, and b; satisfy apptopriate Holder continuity conditions, then existence
and uniqueness hold for the martingale problem for %°; see Theorem 5.7 for a pracise
statement.

There has been considerable interest in infinite dimensional operators whose coefficients
are only Hélder continuous. For perturbations of the Laplacian, see Cannarsa and Da
Prato [6], where Schauder estimates are proved using interpolation theory and then applied
to Poisson’s equation in infinite dimensions with Holder continucus coefficients (see also
[£4]).

Similar techniques have been used to study operators of the form {1.2). In fnite
dimensions see [17-19,12). For the infinite dimensional case see [7- 11,14,23]. Common o
all of these papers iy the use of interpolation theory to obtain the necessary Schander
estimates, In functional analytic terms, the system of equations (1.1) is a special case of the
equation

dI; - {b{.f;]x; +F{X:)}d! + LY d[ﬁ',)dwr, {1-3}

where @ is 2 mapping from a Hilbert space M to the space of bounded nonnegative self-
adjoint linear operators on K, b is a mapping from H 1o the nonnegative self-adjoint linear
operators on M (not necessarily bounded), F is a bounded operator on H, and d(xkx
represents the composition of operators. Previous work on (1.3) has concenltrated on the
following cases: where a is constant, & is Lipschitz continuous, and F = 0; where « and &
are constant and F is bounded; and where F is bounded, b is constant and a is @
perturbation of a constant operator by means of a Halder continuous nonnegative self-
adjoint operator. We also mention the paper [i13] where weak solutions to (1.3) ar¢
considered. In our paper we consider Eq. (1.3} with the a and # satisfying certamn Hdalder
conditions and F = 0. There would be no difficulty introducing bounded F(X,)dz terms,
bui we chose not to do so.
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The paper most clossly related to this one is that of Zambotti [23], Our resuits
cariplement those of [23] as each has its own advantages. We were able to remove the
restriction thal the a;'s be given by incans of a perturbation by a bounded nonnegative
operator which in turn facilitates localization, but at the expense of working with respect to
a fixed basis and hence imposing snmmabhility conditions involving the off-diagonal aj.
See Remark 5.10 for a further discussion in light of a conple of examples and our explicit
hypotheses for Theorem 5.7,

There are also martingale problems for infibite dimensional operators with Hélder
coniinuous coeflicients that arise from the fields of superprocesses and stochastic partial
differential equations (SPTYE), See [20] for a detailed introduction to these. We mention
[15], where superprocessss in the Yleming Viof setting are considered, and [4], where
uniqueness of a martingale problem for superprocesses on countable Markov chains with
interactive branching is shown to hold. These latter results motivated the present approach
as the weighted Holder spaces used there for our perturbation bounds coincide with the
function spaces 5° used here (see Section 2), af least in the finite-dimensional setting

(see [17}
Consider the one dimensional SPDE
Dt 1 2% :
a(’:x}=§${n )+ A)d W, (1.5)

whete W is space-time while noise. If one sets
- 2“ 1.
X =/ eu(x,Ndx, j=0,%1,£2,...,
o

then (he collection (X7)2°_ can be shown tu solve system {1.1) with 4, =&, the &
conslant, and the a; defined in an explicit way in terms of A. Our originel interest in the
prublem solved in this paper was to undersiand (1.5) when the coefficients A were bounded
above and below but were oaly Hélder continuous as a function of #. The r2sulis in this

paper do nat apply ta (1.5) and we hope to retorn to this in the future.
The main novelties of our paper are the fellowing.

(1) C7 estimates (Le., Schauder estimates) for the infinite dimensional Omstein—Uhlenbeck
process. These were already known (sec [14]), but we point cut that in contrast to using
interpolation theory, our derivation is quite elementary and relies on a simple real
variable lemma together with some semigroup manipulations.

{2) Loealizarion, We use perturbation theory along the lines of Stroock-Varadhan to
establish uniquensss of the martingale problem when the cosfficients are sufficiently
close to constant. We then perform a localization procedure to eslablish our main
result. In infinite dimensions localization is much more mvolved, and this argument
represents an important feature of this work.

(3) A larger class of perturbarions. Unlike much of the previous work cited above, we do
not require that the periurbation of the second order term be bounded by an operator
that it nonnegative, The price we pay is that we require additional conditions ou the
off-diagonal gy’s.

After some definittons and prelirninaries in Section 2, we establish the needed Schauder
£stimates in Section 3. Section 4 comtains the proof of existence and Section 5 the
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umniqueness. Section 5 also contains some specific examples where our main result applies.
This includes coefficients ay which depend on a finite number of local coordinates near (2, j)
in a Holder manner.

We use the letter ¢ with or without subscripts for finite positive constants whose valye is
unimporiant and which may vary from propasition to proposition. & will denote a reaf
number between 0 and 1.

2. Preliminaries

We use the following notalion. If H is a separable Hilbert space and f : H — R, D, f(x})
1$ the directional derivative of fat x € H in the direction w; we do not requirs w to be a ynit
vector. The inner product in A is denoted by (-,-}, and | - [ denotes the norm generated by
this nmer product. Cp = Cy(H) 18 the collection of R-valued bounded continuous
functions on H with the usual supremum norm. Let €7 be the set of functions in Cj, for
which the first and second order partials are also in . For @ < (0, 1), st

C 7 reano |

and let C* be the set of functions ie Cy for which Il = [|flic, + |flc is finite,
Let ¥ : 2V} — H be a (densely defined) self-adjoint nonnegative definite operator snch
that

¥l is a trace class operator on H. 2.1

Then there is a complete orthonormal system [g, : # € ¥) of eigenvectors of ¥~! with
corresponding etgenvalues A-', A, >0, satisfying

o0
E‘l:l‘:m- de + 00, Vey = dyen
p=]

(see, e.g. Section 120 in [21]). Let Q, = e~ be the semigroup of contraction operators on
I with generator — V. If w € H, let w, = {w, &) and we will wiite I and Dyf for D, f and
D, D f, respectively.

Assume a: i — L{H H) is a mapping from H to the space of bounded self-adjoint
operators an if and 6 : H — L{2(V), H) is a mapping from H to self-adjoint nonnegative
definite operators on ()} such that {¢,} are eigenvectors of d(x) for all x € H. If g;{x) =
(&7, a(x)6;} and Mx)(e) = 4ib{x)e;, we assume that for some y= 0

y 2t Y aaz ez, xzeH,
n

Vlabdzy, xeH, iel. (2.2)

We consider the martingale problem for the operator & which, with respect to the
coordinates {x, &}, is defined by

ZfHx) = %Z a{x)Dyf (x) - Z Aix b x)Df (). 2.3)
o =1
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Let  be the class of functions in €7 that depend on only finitely many coordinates and
Fp be the set of functions in # with compact suppert. More precisely, /' € F if there exists
n and f, € Ci(R") such that f(xy,...,%n...) = f,(%1,..., %} for gach point (x1,x3,...}
and f € & if, in addition, £, has compaci support. Let X, denote the coordinate maps on
the space C([0, 00}, H} of continuous H-valued paths. We say that a probability measure P
on C{[0, 20), H) is a selution to the martingale probiem for & started at xp if P(Xp =
xp) =1 and f(X}—f{Xq) - f" ZFF{X)dr is a martingale for each f € F.

The comnection between systems of stochastic differential equations and martingale
problems continues to hold in infinite dimensions; sce, for example, [16, pp. 166~168].
We will use this fact without further mention.

There are different possible martingaie problems depending on what class of functions
we chpose as test functions. Since existence is the casier part for the martingale problem
(sez Theorem 4.2) and uniqueness is the more difficult part, we will get a stronger and mors
uzeful itheorem if we have a smaller class of test functions. The collection F is a reasonably
small class, When a({x} = a” and &(x) = V¥ are constant fimctions, the process associated
with % is the well-known H-valued Ornstein—Uhdkenbeck process. We briefly recall the
definition; see Section 5 of [1] for details. Let (W, t=0) be the cylindrical Brownian
motion on i with covariance a. Let %, be the right continuous filiration generated by
W. Consider the stochastic differential equation

dX, = dW, — V¥,ds. (2.4)

There is & pathwise unique solution to (2.4) whose laws [P* x € H} define a unique
homogeneous strong Markov process on the space of continuous H-valued paths (see, e.g.
Section 5.2 of [16]). {X, 720} 15 an H-valued (Gaussian process satisfying

E{X, M= {X0. QM forallhc H, {2.5)
and

Covi{ X gHX o k) = ﬂ (0 00,o0d) b (2.6)

The law of X started at x solves the martingale problem for

Lof(x) = E ayDyf(x) - L LxiDif (x). X))

J'J-l.

Welet Pf(x) = E*f(X,) be the semigroup corresponding to &, and R, = I e 5P, ds
be the corresponding resolvent. We define the semigroup norm || - ||z for « € (0,1) by

ifls = sup NS — fll, (2.8)
1=
aticl

ils = g, + s

Let 5 denote the space of measurabie functions on II for which this norm is finits,
For x € ff and § € (0, 1) define | x|y = sup, [{x, ak}llk and

Hp={xe H :|x|g<oc}. (2.9)
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3. Estimntes

We ztart with the following real variable kemma.
Lewnmnn 3.1. Let A0, B>0. Asamme X - C{H) ~ Cp(H) is a bounded Iinear vperator such

thar

X N, <Al Nle,, £ € ColH), 3.
and there exisis v € H such that

I & o, = BID Sl e, - {(3.2)

Jor all f such that Dof € Co(H). Then for each u € (0, 1) there iz a constant ¢| = ¢z} such
that

KAl S oloftlf e B A for ol f € C°,

Proof. Assume (3.1) and (3.2), the Iaster for some v € H. Let (p, : £30) be the standard
Brownian density on R. If /' € C*, set

P fix) = ff{x + zw)pf2)dz, x€ H.
R

Since a change of variables shows that

po*fx+ hoy—p, xf(x}= f flx +zv)pz — R)dz — f Fx 4 zo)p,(z)dz,

R K

it follows that

Do+ = - [ 1l + mpre
this is in Cp(H) and

(D@, » £ X3)] = |— [ o+ mpiras

_ | [+ m - s

sificht® [ 1 Ep e

= eaff w ppe 12,
where ¢z = [ [z]*" p;(z) dz. We therefore obtain from {3.2) that
1K@, * M, S caBlf lexlot s 2. (3.3)

Next note that

I * () —F(x)i<€ [ [f{x + zv} — f{x)|p (z)dz

<if | ol f 12Fip(z) dz
= c3‘!flﬂ“lﬂlmgaﬁj
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whete &1 = [ |z1%p (=) dz. By (3.1)
MK, *f — N, Sesdlf ] cslof<e®2, (3.4)
Let cq = ¢2 V ¢3 and & = B*/ 4%, Combining (3.3) and (3.4) we have

1KS lle, < ealf [eelvl*e/ (4 + Be ™'/
=2e4lfl<hF B4, O

Set

210 ez“—l, 0;
oo [

and

/2
v, = (Z wff:{w) </wl.
i

Recall
Qw= E e ypa
pa)

We kave the following by Propositions 5.1 and 5.2 of [1]:
Proposition 3.2. (a) For ali we H, { € Cp(H), and +>0, D P.f € Ce(H) and

wlilfll e,
1DwPiflic, < v (3.5)

(BYIf 120, we H, and £ : H = R is in Co(H) such that Dg.of € Cy(H), then
DyPf(x) = PADg W )x), x<€ H.

In particular,
1P f e, <1 Dowl e, (3.6)

We now prove:

Corollary 3.3, Ler f € C°, u,w € H. Then for all 1>>0, D, P,f and DD, P\f are in CplH)
and there exists a constant ¢ = ¢\(, ¥) independent of ¢ such that

IDVPf |, S eulwl I | =8 oy lw) 1f | et 2 (3.7

and

IP.BWPf ||, <01 |Qytilse Wl ™ ettt gl ol et
et [ullwllfl= £ (3.8)

Proof. That D, P is in Cp(H) is immediate from Proposition 3.2(a). By (3.5) and (3.6) we
may apply Lemma 3.1 to X = D,P, with v = 2w, 4 = |w|,(y)"/* and 8 = 1 to conclude
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forf e C°

“ﬂwpf“c,*&'ﬂzIQ,wﬂﬂc,mu"ﬂ[ﬂ]—ﬂ -2
gq?{n-l}ﬁ[whmﬂ‘.{a—m:_ 6
This gives (3.7).

By Proposition 3.2, D, D, Pf = D P nDyg ulipaf s and the latter is seen to be in Cy(F)
by invoking Proposition 3.2{a} twice. Using (3.5) and then (3.9) we have

1DuDLP Y || o, = HDWF 2Dy wPipflic,
& Wl (ri/Z) 2 1D g, uPepaf e,
L W22/ 2Y ey ™0, ot o | et/ 20,
This gives (3.8). 0O
Remark 3.4, We often will use the fact that there exists ¢; such that
W =il s (3.10)
Thig is {3.20) of [1].

Corollary 3.5. There exists ¢y = ei{n,y) such that for all i>0, f € C°, i<, we have
D;Ryf, DyRyf € Cp, and

I2:Rf N, Serfd + ) &2 f) o, (3.11)
IDyRif o, Seid + A) ™ f |, (3.12)
ViR =< aild+ 4 2 f e, (3.13)
IDR f I € arllf |l e (3.14)

Preof. Corcilary 3.3 is exactly the same as Proposition 5.4 in [I], but with the §% norms
replaced by C* norms. We may therefore follow the proofs of Theorem 5.6 and Corollary
5.7 in [1] and then use (3.10) to obtain our result. However, the proofs in [1] can be
streamlined, so for the sake of clarity and completeness we give a more straightforward
proot.

From (3.7) and (3.8) we may differentiate under the time integral and cenclude that the

first and second order partial derivatives of ;) are continuous. To derive (3.12), note firs
that by (3.8),

kD P ey = PP ¢, S 2| D, a5l [F | o
= oo~ | AL, (3.15)

Multiplying by £=4 and inteprating over ¢ from 0 to co yields (3.12).

Next we turn to (3.14). Recall the definition of the §* norm from (2.8). In view of (3.18)
it suffices to show

VDyRif s Soslf | om.
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Since
IPDyRY — DyRif lle, <2 DyRif N, Salf (A + 4)

by (3.12), we need only consider r<(1+ )",
Use Proposition 3.2(b) to write

P;D@-.R;f— .D#R)f = [ﬂﬁhte_#rﬂgfrﬂur—ﬂgfrm
+ (D P Ry — DyRif] (3.16)
Recalling that ;< 4;, we see that the first term is bounded in absolute value by

g
i IDP RS ey st [ XDy, U, ds
i
ﬂcjffz UFIC':
using (3.15).
The secomd teem in (3.16) is equal, by the semigroup property, to
4] o0
f e #D,Pf ds — f e "D, P S ds
0 ¢
o, s] )
=& -1 f e D P ds — &¥ f e~ MDyP.f ds.
¢ 1

Since <1, then ¢ — 1<es(A)™* and the bound for the second term in (3.16) now
follows by using (3.15} to bound the above integrals, and recailing again that Ar< 1.

The proofs of (3.11)} and (3.13) are similar but simpler, and are left to the reader {or refer
to [iD. O

4. Existence

Before discussmg existence, we first need the following tightness result.
Lemma 4.1. Suppose Y is a real-valued solution of

i
Y= yo+ M, — A f ¥,dr, (4.2)
[}

where M, is a martingale such that for some ¢,
(M), — (M), €cili — 5}, sl (4.3)

Let T>0,c€(0,1). Let Z, = f; e 9dM,. Then Z, = ¥, — e ¥y, and for eack g>2z~",
there exisis g constant c» = calg, q, T) suck that for olf & € (0,1),
g
E N sup \Z, — Z,1% %-‘::{E.q,ﬂﬁ- (4.4)

LT | t—sl £ f

Froof. Some elementary stochastic calcrlus shows that
!
¥r=e ¥y, + / e~H=S M.,
0

which proves the first assertion about Z.
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Fix so<fy<T. Let

K; o o0 _ (]e-tn f ' e dM,
0

and
r
L;=ﬁ-'u'f 3"’er.
L]
Note
I;' —Za =Kﬂ! +Lh.
Then

I

{K),, = [e7Ho=) o (P~ Mn f e d{ M),
L]

|

écgﬂh'm;_s“}).

Considering the cases A(fg — 5) > 1 and <1 separately, we se¢ that for any ¢ € {0, 1) this is
Yess than
(ty — S0}’

calg) I
Now applying the Burkholder—Davis—Gundy inequalities, we sge thai

fn — e
EK P <este, ), 4> 1 (.5

Simnilarly,

1= E'ﬂﬁ'—ﬂl]
(L}ﬂ]. % fﬁ 21
Leg{A™" Alto — o))

_ (A =)
= g 7 .

This leads to

ElLi‘n II? £ CT(‘E- E'] E.'E_T;Lf y F 1. [46]

Combining (4.5) and (4.6) we get

[t — 501™
Al

It is standard to obtain (4.4) from this; cf. the proof of Theorem 1.3.11in[2]. O
Recall the definition of Hy from (2.9).

EiZy, — Z5, M < cale, 9)
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Theorem 4.2, Assione oy : H — R is contimacuy for all 1.}, by is continuous for all i, (2.2)
Aslds, and for some p>=1 and positive constant o

Lokt k=L 4.7)

Then for every xu € H, there is a solution P to the martingale probiem for & starting at xg.
Moreover if B € (0,1), then any such solution has sup,. . | X |g<co for ol ¢ P-a.s If in
addition xq € Hg for some § e (0,1}, then any sehition P to the martingale problem for &
starting at xn will satisfy

sug | Xg<oa forai T=0, P—as (4.8)
4

Proof. This argument is standard and follows by making some minor modifications to the
existence resuli in Section 5.2 of [16]. We give a sketch and leave the details to the reader.

Fix xp in . Using the finite dimensional existence result, we may construct a solution
XY= (X" keN)of

14 L] !
X = 500 + e [— fﬂ XX ds + 3 fu o’,;,,e{i':)dﬂ*’{}.
=

Here { W/} is a sequence of independent one-dimensional standard Brownian motions and
a"(x) is a symmetric positive definite square root of (ay(x});;., Which is continuous in
x & H (see Lernma 5.2.1 of [22]). Then X7 = S, X ¢ has paths in C([0, o0}, H) and we
nextL verify this sequence of processes is relatively compact in this space. OUmnce one has
relative compactness, it is routine to use the continuity of the ay and & on H to show that
any weak limit point of {X*} will be a sctution to the martingale prablem for & starting
a1 xp.

By onr assumptions on &y, each by is bounded above by v~ and below by p. We perform
a time change on X% let 4™ = [ b(X)ds, let 7% be the mverse of AP, and let
Y;* = X7, Then Y7* solves the stochastic differential equation

H
Y = (k) + lpen —fﬁ Ak]"f'kds+ Mf'*],

where Mf'k 15 a martingale satisfying [R5y, = (M | <o)t — 5], and &3 is a constant not
depending on » or k.
We may use stochastic calcolus to write

yid = () 2k,
where

(0 = [Lgame ™ + lygen m]vo(k)
and

i
2 = 1geq f;. e dAE,
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Lot T>0 and s T, Choose ¢ € (0, 1 —p and g>2/¢ By Lemma 4.1 we have for
k=n and any & € (0,v],

-
E sup \Z = P eale g™ T o
sy Fli—el s 3! 1.&

Hence, indoiag the time change tells us that

£ up T F| g coente g T) s
LT etlRE ! BSOSttt Ao

where
Tk = 1gen(@ — e fs 8DE L ) 4 1 o),

so that X35 = ZI*, Now for 0, r<T and |t — s/ <y,

(EIX] ~ X7 = X7 — 57, = (|3 1305 — Boip?
i
T
- ,k ot .j_- ~— —
<Y NET - TP, = Yo @Frk - Bkl
k [3

¢ — glé~1fe

‘ﬂfj.(ﬂrq} Ts T}U‘?g L’TEE_E )

where [| - | is the usual 73(P) nerm
By our choice of & this is bounded by ey(s, ¢, v, T)|¢ — 5%, and hence

sup E1X7 — XMW g fte - 5192, 0T, [s— A<y
-

It is well known ([5)) that this implies the relative compactness of ¥ in C(R,, H).
We may write
X7 =X - vr(, {4.9)
where

)= e g,
k=1

If 5<<1, then

IU“{;} - W{S}F = i [E-‘llt J‘: bﬂr:}dr = 'E_J*J': AT df.l 2.1:0{@2

frml

ot
€ )57 - o) A Dxalk)?
k=]
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.- 2
= Z Lgemt-s-AixelkYy 2t — 2
L]

+ z 1{;* }’,ll__dr-]]xﬂ{k}l. (4'10)
]
Fix £ 0. First choose ¥ so that 170, xy(k)? <&, and then 3 >0 so that

z 1{1* }ﬁ-l)xﬂ(k)z <8
=1

and
n
Y BxgkPy 28 <s.
k=1

[f ¢t — 5<6, then use the abave bounds in (4.10} to conclude that
N o0
1) - UM< 3 BpxollPy 26 + 3 xplky?
kel k=X

o4q
+ 2 g wmyanl®)
k=1
< 3¢.
This and the fact that I"(0) — xo in H prove that {I] is relatively compact in C(R,, H).
The relative compactness of {X*) now follows from (4.9).
Assume now P is any solution to the martingale problem for & starting at xp € H and
let X} denote {X,,&). Fix # € (0,1) and T> 1. Choose & & (0,1 ~ ff). Using a time change

argument as above but now with no parameier # and § = 1, we may deduce for any g>-1/¢
and ke N

o (iﬁ Xk ey j_;wz)

Soxls, g, T/na o9

The right-hand side is summable over & by our choice of £ and (4.7). The Borel-Cantelli
lemma therefore implies that

sup (X% — ¢ % Jo Wy« 7P for & large enough, as. {4.11)
=T

I xy € Hy, this implies that with probability 1, for large enough &,
?:? X f|.1£‘fz 1+ ::znun(-’s:}il,.“:Jf : £ | + [xoig,
and hence

P (X g <ee  as.
ixT
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For general xy € H, (4.11) maplies

sup X482 <1 4+ 6T AP | < 06y, T, f,x0)  for large enough &, as.
g T

This implies supy- oy [Xilg<co as. and so completes the proof, [
3. Uniqueness
We continue to assume that () and (&) are as in Section 2 and in particular will satisfy

(2.2). Let yy € H and let P be any solution to the martingale problem for % staried ai g
For any bounded function f define

S =E j; e~Hr(X ) ds.

Fix zy € H and define
Fof (0) =7 E 85(20) Dyf () — Z Apeibi(z0)Dif (). (5.1)
25

Set # = ¥ — & and ket R; be the resolvent for ) as in Section 2. N

To make this agree with the definition of % in Section 2 wg must replace 4; by 1, =
bilzo)d; and set &) = ap(zo}. As y<bi(ze)<y~', and the constants in Corollary 3.5 may
depend on y, we see that the bounds in Coreliary 3.5 involving the original A; remain valid
for R;. We also will usz the other results in Section 3 with J.i m place of A; without further
comment. In addition, if we simultaneousty replace b, by &; = b,/biz;p), then

Pf(x) =3 2 ay(x)Dyf (x) — E Apebi()ODF (),

1.]—
Lof =5 2D~ Y Labyf (o),
i =i =1

and

Bizey=1 for alt i

In Propositions 5.1 and 5.2 we will simply assuine bi(z) = 1 for all i without Joss of
generality, it being understood that the above substitutions are being made. In cach case it
is easy to check that the hypotheses on (b, 4;) carry over to {B;, 1) and as the conclusions

only involve %, %y, R;, and our solution X, which remain unaltered by these substitu-
tions, this reduction is valid.
Let

n=sup 3 laylx) — ay(zo)). (5.2
|
Set
Br(x) = xilbi(x) - ).

As belore, = will denote a parameter in (0, 1).
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Preposition 5.}, Assione

3 tagledy % <oc, (5.3

ig]

g ANB e, <0, (5.4)
and

Y A B e <00, (5.5)

i

There exists ci{d) = 0 as A — oo and 3 = ez, y) such that for all f € C*, we have Ry ¢
C* and

12 R e S er(®) + emlif e
Proof. We have
RS ()< E |@g(x) — agzo)| Dy R ()]
: Z Adxillbix) — 1| PRy ()]

LhRealfles + calf 1o, (5.6)

where c4{d) = ¢ as 1 = co by (5.4) and (3.11). In particular, the series defining #R;f is
absotutely unifoymly convergent.
Let Zp(x} = ay{x) — ag(zg). If h € H, then

\BR Y (x + B) — BRY (0| = | [Gylx + By Raf (x + b) — BO)Dy Raf ()]
if

+ 3 ALBAx + WD Raf(x + by — BA=ID: RS (0]

=

3 Gylx + BDRS (x + B) — DyRif (3))
5

+ |3 @x + B — BN DR (x)
i

+ 3 ABilx + (DR (x + B) — DiRaf ()

+ E ALBi(x + i) — BAY)D: R f(x)

=% +&:+5+5. {5.7)
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Use (3.14) to se= that
Syses 3 [@lx + RIS it
[

Sasnif lex Bl (5.8)
By 3.12)
S2% Y lag(x + A) — ag() Dy Ry (|
L

<61y lagle A1 + LY 3 f |
Iy

el d)|f =415, (59
where (5.3} and dominated convergence imply lim;_. ., es{d) = 0. By (3.13)
53ep Y | AlBilx + IIA+ 4Y 2l R < el 1 1A (5.10)
[}

where ¢p{2) = 0 a5 4 — o0 by (5.4) and dominated convergence, By (3.11)
Saen ) AilBilertd + 1) ORI A € cralANS = AP, (5.L1)
f

where again ¢1z(A) — 0 ag8 1 — oo by {5.5). Combining (5.8}45.11) yields

|BR e < [213(2) + 145l | o=
This and (5.6) complete the proof. T

Let ], denote those fanctions in C* which only depend on the first # coordinates. Note
that 5 < |J, C5. Note also that S;f is a real munber while R,/ is a function.

Proposition 5.2. I/ f € |J, C2. then
Sif = Ryf (o) + 818 Ry (5.12)

Proof. Fix zo € H. Suppose k ¢ . Since A(X,) — A Xo) — [; Fh(X,)ds is a martingale,
taking expectatiops we have

T
EACK ) ~ Alyg) = E j; LI ) ds.
Multiplying by e~" and integrating over ¢ from 0 to ©o, we obtain

1 =0 £
Sih— 3 H3o) = E f ot / LR ) dsdr

] L)
1 = i 1

- _E] &~ PHY ) ds = ~ S1 L.

1/ i

This can be rewritten as

ASyh — S3. %0k = H(yy) + 51 %A, (5.13)
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Define

L= agzo)Dyf (=) — 3 AxiDyf (x).
ig=| =1

Let R} be the corresponding resolvent. The corresponding process is an a-dimensional
Ornsicin—Uhlenbeck process which starting from x at time ¢ is Gaussian with mean vector
(x& "¢, and covariance matrix Cy(f) = ap(zp)(l — e~ F T2, + 1)\, These para-
meters are independent of # and the distribution coincides with the law of the first »
coordinates (with respect to z;) of the process with resolvent R;.

Now take / € C7 and let A(x} = Ry f(x) = R f(x1,...,%n). (Here we abuse our notation
slightly by having f also denote its dependence on the first # vanables.) By Corollary 3.5
and (3.10), A< F. Moreover, Soh= SR f =R/ —f = AR; f ~f. The second
aquality is standard since on functions in €2, %7 coincides with the generator of the
finite-dimensional diffusion. Now substitute this into {5.13} to derive (5.12). O

To iterate (3.12) we will need to exiend it to £ € C* by an appreximation argement.
Recall A; = d{zp)A;.

Motation. Write f, E} f if {f.} converges to f pointwise and boundedly.

Lemma 53. (2} If f € C°, then pR.f 5 f as p — o0 and

sup PRSI T .
f.

(B) For p=>0 there is a ¢i{p) such that for any bowunded measurable f : H - R, Rf ¢ C*
and [pR, M= e(@if N,

Proof, (a) Note if / € C, then
Lea]
IR, f e, < ﬁ pe P IPT N, di< I e,
and
Lo ]
PRI ()= [ pe P Pfx) T ()6t~ 0
a
because P, f(x) — f(x) as 1 — Q. |
Lat X, be the sotution to (2.4) (so that X has resolvents (R;)} and let X} = (X, &;}s;.
Then X7 satisfies
- : -
Xﬁ=x§,+m'_,1,f Xids, (5.14)
¢

where M is a one-dimensional Brownian motion with Cov{M {, M) = ayls A f). Let X5
denote the solstion to {5.14) when X}, = x;. Then

i ]
Xic,--q-.i,.,i _ Xf'i'i — ji,- - j::‘ f { X:a-!-ﬁ."i - Xf“'} .;i.!‘,
n
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and so0

X‘:'m"‘ - Xf'f = E_.T"'hfﬂp
Hence, if X7 is defined by (X%, 8) = X7,

- 12

|XFHE — X =~ |‘}_,“ hfc'“*“
Therefors

|Pf(x+ k) — Pf (IS T=E(XH — X7 )<\ |45,
and so

PR I(x + B —pR, fix) £ f: PP S (e + )~ P ()l de|f [ |41,

L&, IR, flcr € |f|ce. This proves (a).
(b) As we mentioned above, for any bounded measurable £, kR, M, <t )¢, We also
have

% Jhl.

= +}
PoR,f — pR,f = fu pe [ Bysf — Pof]dt
[n'=] &
= -0 [ prrsa-e [ prrsa
1} Q
The ripht-hand sids is bounded by

2™ - O g,
This in turn is bounded by c3(p)™? for 0= 1. Also,

IPoR,f — PR, filc, <2W e, €25%\f llc, Tor s> 1.
Hence ||pR, f s« < 3(p)lfllc,. Our conclusion follows by (3.10), which helds for the (A
just as it did for {4;). O

Lemma 5.4. Suppase f, L2, 0 where sup, ||l e= <oo. Then
bp bp .
DyR:f,— 0 and DR, —0 asn— o0 forallij.

Proof. We focus on the second erder derivatives as the proof for the first order derivatives
is sitpler. We know from Corollary 3.3 that Dy R,f, is vniformly bounded in C* norm, SO
in particular, it is uniformly bounded in C; norm and we need only estahlish the pointwise
convergetice. We have from (3.8) that

IDsPS e, e lf et (5.13)
From ¥roposition 3.2, we have
D'.'-"Plfu = DfPI‘,i'ZDQHﬁPIf)fE. [5;[6}
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Fix t>>0and w € H. The proof of Proposition 5.2 in [1] shows there exist random variabies
R(r,w) and ¥, such that

D Pf(x)=E[f (@ + YR(t,w)l f e Cu(H),
and

E[R(:, WYl € —

IWI"

Therefore
il 1%} = Do, e, Pepaf w(x) = E(f Qo + Yy )R(/2, Q) —> 0
by domunated convergence. Moreover Cauchy-Schwarz imphes
1t Dllc, €GO~ sup I e,
Repeating the above reagoning and using (5.16) we have
DyP.f (0 = DiP b x) = (i Q,o% + ¥ o) R(1/2,e) - 0
and
NDGP Syl o, < () sup fylc, (5.17)
Fix £={. Write

DRSO [ Db xydr

i}
+ | f e ¥DyP £, (0de;
£

by dominated convergence and (5.17) the second term tends to 0, while (5.15) shows the
first term is bounded by

[ 2l pl dréﬂs(ﬁ}lnp lfmllc«)s“"z~
Therefore
lim sup |D;R; f n{r}lﬂc.;(sup Ii_,lf'i.,.,,!l,;-z)..ﬂ.""*lf 5
A 0 L]

Since 2 is arbitrary,
lim sup | DR, f,(x) = 0. O
=t DO

Proposition 5.5, Assume (5.4), If f € C*, then
S5if = Rif(yo)+ S1BR, f. (5.18)

Proof, We know f, = pr—-+ﬂasp-+oob5rLemm353 This lemma aiso shows
W ol <215 M =y and ﬂ'IE]'EfDl'E we may use Lemma 5.4, the finiteness of #, (5.4) {in fact a
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weaker condition suffices here), and dominated convergence to conclude
BRSAxy =3 (ay(®) — aylzoDDy( Ry f)(x)
[A]

+ 37 20b(2) — BilzoDAR: F,)x) =3 0 a5 p — 20,
I

Hers we also use the bounds |1DGR, f,lc, <ellfl and IDiR:f,l e, <ol 2 ifllee from
(3.11), (3.12} and Lemma 5.3{a). By using dominated convergence it is now easy io rake
limits through the resolvents to see that to prove (5.18) it suffices to fix p=>0 and verify it
for /' = pR,k where i € C*. Fix such an A

Let zu(x) = 3 0L, Xt + X yo, (Goki&s = x as n — o0 and define Aq(x) = Alze(x)). Then
By — ksince A & C°. Recall the definition of R from the proof of Proposition 5.2; by the
argoment there, we see that the function PR XY = pR"‘Fh,,{I].“. , Xx) depends only on
(x1,....x2}. By Lemnmma 5.3(b) pRAy € CF and therefore is in €. Proposition 5.2 shows
that (5.18) s valid with f = Ryhy. Now pRyhin—or pR, a5 1t ~ 00 and sup, [lpR ko
c1{p) by Lemma 5.3(b). Therefore, if &, = PR, (hy — k) we may us¢ Lemma 5.4, Corcliary 3.5,
and dominated convergence, as before, to conclude

BRy(x) = 3 (ay(x) — ay(zeN D Rod,)(x)
i

+3 ABilx) = BDP(RAND) ~>0 a3 n— co.

]
We may now let £ — co in (5.18) with / = pRyfy to derive (5.18) with S =pR.h, as
required, O
Theorem 5.6. Assume (2.2), each a; and eack b; is continugus, (4.7, (5.3), (5.4}, and {5.5)

hold. There exists vy, depending only on (o, ), such that if n<ny, then for auy y, € H there is
@ unique solution to the martingale problem for & started at y;.

Prool, Exiztence follows from Theorem 4.2.
Let ¥ be any solution to the martingale problem and define $, as above. Suppose
£ € C*. Then by Proposition 5.5 we have

S)f = Ry (o) + S2R,S .

Using Proposition 5.1 we can iterate the above and obtain

k
Sf=R; (Z {ﬂ}h}‘) o) + SUBRHT.
==t

Provided 7y = ny{z, ¥} is small enough, our hypothesis that #=n, and Proposition 5.1
imply that for 4> dy{a, 7, (@), {6:)), the operator #R; is bounded on € with norm strictly
less than 4. Therefore 3705, | | (#R1)'f converges to 0 and (@R;)*+'f also converges to 0,
both in C* norm, as k — oc. In particular, they converge to 0 in SUp Dorm, SO
Ry e {-@R;}"]}"[yﬂ} and §;(@R)F ¢ both converge o 0 as £ — oo. It follows that

Sif = Ry (Z {ﬂﬂu‘)ﬂyu;.
i=0
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This is true for any solution to the martingale problem, so 5, is uniquely defined for large
enough 4. Inverting the Laplace transform and using the continuity of t — Ef{Y,), we se¢
that for every f € C*, Ef(X,) bas the same value for every solution to the martingale
problem. Tt is not hard to sec that Fy C C* is dense with respect to the topology of
bounded pointwise convergence in the set of all bounded functions. From here standard
arguments {cf. [3, Section V1.3]) allow us to conclude the uniqueness of the martingale
probiem of ¥ starting at y, as long as we have pgn,. O

Set
QF-H =[xe H: |x|,gN},

Theovem 5.7. Assione (b;) and (ay) are as in Section 2, so that (2.2) hofds. Asnmme also that
w, f € (0, 1} satisfy:

{a) There exisi p=> 1 and ¢1>>0 such that L ze P

() Tieylay A <00

(c) X, .Jj <00, (For exmm:le this holds if B> 1/p.)

(d) For all N >0 , Sor alf qﬁ‘::-ﬂ and for all xy € Oy y there exists 8> 0 such that if
II xﬂl{éﬂlﬁxﬁgﬁﬂ,

Y lay(x) — ay(xo)l <.
i

{€) i 4" el = <00,

Then for all y € Hyg there exists a unique sotution to the martingale problem for ¥ starting
al y.

Remark. By Theorem 4.2, any solution to the martingale problem for & starting at y € H
will immediaiely enter Hg and remain theee a.s. for any § < (0, 1). Hence the spaces g are
natural state spaces for the martingale problem.

Proof. Fix § < (0, 1) as in {¢) and write Oy for Oy ;. Let P be & solution te the martingale
prohiem for . By Theorem 4.2 we only need consider uniguemess. IF Ty =
inf{¢; X, 0y}, then by Theorem 4.2 we see that Tw + oo, a.8. and it suffices to show
uniqueness for ¥(X .7, € -}. (c) implies 2, is compact and = as in the proof of Theorem
V1.4.2 of (3] it suffices to show:

(3.19) for all xy € Oy there exist r=>0, d, and b; such that ay = dg and b; = E; on Qy N
{x e H:|x—xpl<r} and the martmgale problem for % starting at y has a unique
solution for all y € Q. Here # is defined analogously to % but with a and &

teplaced by a; and b,-, respectively,

Fiz xq ¢ Qy, np as in Theorem 5.6, Choose 4 as m (d). We claim we can choose 1 25, > 1)
depending on 8 and N such that if x € Qy and Yx — Xoliy <81, then fx — xo| <. Here
1¥loe = sup; |{x, £
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To prove the claim, note that jx — xgll. % &, implies that for any &£,
Yoot —xPe Y S A@NED <Kol + 4N S 3P
% % =Ky

So first choose Ky such that the second term is kss than 5°/2 and then set 3, = 5/,/7K;
Now let [ 4] = [.rf:, — &1, xh + &)1 [*NA.J.‘”",NAIMZ] and note p, < g, as xg € Qy. Lot
¥; : R — R be defined by
x ifﬁ_;'ﬂ-xﬂﬁfj-
gix) = { P if x<p;,
g I x>gq,.

Define ff : H — Oy Ni{x € H : |x ~ xpli., <51} by
¥x) =D ¥(tx.e)es
=l

As [l0;12, S N8, o is well defined by (0).

Take r=4; €@ 1] and set FA)=af{p(x)). If |x—xpj<r and xe (y, then
flx — x0fla <# and therefore Y(x} = x, which says that d{x) = a;(x) for all ;.

Define

u if |ut=zr,
p(t) = { (2r — fudufr  iF vl <2r,

and set E«{x} =bilxo +plx — %)) I Ix— xpl<r, then plx—x)l=x—x and so
bi(x) = bi{x). Also b; is clearly continnous as (¢) implies that b; is.
We now show that a; satisfies the hypotheses of Theorem 5.6. For aay x

D 300 — Gl = 3 (i) — ay{xo)l. (5.20)
IF iy

Since ([f(x) — xpll < rand ¢(x) € Qy, it follows that (x) — xp| < &. (d) now implies that
the right-hand side of (5.20} is less than #,. It remains only to check {5.3) for @y, But

ey} — e {x -+ By < |yl
and so
|gr{x) — e + F)T < ).
Therefore
[dglx + By — az(x} = lagP{x -+ oY) — ayF()
< |ayl e Wlx + 1) — (1"
& lay| = 17",
and so
iyl o= layl .
Hence g satisfies (5.3) because a; does.
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1f we set Bix) = Ir(g.{-r) - E{xg)), it i3 easy to check that Bfx) i 0 for |x — xg| =2r,
UBilloe <2l ce <cbiles, and By~ £albyie S 02y, Where o may depend on x.
Therefore (¢} implies (b)) satisfies (5.4) and (5.5).

We see then that Theorem 5.6 applies to 3y and & and so (5.19) holds. O

Example 5.8. We discuss a class of examples where the b = 1 and the ay are zero unless i
and j are sufficiently close together. Let A/ € N, « € {0, 1) and §,{/,/) be the subspace of &
generated by fe < ik — | v [k — jl < M}. Also let Hyg,q; be the projection operafor onto
Sa(i, ). Assume that ay(x) = ay(x) — (&, (x)e;} satisfies (2.2) and depends only on
eoordinates corresponding to 8.7, j), that is,

24(x} = ay(llg ipx) forallxe H, ijeN. (5.21)
In particular, (3.21) implies a; is constant if |§ — |24/, Also suppose that

#p {ﬂgﬂcu =< 00, (5.22)
if

Set bi(x) = | fer all i, x and also assome
Azef for all j for some p>1, {5.23)

and 8 € {0, 1) satisfies

3 <00 for some 50, (5.24)

J=l

For example, (5.24) will hold if p>2 and po>2/p. We then claim that the hypotheses of
Theorem 5,7 hold and so there is a unique solution to the martingale problem for
Xz =5, (0D (x) — 3, 2:x,Df (x), starting at any y € H 8.
We must check conditions (b){d) of Theorem 5.7. Note first that
e + A — 2001 < 1i_ge anlag | o= 47,

%0 that |ay| < iy <7anes and hence by (5.24),

¥ sl <M + e T 47 oo,
=y ;

This proves (b}, and (c) is immediate from (5.24). If N >0, x,x; € (g, then for gmall
enough g0,

22 15(3) — ay(zo)
o

a2

%2 Z |3 = E L(iemitviiiny) < AR(ED — Xg(K)F
By K
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AN af2
x-xly Y [Z L anl k) — xo(k)j2 =128/}
i =l 4

Kl — xpl"ca(M) ) 1x(k) — xolk)*™
k=i

Kes(M)x = xolf E( "'-‘-;ﬁ'“']
]

Lo(M, N)Y|x — xol".
We have used {322}, x,x & g and (5.24) i the above. This proves {d}, as tequired.

Exnmuple £.9, We give & more specific reaifzation of the previous example. Continue to
assume by = 1 for all §, (5.23), and (5.24). Let L, N2 1 {we can take N = 1, for example}
and for k21 1et Iy = {(k - DN + 1,...,kN}. For each k assume a® : 2V 5 o) 'the
space of symmetric positive definite N x N matrices. Assume for all &, for all x e RIHY,
and for all z ¢ R,

N N
38 Pzz < iz = (5.25)
=l =l
and
sup max (4| <00 (5.26)

k I&KiJEN

Now for x € A, let mex = ({X, iar—0¥-D1 a1, 24 € REAY and define a: F —+
L{H, H) by

{a(x)e;, &) = ag(x} = a{(x)
_ { A g i 0 J € I k2,

0 if G, HE T x I
Then for all x,z € H,
Z Z aﬂ{x}zlz_; = E Z ﬂ;i(.x}z;z;
i k=l iyl

o N
x
= Z Z a}; }{ﬂkx)z{k—l}:\fﬂz{t—lw-i-j
oy fF e

& [yl=, 37 2]

by (5.25), and 50 {2.2) holds. Note that if {,/ € I3, then {using the notation of Example 5.8)
St ) e~ DN — L+1,..., kN + L}, and so (5.21) with M = L + N is immediate
from the above definitions. Also (5.22) is implied by (5.26). The conditions of Example 3.
therefore hold and so weak existence and uniqueness of solutions hold for the martingale
probiem for & with initial conditions in Hj.
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Remark 5.10. The above examples demonstrate the novel features of our results. The
fact that our pf:rturbatmn need not be nonnegative facilitates the localization argument
{sec Remark 9 in [23] for comparison)} and the presence of F %21 in condition (b) of
Theorem 5.7 means that the perturbation need not be Hélder in the trace class porm. The
larter allows for the possibility of locally dependent Holder coefficients with just bounded
Aslder norms, somethisg that seems not to be possible using other results in the literature,
On the other hand {23] includes an SFDE example which our approach cannot handle in
general unless, for example, the orthonormal basis in the equation diagonalizes the second
derivative operator. This 15 because he has decoupled the conditions on the drift operator
and noise tertn, while ours are interconnected. The latter leads to the double summation in
conditions {b} aed (d} of Thecrem 5.7, as opposed to the trace class conditions i [23]. All
of these approaches s¢em to still be a long way from resolving the weak unigueness
problem for the one-dimensional SPDE described in the introduction which leads to much
larger perturbations,
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