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CONVERGENCE OF FUNCTIONALS OF SUMS OF RVs TO
LOCAL TIMES OF FRACTIONAL STABLE MOTIONS

BY P. JEGANATHAN

Indian Stapistical Instinge

Consider a sequence X, =% Z?iofjfk-jr k = |, where € j= @ iz a
sequence of constants and £ ju 0% < < o, i6 B sEquence of independent
identically distributed {i.i.4.) random variables {rv.s) belonging to the domain
of attraction of a strictly stable kaw with index ¢ < o = 2. Let §; =
3%_; X Under suitable conditions on the constants ; it is known sha
for a suitable normalizing constant yp. the partial sum process 1.'”_1.5'[,,”
converges in distribution 10 a linear fruclivnal stable motion {indexed by
cad H, b < # < 1) A fractiong! ARIMA process with possibly heavy
falled innovations is a special case of the process Xp. I this paper it is
eitabiished Gt the process ™18, XY pigo iyl S; + £)) converges in
distribution to € /22, f{¥dyIL(#, —x), where LEr, x) is 1be local time of
the Tinear fractional stable motion, for & wide class of functions F{y) that
includes the indicator funetions of bounded intervals of the real line. Here
By —» ¢ such that n~ ¥ @ — 0. The only lurfher condition that is assumed
on the distribotion of £ is that either 1t stisfies the Cramér's condition or has
a nonzerny ahsolutely coatinunes component, The resolis have motivaton in
large sample inferenee for certain nonfinear ime serics models.

1. Introductieon. Consider a sequence £;, —o0 < j < oc¢, of independent
identcally distributed {ii.d.) random variables (r.v.s) belonging to the domam of
attraction of a strictly srable law with index 0 <= & = 2. Define X; = E?‘;ﬂ. €~
where c;, j > 0, is a sequence of real numbers. Let §, = 7%_ X;, k > 1. Then
under suitable condisons on the constants ¢; it is known that for a suitable
<= H < 1 and for a suttable slowly varying funclion #{r), the finite-dimensional
distributions of the process (n¥ u(rz}j‘IS{m] converge in distribution to those of a
lincar fractional slable motion (LFSM]). Sce, for cxample, Kasahara and Magjima
{1988). When & = 2, the LFSM reduces to the fractional Brownian motion (FBM),
and when i/ = 1 /e, it is 1aken to be the w-siable Lévy motion. (Definitions of the
preceding processes are recalled in Section 2.}

Now, for simplicity, let 3 = nfu(n). Let the consiants B~ be such that
Az = o0 with #~! 8,, ~ 0. In this paper it is established that the finite-dimensiona)
distributions of the process #~1 8, YW1 (8. (15 + x)) (indexed by ¢ and x)
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corverge in distribution to those of { /%3, F(¥)dy)L(#, —x), where L{z, X) is the
local time of the LFSM, for a wide class of fenctions f(y) that, in particular,
includes the indicator functions of bounded intervals. (The only further condition
that will he assumed on the distribution of £] is that cither it satisfies the Cramér's
condition or has & nonzero absalutely continuous component,)

Far the particelar situation where the limit of ].'""'5[”,] is a Brownian motiog oy
a FBM, some partial results in some form are available in Akonom (1993), Pagj
and Phillips {1999, 2001) and Tyurin and Phillips (1999), where the motivation s
an interesting development of a large sampls theory in soine Ume senes models
that have functions of the form £ (5k) occurring as regressions. The present paper
has the same motivation.

Major works for the 1.1.d. situation S, = Z:’j___l £ ; that are related to the approach
of the present paper include Skorokhod and Siobodenjuk (1970) and Iwagimoy
(1984, 1985). The approach of Ibragimov (1984, 1985) [a thorough account of
which is presented in the book by Borodin and Ibragimov {i995)) does not rely
on the moment conditions and hence, implicitly on the restnetion of the Brownian
mation Himit, of the eatlies approach of Skorokhod and Slobodenjuk {1970) bt
mainly on the requirement of the atimction of E§=1 E; to stable laws. This
approach is based on the representation

f H X H . _ "

P by 50 = Y S0 = [ (1 3 eTien ]5*)fn(u}du.

k=i s oA DY
where f.(¥) = fi F(A,y) and f, () is the Fourer wanstorm of f,{(3). The
conditions songht (i the t.1.d. case) are nacurally through the Fourier transform
Fer{u} which in cerrain simations are then transformed i terms of §,( v) apdfor on
the distribution of £).

The approach of the present paper involves the approximation that the difference

| -
M2 A S -2, f Fuy Skt 2809t de >0 inL?
k=17

k=]

as B —> oo first and then & = 0, where ¢{z2) = ?]35' mp{_.;;]_ The approximating

quantity nl b=t mo fa LSt +26)(z) d7 can be handled relatively easily. This
approach has some advaatages, especially for the sitvation of the present paper,
for mstance, the required conditons for establishing the approximation (1) can be
viewed dircetly through £, ( ¥) and the distribution of £, themselves.

In Section 2 we recall the definition of the LFSM, siate 2 result on the
existence of its local Gme and also recall 4 result on the weak converpence of
the process y,," Sim]- Section 3 contains the statements and the discussions of the
main results, and Section 4 contains the proofs of them as consequences of (1)
Section 5 contains auxiliary results for establishing the approximaiion (). The
proof of (1) constitutes Section &.



WEAK CONVERGEMCE TO LOCAL TIMES 1773

NOTATION. The constants yy, 8, and the functons f{y) and f,(y¥) =
B, f (B1¥) are exclusively used in the sense they are used above. Similadly, ¢(z) is
used in the sense of (1) above, b, in the sense of (4}, and My (¥} and mg (¥} in
the sense of {6). We let

1 2
1= |- 2]

[so that (7} = $1(z}]- K stands for the Fourjer transform of the measure X,
[ 4{-} stands for the indicator function of the set A and R stands for the real line.
Convergence in L2 has the nsual meaning of the convergence in mean-square, The
notation C stands for a generic consiant that may take differemt values even at
different places of the same proof.

2. Preliminaries. Let {Z,(#),t €R), 0 < a < 2 be an o-stable Lévy motion.
This means Z,(r) has stationary independent increments having a strictly
a-stable distribution, that is, for s < 7, Zu(t) — Z,(s) has the characteristic
foncrion exp{—(¢ — s)|u|*(L + {8 sign{w) tan(ZE))}, where 8] < 1 with 8 =0
when o = 1. (Noe that this definition of swrict w-stability for the case o = 1 differs
from the usual one in that we take the shift parameter to be 0.) When e = 2, Z,{)
becomes the Brownian morion with vaniance 2,

A process {A, mx(1),2 = 0] is called a LFSM with Hurst parameter H,
0« H < 1,ifitis given by

0
A ity =a f (¢ —w)?Ve _ (Ve 7, )

— Ok

¥
i fu ¢ — Ve Z, (du),

where Z,(f) is an «-stable L&vy motion as above and g is 8 nonzere constant.
When o = 2, the LFSM reduces to the FBM. See Samorodnitsky and Tagqu (1994)
and Maejima (1989) for the detaiis of LFSM.

We make the convention that in the case # = 1/, the LFSM {A, g(#),r = 0}
is taken to be {Z, (), r = 0}. It is important to note, however, that in this case the
restriction 0 < H < 1 is equivalent tothatof 1 = @ < 2,

Let {£{f),# = 0} be a real valued measurable process. Then a meusurable
process [L{r,x),t = 0,x € R} is said 10 be a focal rime of ({(r).¢ = 0} if for
eacht =0,

I -
(2} j; La{s{s))ds = Ta(x}L(r, x)dx for all Borel subset A of B
—ig]

with probability one. [Without ioss of generality we take A, #(#) to be measur-
able.] For the symmetric LFSM, the existence of L{t, x) is known, see Kéno and
Maejima (1991). For the gencral LESM, we have the following result. [It may be
noted that whein 0 < @ = 1, 1he local time for {Z,.{1)} doss not exist: the case
1 = ¢ < 2 is covered by the next resuit.]
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Throughuut whart follows we let, with &, as in (4),
pH—U®R(n}b,,  if the condition {C.1) is satisfied,

[= &
= ( Z "j) bn. if the condition (C.2} is satisfied.
J=U

Because by = n/*i(n), one has n 7~V Rn)b, = n¥u(n) for a slowly vary-
ing uin).
The following result is tzken from Kasahara and Maejima [(1988}, Theo-

rems 3.1-3.3], but see also the references given there, especially Astrauskas
[1983).

PROPOSITION 1. (i) Assume that the condition (C.1) is satisfied. Then the
finite-dimensional distributions of the process y,”\ Sjny| converge in distribution io
those of the LFSM process Ay git), H # 1/,

(11) Assume fhat the condition (C.2) is satisfied. Then the finite-dimensional

distributions of the process y;" S converge in distribution to those of the
a-stable Lévy motion Z,{1).

Note that the statement (ii) of this result holds for the entite ranpe (0 < & < 2,
but our interest is only on the range 1 < a < 2 because, as was mentioned earlier,
the local time for Z,(r) does not exist when 0 < & < 1. So in the situation of {5}
with A — 1/ < 0 bot Zj";ﬂ £; # 0 [which case was excluded in the statement (1}],

this restricts o to either 1 < o < minf2, 4] or @ =2 when § > 2,

3. Statements and discussions of the main reselts, It iz assumed that the
constants fS,,n = 1, involved throughout below 1s such that §, -+ oo with
n~18, —= 0 as n = oo. For any function A( y), we define

() My (yy=soplkla):|u—y|=nt and my (y) =nf{au): & — y{ = n).

Alsc, under the condition {C.2), we shall henceforth restrict to the situation
1 « e < 2 for the reason mentioned above, s that according 10 our convention
the limit Z,(t) in Proposition 1{i1} becomes A, x(f) with if = 1 /o

THEQREM 2. Asiqwme that either one of the corditions (C.1) or {(C.2) is
satisfied. In addition, assume thar &) satisfies Cramér's condition

lim sup |E[e™]l <1.

|| — o

Let, {(y) be such that Mg 1a(¥) and M f?'.ﬂ{ ylare Lebesgue inteprahle for some
> 0 and

oo
(7) f (M7a(y)—mss(3)dy—0  asd— 0,
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Then the finite-dimensional distributions of the process n™'By E}ﬂ F B x
'S + x)) [indexed by (1,x)] converge in distribution to those of

([ F (L, ~x).

Note that L{r, —x} will have the same distribution as that of L(7, x) only whep
the a-stable Lévy motion Z.({r} involved in the definition of LFSM is symmetric
around zero (which is always true in the case of FBM, the case o = 2).

REMARK 1. There are altermative requirements on f{ y) that will imply those
stated in Theorem 2. For example, one possibility is to assutne that the set of
discontinuity points of f{y} is of Lebesgue measure zero, together with the
Lebesgue integrability of M|, (¥} [It is clear that condition (7) is then implied
by the dominated convergence theorem]. Also, as will be indicated later (see
the Remark 7), it is possible to relax the Lebesgue integrablity of M2 .(¥) 0
that of local Lebesgue integrability. Thus the second possibility is to assume the
local Riemann integrabitity of f{y}, together with the Lebesgue integrability of
M) »( ¥)- In particnlar, Theorem 2 kolds for the important situation in which
FE3) = Ie.n( ). (Here the limit will remain the same if the open interval [c, d)
is replaced by the closed interval [c, 4] or by a semi-open interval.)

REMARK 2. In the iid. sitvation 5 = F5. &, with fn =y = b, = /1,
and when f(y) is assumed to be Riemann integrable sach that | f{ y}| = B(]1 +
|¥|~ ) for some B > 0 and ¢ > 0, Borodin and Ibragimov [(1993), Theorem 2.1,
Chapter IV, page 143, and Theorem 2.2, Chapter IV, page 145] show that the
conclusion of Theorem 2 holds without the Cramér's condition. When f(y}
is as above, we mention, without poing into the details, the following partial
extensions: (a) Theorem 2 extends to the situation where &; is nonlattice without
satisfying the Cramér’s condition but only under the restriction &' 8, = 0(1),
where b, is as in (43, [In the important case 8, = y, this will include the situation
of condition (C.2), as well as that of condition {(C.1) when H — 1/ < 0, but
anfortunately will exclude the case & — 1/ = 0.} (b) Similarly, Theorem 2
extends to the situation where £ has a lattice distribution when b, 8, — 0 [which
in the case By = ¥, will inclode the situation of condition (C.1) when H — 1/ < 0,
but not otherwise].

REMARK 3. Reganling the results available in the direction of this pa-
per, Akonom (1993) dezls with the situation (of a Brownian motion timit)
where 372, flej| < o0 with T3 5cy # 0, EllE1)P} < oo for some p > 2,
By, oo #° E[¢#51] = 0 for some 1 > 0 and the distribution of &) has a Lebesgue
density. Then the main result obtained there implies the conclusion of Theorem 2
when f(y) = fjgp(y) and p, = ﬁ This situation is a special case of that of
condition (C.2) for @ = 2, and Theorem 2 requires only that &, satisfies Cramér's



WEAK CONVERGENCE TO LOCAL TIMES 1777

condition and is in the domain of anraction of a normal distribution and that
2 eple;l < oo with 3722 4 ¢; # 0. The underlying sitvation (with a Brownian mo-
tion limit) of Park and Phillips (1999, 2001) is the same as that of Akonom (1993)
but the form of f{ y} is not testricted to £{ y) = i, 41( y), however, the (Lipschitz
type) conditions imeposed there on £( y) are unformunately rather sirong in addition
to requiring further moment conditions on £7.

Tyurin and Phillips (1999) consider the situation where X is in the truncated
form X; = ZLQ c;E¢_ ;. in addition to the restriction H — 1/2 < (. In addition 10
the underlying assumptions of Akonom (1993) on the distribution of &y indicated
above, it is further required that E[|£)|?] < oo for g = T']r The limiting Gaussian
process imvolved here will be different from a FBM, bet will have similar
properties. (It is easy to see that the resuits of the present paper hold for the
truncated case X, = ELH c;&x_; also with the changes in the limiting forms taken
into account.)

Now, an example given in Borodin and Ibragimov [(1995), Chapter [V,
page 143] shows that the requirement (7) on £ ¥} in Theorem 2 cannot be avoided
entirely. The next result relaxes that requirement, but assumes conditions stronger
than the Cramér's condition.

THEOREM 3. Assume that either one of the conditions (C.1) or (C.2) is
satisfied.

(i} Suppose that, for some infeger ny, the ny-fold convolution of the distribution

of £ has a nonzero absolutely continuous component. Let f{y) be Lebesgue
integrable such that sup,ep | f{ ¥)| < 0o. Then the conciusion of Theorem I holds.

(i) Suppose that, for some integer ng > O, [ Iﬂ?'::ﬂl E[ef*8UKi)|du < oo

where g(f) = f___ﬂc; and n~14, x :i_]lf(,s,,{y;'sk + x)) converges in

probability to 0. Assume further that f{y) and f 2{ v} are Lebesgue integrable.
Then the conclusion of Theorem 2 holds.

Note that if [|E[¢"®]|?du < co for some p > 0, then the condition
il [‘[’;“:E,l E|e*®U¥i | du < oo for some integer ng > O in statement (i) above
1s satisfied.

Note that the requirements on f(y) in the first statement are stronger than
those in the sccond statement; consider, for instance, £{y) ~ |y|* as |y| — 0 with
0> 1 > —1/2. Also, as in Theorem 2 (s¢e Remark 1), the integrability of £2( )
in the second stalement can be relaxed to that of local integrability.

Let us make some remarks regarding the requirement on n ™! 8, ZE'E:I' f(Bn x
(3,7 S, 4 x}) in statement (ii). First, it is redundant when ng = 1. When x =0 and
Bs == v, an importans case in applications, the requirement is satisfied because the
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gquantity reduces to nig, E:?___ll F{Sy), which cleasly converges in probability
to 0 in view of n '8, > 0. N

Suppose that x 7 0. Then the additional condition kit oo SUP) 2 | F (¥)] < 00
is sufficient because, for each 1 < k < ng, with probability fending to one
Bl ! 8y + x) will be supported in a neighborhood of Loc. The same is the case
when x =0 and By, = .

In the remaining case x = 0 and Bqy,”! — 0, suppose, for instance, that
F(¥} ~1yI* as {y| = O with 0 > t > —L/2. Then with probability tending to

one, B B ) F(Bayi 18 < O~ BaiBe i T = Cv 1 B Ty T = 00,

REMARK 4. So far our results are for fr(y) = Baf(Bay) based on f(y).
It is possible o0 extend Theorems 2 and 3 to more general f,{y) that satisfy
the following conditions: sup,, [ | f{)dy < oo, sup, ﬁ I A (v dy — 0,
Lithy—s a0 SUP, Sy yi=c) | Fo{ ¥)) dy = O and, letting

[ fhwde,  ityzo,
Fay=1" o
H—f Foluydu, if y <0,

¥

there is an F(y) such that F,(y} — F{y) at all continuity points of F(y).
These conditions are satisfied when f.( ¥) = Ba f (B2} with F{y) = [i° f(uddu
f y=0and Fi(y) = f_om Flydu if ¥ =« 0, and, in fact, we shall use the
assumptions on f{y} only in the form of the above conditions. Theorem 3(ii)
extends as follows. Assume, for some integer ng = 0, f IE[E'H'E'H"“JH < 00
and H"E;f;ll Fa(y V8, + x) converges in probability to 0, Then, if f,{y)
satisfy the above conditions, n ! E}ﬂ ,,{}-',,"Sk + x} converges i distribution
to (22 L(r,y — x)d F(y). Similatly, Theorem 3(i} extends, under the additional

assumption supy, 1o, ' 1fz( ¥)| < oo for some o, — oo with 3 — 0.

The next result may be viewed as a discrete approximation to the local time of
the LFSM, which we obiain as a by-product to Theorem 301) (whose requiremenis
are satisfied with ng = 1). Note that the approximation is in L%, in contrast 10
the distributional appreximation in Theorems 2 and 3. Mote also that in this case
¥a=n

THEOREM 4. Suppose thar f{v) and f2(y) are Lebesgue integrable. Then.
foreach t,

%:ff(ﬁ”(ﬁ%”(z) "‘1)) - (f; f{}'}a‘y)L{r.x) in L2

The: next result is a continuous analogue of the preceding result.
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THEOREM 5.  Assume that f(v) and f*( v} are Lebesgue integrable. Then

xll—” Eﬂf (”H(A“"” G) "‘)) ds — ( _if(y)dy)b(t,x) in 12

foreacht and x as 'k — 0.

As notfed in connection with Theorem 3(ji), the Lebesgue integrability of f 2(y)
in Theorems 4 and 5 can be relaxed to that of local Lebesgue intagrability.

REMARK 5. Note that because the distribution of nf A, z(k/n) is the same
as that of Ay m(k), it follows from Theorem 4 that T—HZ["’] FlAo ylk) —

xn#?) converges in distribution to (f%5, FONEYIL(t, x) as n — oq. Similarly,
;1FH o F (B 1i(s) —xx ) ds converges in distribution to { [2° F(3) dyIL{t, x)

as ¥ — o0, in view of Theorem 5.

REMARK 6. One has FI:H. o P (Mg m(sfc) —xNds = {5 FiucH

(Mg n(8) — x))ds. When f(¥) =Ip,1(y) and «¥ = 1/n, the right-hand side
reduces ta & 7 By ey (A, (5D ds.

4. Proofs of the results. The proposition stated next is just & formalization of
the approximation (1}, the proof of which is postponed to the next two sections
because it requires many auxiliary results. In this section we derive Theorems {
and 2-5 as consequences of it. Recall that we let

eol-3)
NoTs P 21

FROPOSITION 6. Let (¥} = 8y f(Be). A.isume that the conditions of any
one of Theorems 2 or 3 are satisfied. Let L, (¢, x) = E[’"] (7 S + ), where

g = 1, except under the second part of Theorem 3 in whw-‘l case g = ng with ng as
imveived there, and

qb.e(z]— ﬁPl l and  ${(z)=

lmf]

Lnett =23 [ 'S+ x 200600 dz
k—]

Then

lim lim sup E[(La(r, x) = L, s(£.2))*] =0.

g2y

We next deal with L, .(f, x) through the following seties of steps.
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LEMMA 7. Foreache >0,
| [l

up | Lo (2, X) — ( L: f(z}dz) E'ﬁ’sfﬂ 18 +x)

1x

(&)

is bounded by a nonrandom quantity that converges to ) asn — 00,

ProOOF. For convenience take & —l Let £, (¥) = {2 Bn F(Bnud du, and de.

fine F(y) such that F(y) = Jo, f@)du if y 2 0 aed F(y) =g
if ¥ < 0. Note that F.(y) — F(y} at all continuily pnmts nf F(y) any
F(p)— F(@)=01if O ¢ (n, 5]. Now Ly 5(s, x} takes the form 25 (1 34" gy _
¥ 15k — x)) d Fy( ). The difference between this and
1 [=t]
(9) f” r }( Ecp{y Yo 'Sk — xfl)an(y}
yiﬂ'l.l

is bounded in absolute valie by C [, . dIF)(y) = C fial> gt | f ()| da.
Define yp i, i = —m,...,0,..., 0 such hat yp ;= —V < Yyl < -or <

Ymm—1 < ¥Ymm =V a0 SUP; | Y i — Ymi-1| = 2 Then the difference between (9}
and

[a7] i f
{1 z (1 Z‘i’{}'mi-}’n lSk —I}) j: " d Fy( y)

i=—m LS

is bounded in absolute value by C 1 fi < dIFul(¥) < CL. Further, the dif-
ference between (10) and 3771 (1 }:['*” DY — ¥ S5 — ) [oniT dF(y)

ymr i

is bounded in absolute value by € Y7L i+t @(Fu(y} — F(y)). Thus,

it follows that (8) is bnunded m absolute value by a constant multiple of
St povy | F G} due + =+ E:"- |f'“'" HF(F. (¥} = F(yY|. Denote this by

(v, m, n}. Itis clear l:hat ]1mp_,m11mm_,m My oo Gv, m,0)=0. 0

LEMMA B. For each & > ), the finite-dimensional distributions ﬂf o X
E;[::}| (v L8 + x) [indexed by (1, x)] comverge in distribution to .!.Fmse of
Jo el (s} + X) ds.

FrOOF.  For notational convenience, take £ = L. Also, we take x =0 for
simplicity so that we consider the process n! E["'] ¢y, 1 5,) indexed only
by £. We now invoke Gikhman and Skorokhod {(1969), Theorem 1, page 485].
According to this result, letting £,(3) = :,1,';(}:“"3[“51}, we need o check that [the
fimite-dimensional distributions of £,(s) being convergent to those of the limit
£(5) = @ (A 1 (5)) by Proposition 1]

wp E[L(s)] <00, Hmlimsup sup  Ef|Z,(s1) — Lals2)i] =0,

120 W00 |5 — |
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Because lim,_s o S0Py .., #( ¥) = 0, it is enough to verify that, for every é > 0,

lim limsup sup P{Iyﬂ_'S[,,,]] - ]fn_ls{n-fz]! = 8) =0.

(e el ST

Note that supy, _o)cp POVs 'Sinsy = ¥ ' Stusall > 8) = SUPpey<y Pyt x
Sint1l > 8) by the stationarity of (X, & = 1}, (Here the stationarity is used only
for convenience and can be aveided.) Now, Theorems 2.2 and 4.1 in Kasahara
and Maejima (1988), give bounds for supy._, o, P{Iy; Siar]| > 8), respectively,
when < @ < 2 and when o =2 . Using the arguments similar to those used in
Kasahara and Maejima [(1988), Section 5], these bounds converge to zero by first
letting # -+ ¢ and then i — 0. This completes the proof. O

The next result is related to Theorem 4.

LEMMA 9. Foreache > Oandforallt and x,n™) EE:]I ;.igg(ﬁmﬁ{%] +x) >
JEbelha n() + x)ds in L2

PROOE. 1, x and ¢ being fixed, take for notational simplicity 1 = 1, x = and
£= L Write n7' T1_, ¢{Au.u(£)) in the form [ p(Ag, x(121)) ds. Then the
proof 18 clear because ﬂalﬂ[[L:'l} — Ag, g(s) converges to O in probability [sce
Samorodnitsky and Tagqu (1994), Proposition 7.4.3] and becaunse sup, ¢(z) < oo,

1

The next resnli is a continuous analogue of Proposition 6 for the LFSM
sitaation.

PROPOSITION 10. Suppose that f(y) and f2(y) are Lebesgue integrable.
Let Lit,x) = g ' Fic® (Aquls/e) — x))ds. Further, let Lo(t,x) =

(S22, FOxydy) fg el u(s) — x)ds. Then
lim lim sup E[|LE(t, ¥) — L (7, x}*] — 0.
!

24! Limds S

The proof of this result is essentially contained in the proof of Proposition 6 for
the situation of the second part {with 2g = 1) of Theorem 3. The next proposition
will be the only remaining fact required (apart from the proof of Proposition &) to
complete the proofs of Theorems D and 2-5,

PROPOSITION 11. For each ¢ and x, [jde(Ay y(s) — x)ds = Li{t, x) in
L? as £ ) 0, where L(1,x) is the local time af Mg n(s). that is, satisfies the
requivement (2). In addition, L(t, x) has the represeniution of Theorem 0, that
is, L, x) = 5= [0 [ eflhan (=5} g gy
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PROOF. LetT,= fd de(Mp g (s) — x)ds. We first show that T, is a Cauchy
sequence in L?, For notational convenience, we restrict for the moment to ¢ = |
and suppress the cccurrence of x. We need to show that E[{Te, — Y¢,)%] - 0 g3
(&1, £2) { 0. Note that

—u 22 b eiuue—uﬂezﬁ du =

__& . f ¥ e
V7= N
Hence, because E[Ye, To,d = ELfy J§ @ (A, 2 (51))0, (Aw, r(32)) 3, dsg),

1 poo g Ul Ay s G=ivAe 1)
BT Yol = g [ [ B[ [ erenreton gy a

% e“"zsfﬂ-”is%ﬂ didy.

e —ivu gL g

(1D

Here the order of integration iz interchanged, which is permissible for each fixed
g1 and g3, as can be seen using the fact J§ fi |E[¢/Aa8 60— vAak (2] g5 df < 1.
Now if

1 oo oo 1 |
17 f f E[f f fedo () —T0Ag 032} go. g ild A ‘
( } (EJT} — o =0 a JQ ¢ S1657 | EH AV = 00

then it is clear from (11) that E[Y, T, ] converges to (12) as {61, £2) — O by the
dominated convergence theorem. Note that

1 a1
E[f f AR —ivha s 92) 4o dﬂ] = 0.
0 0 -

The same is aiso true for E[YZ] and E[YZ], so that E[(Ty — Y51 =0
as (e1,e2) 0.

We now verify (12)in a stronger form that will be needed below. Note that, mak-
ing now the occurrence of x explicit, for the L} (1, x) defined in Proposition 10, one
can directly check that sup, sup, E[{L}{¢, x))%] < oo (see Remark 8). Thus, in
view of Proposition 10, it follows that lim sup, _, , sup, E[( ful Pl Ay 1Y) ds)?] <
o0. Hence, in view of the identity (11) {with &) = &1), it follows by Fatou’s lemma
that

1

P 2y

o 30 1 | . )
(13) :-:f j [f f E[E!H'.'J‘tmu(Jfl}*-r}*w{ﬂa.msz}—x}] dsy dsa)dudy
-0 g =t LS )

= D,

Actually we have shown that (1 1) converges to (12) because (11} is bounded above
by (12).
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Thus, we have established the Cauchy convergence of f ¢:(Ag, k(s) — x}ds

in 12, which entails the convergence jn L2, Denote the limit by Lz, x). In
particular, (13) gives

d pr o
(14) [:‘{}'lnt'e{ﬁm}f[f}—x)dﬁ'dx—}f L, x)dx  inL!

for every interval [c, d). It remains to show that the limit L(f,x) 18 indeed a
local time, that is, (2) holds. It is sufficient to verify that [ ljc. sy (Ao, #(8))ds =

£ L(1, x)dx for cvery interval [c,d). In view of Remark 6, Proposition 10, in
particular, entails that

1 ¢ t
Ej; Iie xpm) (Ao, 2 {5)) ds —jl; Bo(Ag ws) —x)ds -0  inL?

as i — 0 first and then & — 0, uniformly in x (in the sense of Proposition 10).
Hence,

{.'d I:fj] I‘!J 5 E —_— I'

as & — (. In view of {14), thizs completes the proof. O

Now note that Propositions 10 and 11, together with Remark &, proves
Theorem 0. In the same way Theorems 2 and 3 follow from Propositions 6 and 11
and Lemmas 7 and §. Thus, it only remains to establish Proposition 6.

5. Auxiliary results for the proof of Proposition 6. We first obtain some

estimates on the behavior of the characteristic function of

j—I
(15) St=yi Y glkdkj-

k=0
{The reason for considering S:}‘, which is in the form of a finite-order sum of
independent r.v.s, will become clear in the next section.) Here g(k) = ¥% ¢
with ¢; as in the conditions (C.1) or (C.2). Only the distributional properties

P . - 1 i1

of $7 will be required, so that for convenience we take St=y, ! i _o BUE)Es.
Under the condition (C.1). we have ¢; = jH=1=V*p(;} for a slowly varying
R(j) (with 3 25e; =0 if H ~ 1/ < 0). For simplicity, we shall restrict to
the sitnation ¢; ~ Cj7 1=V og, for a suitable constant €. Then note

that g{k) = 3% _jc; ~ CkH-V® & 5 oo, for some constant €, so that for
convenience ST can ke taken to be of the form (with b; as in (4))

J H-1§
3508
i
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Note that in view of (3}, there is a & > O such that, letting yr(v) = E[¢"9],
amn W(u)l < e”FOMD foralt ) <38,

where G{w) is slowly varying at 0.
In the rest of this section it is assumed, without further mentioning, that ejther
one of the conditions (C.1) or (C.2) is satisfied. Forther, the constant & 15 as in {4),

LEMMA 12. Let H;(u) be the characteristic function of ST defined ir (15),
Then there are constanis A > 0,4 > 0, d > 0 and 0 < ¢ = a such that iﬁjfﬂ}[ﬁ
Ae™ 9 for all |u| <Ab;and j = 1, where bj is as in (4).

PROOR. K is enongh to prove the result for all sufficiently large j, becanse for
any jo > 1,

tﬁj(u)' <1 =ed|""'biﬂ|cf_‘ﬂlbju‘f < e‘-'fllbjulre—dlul“
forl1=<j < joand u) < Ab;,

In the same way, it is enough to consider » such that {u| > C for some
C > 0. We have [H;(u)! = [T{_, [¥(v; ' gk)w)|. Consider the situation of
condition (C.1). Then [taking into account the simplification (16)], |H; ()| =
[lic, 11;»{(%}3—”“%”: Suppose first that H — 1/a > 0. Then g <8
for all |u| < 4b;. Thus, in view of (17),

)" 2o(()" )

for all fu| < dby.

Recall that b« jG(b; ') [the G(u) in (4) and that in (17) being the same]. One
can assume for convenience that bj: = jG(bI'}. Then the sum in the preceeding

exponent becomes
o H—1/u
L)' 2)
Gk ) J LE

J H—lfe
18) =3 (5)
P A
Note that with G{w) being coutinuous, it is bounded on compacts. Hence,
by Potter’s inequality [see Bingham, Geldie and Tengels (I1987), statement (ii)
of Theorem L.5.6, page 25], for every § > O there is a 8 = 0, such that
|GGy < Bmax{(x/y)%, (x/y)~%} for all x = 0, y > 0. Hence, it fol-
lows easily that for a given & = 0, there are C > 0 and € > O such that

infy e PG—[hG[f%}H"”‘”%}r > C1|u{~? for all sufficiently large  and for all
I

j
\H; () < exp{ -2
k=1
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[#| > C. Thus, (18) is bounded below, for some C’ > 0, by C'|uj*~? for all suf-
ficiently large j and for all |#] > C. This proves the result under condition {C.1)
when H — 1/a > (1.

When H — 1/o < 0, note that whenever k 3= [j¢] for a given €, one bas, for
some C > 0, {%)H'” * <  for all sufficiently large j. Hence, essentially the same
arguments used above apply for this case also.

Tt cemains to consider the case under condition (C.2). By assumption 3 72, i 7
0 and Y0, lci) < oo, so that for some positive constants # and « one

# < | 2% 46] <« for all sufficiently large k. Further, in this case it =

b7 (3720 ¢:) ™! Hence, the proof of this case is contained in the above arguments.
This completes the proof of the lemma. [

LEMMA 13. Let H;(u) be the characteristic funciion of S} defined in (15).
Assume that §satisfies the Cramér’s condition of Theorem 2. Then for anvd =0,
thereisa B> 0anda 0 < p < 1 such that SUp > 4, \H;(u) < Bpd forall j 2 1.
where b Is as in (4).

PROOF. As in Lemma 12, it is enough to prove the statement for all
sufficiently large j. Now recall that the Cramér’s condition is actually equivalent
10 SUP =g ¥ {2)] < ] for all @ > ©. First consider the sitwation under {C.1).

When H — 1/ < 0 [and taking into account the simplification {16)], we have
{-ﬁ.]h’—lfﬂ > 1 forall 1 <k = j. Thus,
_ / KNSy d
sup |Hj)i= sup |] 1{:((—.) —)‘ = ( sup I'ff{z}l)
lul=db; u|zdb; g J b; EES

Now consider f — 1/a > 0. Given ¢ > 0, there is a € = 0 and a jy such that
(%)H—Uﬂ = { for all £ > [j€] and j = jo. Hence, as before, SUB b, }ﬁj(ujl =
(SO 2ac ey V€, § > jp. Because for some p > 0, j — [je) = pj forall
sufficiently large j, this proves the result under (C.1). The proof under (C.2) uses
the same arguments, [

To proceed further we need the following result, contained in Bhattacharya and
Ranga Rao [{1976), proof of Lemma 11.1, page 93].

LEMMA 14. Let it and v be finite megsures an R*. Let n be a positive number
and K, a probability measure on R* satisfving Kpllx:lxj =gl =t Leth be a
real valued Borel measurable function on RE such that |Mp g (x)| and |y p(x )
are integrable with respect to . and v [where My, ,(x) and mj, 5 (x) are as defimed
in (6)). Then

Efmﬁnd{ﬁ_U}*Kﬂ_f{fl_nlfazn]dv*

[ ra-v
Efo.rpd(H-U}*K'ﬁ—F-f{Mﬁzn - [rdv.
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The X, above will be chosen such that its characteristic function K. n{(8) satisfies

(19) |Ept)| < C exp{—(ninh'/*}

for all real &, where € is a constant (independent of n). This is possible in view
of Bhattacharya and Ranga Rao [(1976), Corollary 10.4, page 88], where X, js
used extensively as a smoothing device, Next we give some inequalities that will
be vsed in a rather crucial manner in the next section. For this reason we need 1o

state the bounds explicitly.

LEMMA 15. Assume that £ satisfies the Cramér’'s condition. Let K, be
the smoothing probability measure of Lemma 14 satisfying (18), Then, for some
0<p<l,

ffﬁ;{u}nfr,{undu <C(l+q'p)

flr"%’ﬂ—1uif‘;(umfu(u}|du::Cfsz+n'1p""l-

ProoF. Let A >0, > ¢ > 0,d > 0 be positive constants involved in
Lemma 12 and Jet § < p < 1 be as in Lemma 13. Then, recalling the inequality
(19) for | Ky (u)],

[ 1w liR et < [{M{ B Gyl due + f ARt

(lul <3éy} {u>2b;)
which proves the first part. The second part also foltows in the same way vsing
the inequality |e="*"/2 — 1| < w?e2/2 over the range {Ju} < Ab;} and using the
inequality Je*"/Z — 1| < 2 over the range {ju| > 2b;}. O

LEMMA 16. Suppose that, for some integer ng, the ny-fold convelution of the
distribution of &1 has a nonzero absolutely continuous component. Let H; be ihe
probability disiribution S;-' defined in (15). Then there are measures H and H7?
such that H; = H + H}®, satisfying the following properties:

(1) For everyr > 0, there is a constunt L, such that H}’"{R] < L j~" for afl
J=ng.

(i1} let H; be the Fourier transform of H} Then there are constants A > 0,
A>0,d>0and 0 < <o such that for every j > ng andfarevsr}ff}u
LH*l < Ae™M & L i~ for all |u| < Ak, and for a suitable constans L,.
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(iii} There are constants B > 0 and 0 < p < 1 and an integrable function
g(®) = 0 such that sup s g |H ) < Bg{b;lu)pi for all j = 2ng.

PROOF. The proof is similar to the iid. case j~/* ¥ ;_; & [see Proborov
(1952) and Le Cam (1960), pages 68-72]. We briefly recall the arguments. For
simplicity, we consider the case ng = 1. First, letting # for the distribution
of £, one wriles F = 0G; + (1 — 8)G», where 0 < & < 1 and &) and G2
arc probability measures such that G; is absoluiely continuous with respect
to the Lebesgue measure with a Lebesgne density uniformly bounded by a
constant, (In particular, the density of (7 is square integrable and, hence,
|||.'3112 is also integrable.) This is possible because F is nat entirely disjoint
from the Lebesgue meesure. Then the charactenistic function ¥r(w) of F has
the corresponding demmpos:tmn Wrln) = 8vg, (u} + (1 — &g, {u). Hence,
H_,fu) ]-[t=|{ﬂr,|!r.g,{ T (k) +(1— ﬂ}w{,](}fJ g{k]u)} which can be written
in the form ;) = T T, — 8y~ ['[k_lﬂr,.f{}f_r g(k)u), where Y is
gither ¥g, of g, such that g, occurs in the product l'[k L Yy o (fou)
exactly I times, and the som Y_,; is with respect te all such products for a given /.
Now let 1§ = {{:| — j#| = j3'%). Then H}* is the measure corresponding to

the Fourier transfonm zjefczﬂafu—&)i-f [T, vty '13{.*:}&} It is clear that

H*(R) is bounded in absolute value by Tepe {He'(1 — )i, which is known

to have the bound stated in statement {i). Fcnr statement (ii) use the fact that
|H*{u)| |Hj(u}| + H*"‘(R] and then use the beund in statement i) for H"‘*(H]

together with the buund in Lemma 12 for 1H (2)].

Proof of statement (iii} uses essentially the same arguments of the i.id. case
given in Prohorey (1952) or LeCam (1960) mentioned above, the essential facts
being Ih{: Cramér’s condition for G and the function g¢v) in stalerncnt (i) taken
to be |G ({aw}|? for a suitable constant 2, which is integrable s indicated earlier.
The nacessary modifications needed for the present case being essentially the same
as those uscd in the proofs of Leminas 12 and 13, the proof is concluded. [

LEMMA |7, Under the situation of the preceeding lemma, for some (0 < p < 1,
f [HY ) du < C(L+ p7)
and
[ 17 - U ol = €+ oD

Jorall j = 2np.
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PrROOF. Regarding the first statement, according to statements (i) and (iii) of
Lemma 16, there is a O < p < 1 such that for any r > 0, there is an L, satisfying
f EHO f |E"*(u}|du + f |H;{u)|du
H |k ,i

H?J

< f (Ae=3 4 L, ;"\ du + Bp' f 2Gie) dli
(lul<Ab,}

for all j > 2np. Here the integrable function g(u) > O is the one occurring in
Lemma 16(ii). Similarly, the second statement follows., [

The next result deais with the situation of the second statement of Theorem 3.

LEMMA 18. Suppose that |E[e®5 || du < oo far fome integer np > (0,
Then for all j > ng. the conclusions of Lemma 17 hold for H; (u) itvelf,

PROOF. Because Lemma 16(iii} bolds for Hj{H] itself for alt § = ng with
g(v) = | E[¢/*21]™®, the proof follows as in the previous lemma using Lemma 13.
O

6. Proof of Proposition 6. We first prove the result under the conditions of
Theorem 2 (assumed to hold henceforth without firther mentioning), which will
then essentially contain the proof under the conditions of Theorem 3. Throughout
below the constants v, are such that

n 'y, =0 and v '8, 0.

Such a choice of v, is possible because n~18, —» 0. Further, o will always
stand for a constant with 0 < p = 1. For the function f,{ ¥} = f(ay}, a > 0, the
identities
1
fonmfa{J’)d}’: Efo.n(}'}d.F.
(20) .
f"‘f.:-nfa(:'n’)df= Efmf.r;(ﬂd}'.

which follow in view of Mz, pa(¥) = My play) and m g, 5o ¥} =mgglay), wil
be invoked repeatedly. In particular, because § M| ,{ ¥} dy < 00 for some n > 0.

{21) Lm sup ‘[M!f"m;:(y)dy =limns_}ug¢me.ﬁﬂu;|{y}dy = (.

JL e (0
We begin with the following result, where and elsewhere recall that fx(y) =
B S (Bay).

FROPOSITION 19.
sup E[| fr(yy ' St + )1 < Cpmy' + vnp®) f My o gt (V) Y.
X
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PROOF, We have, with g, (/) = y,~! T ¢ [recall that v =n" ~HeR(n)by],
9 k
vlSe= Y (gtk— ) —ga(1— D)+ Y anlk — NE =Sk +vn 1Sk

j=—0 =1

where 57 = Z _1 £x{k — j)E;. Note that §§ andS}; are independent. Hence,
El| fuvy S+ 00 = E[f 17 o dHe(y — v v + Eﬂ}]]

=f | fruk| o Hoks

where Hj is the distribution of 52, Hu(y) = He(y — ¥ 'valx + 5%)) and
Fak(¥) = falry 'y y). Noting that 87 is in the form of (15), Lemma 14 (wilh the
measure v taken to be identically zero) gives [ | frxld Hux < fM'ifni:I o lyay!
d{Hqgk*Ku-lmF—l} The right-hand side is bouaded by (f M\, | -1, y () d}’) X
flek(u)I!R'v—um? ({u)|du) because for a probability measure P with

j'lP{u}ldu < 3, its density p( v) satisfies
@) s p(y) < [ 1Pl

(Hy » K, has a density function.) Now fIHt{u]K" Ly F-l{u}|du < C(l +
A*u, 1 ) according to Lemma 15. Also, flekI e _{y)dy = puyy !
f lelfﬂ:v;' { y)dy m view of (20). Hence, the proof follows. [

MNote that
(23} sup E[ f_ _falr, S +x+ zslltﬁ'(z}dz] < sup E[lfaly Sk + 0.

Further, E{|f7{y;"Se + 0 = BEENfHBuly, " Sk + x)I] and, hence, by
Proposition 19,

s0p EU A2 S+ D1 < Coulrar” +mp) f My 1)y,

Now note that n—! kzli}fn}{l + w0*) < C becavse v = kfu{k) with
0 < H <1 and ulk) slowly varying. Thus, by (20) and because n—! Pa— 0,

Sup - [Zlfu (v 5, +x}1}

(24)
SUp — E {

— 0,

E.‘.l;'ﬂ

Ef | Fi vy Si +x +z£)l¢(z]dz]

a=]
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REMARK 7. Ifwelet f&(y) = f( _v]l(l_v], > 7}, then sup, B E{F (B, x
(¥ Sk + x))|) is bounded by Clyavy |+ vap )foir;.l gt () 4y, n view of
PIOposltmn 19, where limz llmsupu_,melﬂuljﬂ u_a{}!}dy =0 i
J Mif1.(¥)dy < oo for some i > 0. Then without loss of generality, f(y) in
Theorem 2 can be taken 1o have a compact support; in particular, the integrability
of M fz’,,( ¥) can be relaxed to local integrability.

The pext lemmima will ease the computations to be carried out further on,

LEMMA 20. Let Zy, k> 1, be iid. standard Gaussian random varighles
independent of (£;: —oo < j < oc}. Then, for each e > 0,

1 [x:]
sup E[ Z (f,.(}-',,"Sk +x + Zpg)

&t

oo 2
“f fn(}"n_lsk + x +z£)¢(z)a'z)] ]—»ﬂ.
—0a

PROOF. Define the o-fields F ; =o(81,..., 84, Z1,..., Z;). Because {Z;)
and ($;} are independent, EYf, (v, Sk +x + Zie)lF 1] = SO0 Falyy 5 +
x + 2&)p(z) dz. The differences L{flyy " Sk + x + Zee) — ELfuly S +x +
Zxe)F ¢11) form martingale differences with respect 10 {F ¢, k = 1} Hence, the

expectation in the statementof the lemma is bounded by E [-1: I Ao o (T
S + x + z8)p(z) dz]. The proof follows by (24). [

FINAL ARGUMENTS OF THE PROOF OF PROPOSITION 6. For notational
convenience, and because all the bounds derived below will be independent of
x, we restrict to the case x = 0. In the same way, we restrict to + = I. In view

of the preceeding Lernna 20, it is enough 1o show that E[{ Z[”” (faly VS -

FT 8 + Zie))¥E] — 0 by letting first 1 — 00 and then & = 0. Then, in view
of (24}, it is enough to show that

,1:2 Z El(falyy'S) = [l 185 + Z55))
(25) J=lk=j+1

X {fulva 'S = Fulva " Su 4 Zis))]

converges io § by first letting # — 20 and then £ — . Recall that for & > /.

K5e= 3 (@alk =D = gall —) a+23nﬂ=—ns¢+ Y k-8

I=—oa f=j+1
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with g (f) =y, Tf sz and ;, = n¥—1/2 R(n)b,. This is the same as
o Sk =50t 4 v S
where 83_; = T 73~ g1 (@)k_q. Because §}_; and S2§; are independeat,
ELf( S falyy Sk + Ze)]

= E[fﬂ(}-‘n_] Sj]'f fn{}’n-lﬂr-j}'}d(Hk_j w Gg,,,j]( y— }’_t__]_j]’ns:;:ﬂ].
where Hy..; is the distribution of 87 _ j» Go is Gaussian with mean 0 and variance
ot and
Enkj = EVg_ Vr.
Using similar identitiﬁ, it follows that {25) can be written in the form

1 Z E[{f"{y;l s;) faly, ISJ +ZJE})
i=1

(26)
x E ffnkjd{Hk —j Hl: j*GEak;)]

k=j-1

where we have set fug () = falya ' vi—;») and HE_ () = He- (¥ = iy
¥oSng;). We first show that, for every 8 >0, the guantity

1 -
LD E[(fn{n“-ﬁ'j] - 18 + 240))
j=ir8]
@n !
X ff,,ij d(Hk__J H;_J * Gsu_:]]
k=j+{ jé]

converges 10 0, first by letting n — o and then & — 0. By takKing v = HY

K=j*
p=HY _ i * Gy and Ky = K-, in Lemma 14, one gets upper and lower
bounds for

¥u¥e—;
28) f Fubg AHE; % Gy, — HE ).

By looking at these bonnds, it is clear that we need to obtain bounds for the
following:

*
e f Mf"”*u"_]ﬁ“?t--lj d(Hk_j * Gﬂ‘nl:j * KU‘ }"ni"t HF.’
{30} f {Mfllkjtzu;trﬁ}".;_l} - fﬂ.‘.’j) de*‘“J.’

#
{3‘1) f {f"]:j — mfﬂﬂ-zv:]ﬁrr;lj] dH*""J'

K. mf';{,}
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Regarding (30), we have, again using Lemma 14 withv=0and £, = Eu.;‘m'{.'j‘

#

- A (H =K

ff(“fnu 3";1}";:)’*_., _f.-..t_f va vy Va V¥ J]

f{M trtgo 3 e O Ty iyt ()Y

(32)
Y f |H;¢‘j ("]”KUE"H?E_[; {u}i du

ECrur{,'j( f (M, —1(5)—m fﬂ,u;-(y)]dy)(l +04 v e )

=COnYY + oot ) [ (Mg ()~ (),

where we have used (22), Lemma 15() [S;_; is in the form (13)] and the
ideptity (20). In the same way, the final bound (32) holds for (31) also. Now

consider (29). Let hg—; () be the Lebesgue density of Hy ., « K i - Then

[ Myt A Gy 5 Ko, o — HE %K

Yo Fe¥p_; - )
{(33)
M_fw*u;‘mn-_‘j(}‘)[f fg— j (¥ — ZEmij)ip(2) dz ~ f:k_j{y)] dy

Now [recall that HY_,(y)=H_;{y — v J]-"nS:LH

Ifhk._j(]’ — 2Enk ) (2) d2 —h&—j{.}']‘l

— 2.1 H — -1 Lo e F
- |j(£ Wi/ l)etlﬂ:? Fg-_;}'n-ﬁ'"kj]{Hk_j * Kv—r "y )[H}dﬁ
n Pu¥p_;

-ﬁ:fh.ehu w1\ By s R, @) du
Using this and Lemma 15(ii), (33) is bounded in absolute value by
S M v 0y} ([ le 9 1A, o R Y du
EAYIRCS VAR Sd L A L

(34) Eae}-:kj+p*—fun:.»,,“'n~;}r,.r;_'j( f Mm.ﬂﬂ,,;]{y}dy)

= C(EEij’n}’k__]j + ”npk_j}-
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Thus, summing (32) and (33), (28) is bounded in absolute value by a constant
multiple of (Q(x) + &7 Yya¥i'; + (@) + Nvap*~, where

Q{n) =f(MﬁﬂH“ﬂ—l(_}') — mﬁgﬂp;l(}’})dy'

In addition, E{lfa(v; '5)) = fa(yy1S; + Z;8))) < Clyny[ ' + vap’) by Propo-
gition 19 and (23) Thus, (27} is bounded in absolute value by a constant multiple
of

1 — _ :
") Z (]’n}"j : +vnp')

Z ((Q(n) + Egkj}}"n}'f_j 4 (0(r) + D p*~4).
k=j+1J8]

Now note that g,y = enfl(k — Y Hulnduk — 73!, where the slowly varying
u{n) is such that ¥, = nu(n). When k = j +[j8) and j > [#8], there is a constant
C(5) depending on § such that nf (k — j)~¥ < C(4) for all sufficiently large n.
Hence, one can check that H—'! 2 in] y.,yj_' 2 k6] &, ;¥ Pk__lj < Cu(3)6*
for some constant C,{#). In addition, X0 }»,Tyj-l T vt > 0,
;]IE:;:] V! EE:J‘-H }’n]’k__lj — Qand ;15 Z;=1 Uy o7 ZE:_;-H Vnﬂk_"i — (}. (Re-
call that 21w, — (1) Also, Q(n} — D by (7). Thus, for each & > 0, (27) con-
verges to 0 as # — 00 and ¢ - 0. Hence, it retnains to show that the difference
between (26) and (27} converges to {, first by letting r — o0 and then § — 0,
The same arguments used in Propasition 19 show that | { £, {}f,fl;v;,_j_v} d{Hf-—j *
Gewy — HY ;Y 3} is bounded by Ciy, y,,‘_'j + v p*~/). Hence, it can be seen that
it is enongh to show that . EE,"_El Ya¥; E:-_—j.i.l ¥n }';c__'_; and "-lg 2 ) }f,,}fi X
Ziﬂ‘f{ Vi yb_ ; converge to 0, first by letting » — 0o and then & — ), This is tue

for the first of these because it is bounded by H—IEZ_[:‘S{ Ya¥j Ef:] ¥n ].f] The
same 15 true for the second one becanse it can be rewritien as

1 # [15] ] 1 H 1
—2 z }":r:'.l'j E]’n}"g_ "% E [JE]}']'_,-.s]
i=[n8] [=1 =[n3]
3'! H 2 n
Z j'?‘ 2 cs!-H asn —>» oo,
J=lnd]

for cach 4 > (0, where we have used the fact v 2 is regularly varying with index

1 - 2H = —1. This completes the proof of Pmposnmn 6 under the assumptions of
Theorem 2.
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Now consider the proof under the assumptions of Theorem 3. Flrst considey
Theorem 3(i). Because sup, | f(¥}| < €, we have ' "” ] | fnlyn SJ + 1) <
—"&E!, where % — 0. Hence, one can restrict to the sum E’i#h:- Iy 'S4 x).
Proceeding as in the proof of Propoesition 19 and using Temma 1607} and the firg
part of Lemma 17, for any r > 0, there is an L, such that E{] . (v, ' S, + x)[] is

bounded by
| " CBL,
[1mo monas( f1Bzlan}+ Lo

ChaL,
<cwn! [1£(Ndy + i,,

for all & = 2ap, where Hy is a5 in Lemma 16 corresponding 10 the distribution
H; of §;. Hence, {24) (with the sums restricted to 2rp < k < ) also holds,
because [ f(y}dy < (sup, |f (3D )/ () dy. It remains to deal with (26),
where as above, one can restrict the sum to j and &k such that & > j + 210 and
J = 2ng. In the same way as above but using the Lemma 17(ii), {28) is bounded
by Cru]fk__,-(s,,k_, + p*=h + %M‘i when k > j + 2Zng. Thus, the same arguments
used earlier under the assumptions of Theorem 2 become applin:ablf: when r = |,

[Now yayy Jp* 54 —f?"—%— plays the role of the eardier v, p*~/, where only the

facts n” vy — Oand 3f_ ., | p*~/ < € were used.] This completes the proof of
Proposition 6 under Theorem 3(3).

Regarding the proof under Theorem 3(ji), note that we are considering the sum
%E}:ﬂa Falya 1S; + x) restricted to g < j < n. Here we use the conclusions of
Lemma 18, which hold for & itself for j > ng. The bound in Propositien [9 now

becomes Cyny, g S F(¥} dy and the conclusion (24) (with the sums restricled
to 79 < k < n) also holds, Also, in dealing with (26) one can restrict the suni to
jand k such thatk > j + ng (and j§ = np), because

\ELfuy 85+ 50 fuly 'S + 201
< EVH f200 15 + OIEVA f2(y, 718, 4 1))
so that, similar to (24), = 5% |ELfulys ' S; + 2) fuly, 1 Sp0q + 201 = O for

each fixed 1 < g < nyp. Further, as above, (28) is now bounded by Cy, Jfk_ 1 (el + ;
p* =7y when &k = J + ng. Hence, the proof of Proposition 6 is concluded. U

REMARK 8. [Under the conditions of Theorem 3(ii}, it is implicit in the
preceeding proof that, for every 0 < 5) < 52 = 1, sup, E[{l EB’E%,IT,]] fnf}’"—l x
§; + x) ] is bounded by £ U1 1y 71 1 P20y dy — LT ).
Sll‘ﬂllal‘ bounds hold under Thenrem 3(i) and under Theorem 2. One can establish
analogous bounds for sup, £ }_:['i[jm] Fulyn 'S, + x1)71 for integers £ = L.
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