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Genetic operators for combinatorial optimization in TSP and

microarray gene ordering

Shubhra Sankar Ray - Sanghamitra Bandyopadhyay -
Sankar K. Pal

Abstract This paper deals with some new operators of ge-
netic algorithms and[-27pc] demonstrates their effectiveness
to the traveling salesman problem (TSP) and microarray
gene ordering. The new operators developed are nearest
fragment operator based on the concept of nearest neigh-
bor heuristic, and a modified version of order crossover op-
erator. While these result in faster convergence of Genetic
Algorithm (GAs) in finding the optimal order of genes in mi-
croarray and cities in TSP, the nearest fragment operator can
augment the search space quickly and thus obtain much bet-
ter results compared to other heuristics. Appropriate number
of fragments for the nearest fragment operator and appropri-
ate substring length in terms of the number of cities/genes
for the modified order crossover operator are determined sys-
tematically. Gene order provided by the proposed method is
seen to be superior to other related methods based on GAs,
neural networks and clustering in terms of biological scores
computed using categorization of the genes.
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1 Introduction

The Traveling Salesman Problem (TSP) is one of the top ten
problems, which has been addressed extensively by mathe-
maticians and computer scientists. It has been used as one of
the most important test-beds for new combinatorial optimiza-
tion methods [1]. Its importance stems from the fact there is
a plethora of fields in which it finds applications e.g., shop
floor control (scheduling), distribution of goods and services
(vehicle routing), product design (VLSI layout), microarray
gene ordering and DNA fragment assembly. Since the TSP
has proved to belong to the class of NP-hard problems [2],
heuristics and metaheuristics occupy an important place in
the methods so far developed to provide practical solutions
for large instances and any problem belonging to the NP-
class can be formulated with TSP. The classical formulation
is stated as: Given a finite set of cities and the cost of trav-
eling from city / to city j, if a traveling salesman were to
visit each city exactly once and then return to the home city,
which tour would incur the minimum cost?

Over decades, researchers have suggested a multitude of
heuristic algorithms, such as genetic algorithms (GAs) [3-6],
tabu search [7, 8], neural networks [9, 10], and ant colonies
[11] for solving TSP. Of particular interest are the GAs, due
to the effectiveness achieved by this class of techniques in
finding near optimal solutions in short computational time for
large combinatorial optimization problems. The state-of-the-
art techniques for solving TSP with GA incorporates various
local search heuristics including modified versions of Lin-
Kernighan (LK) heuristic [12-15]. It has been found that,
hybridization of local search heuristics with GA for solving
TSP leads to better performance, in general. Some impor-
tant considerations in integrating GAs and Lin-Kernighan
heuristic, selection of a proper representation strategy, cre-
ation of the initial population and designing of various genetic
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operators are discussed in [16]. A comprehensive discussion
regarding different representation strategies for TSP is pro-
vided in [1].

For creating the initial population, random population
based approach and nearest neighbor tour construction
heuristic (NN) approach are commonly used. Regarding the
random population based approach, consider the investiga-
tions in [5] and [6] as examples. A GA with immunity (IGA)
is developed in [5]. It is based on the theory of immunity
in biology, which mainly constructs an immune operator ac-
complished in two steps: (a) a vaccination and (b) an immune
selection. Strategies and methods of selecting vaccines and
constructing an immune operator are also mentioned in [5].
IGA can improve the searching ability and adaptability of
TSP. Two operators of GA, namely, knowledge based mul-
tiple inversion (KBMI) and knowledge based neighborhood
swapping (KBNS) are reported in [6]. KBMI helps in explor-
ing the search space efficiently and prevents the GA from
getting stuck in the local optima, whereas, KBNS, a deter-
ministic operator, helps the stochastic environment of the
working of the GA to derive an extra boost in the positive
direction. The corresponding GA for solving TSP is referred
to as SWAP_GATSP [6].

Nearest neighbor (NN) tour construction heuristic is a
common choice to construct the initial population of chro-
mosome for solving TSP with GAs. Investigations in this
line include [4, 17-19]. In [4] a modified multiple-searching
genetic algorithm (MMGA) is used with two kinds of chro-
mosomes (namely, conservative and explorer). These two
chromosomes operate under different crossover and muta-
tion rates for tour improvement and to avoid the possibility
of being trapped at local optima in TSP. Since the NN heuris-
tic takes a locally greedy decision at each step, it is found
that several cities that are neglected earlier, may need to be
inserted at high costs in the end. This leads to severe mistakes
in path construction.

Crossover operators of GAs are seen to rectify the mis-
takes in path construction by NN or any other approach.
Various crossover operators such as order crossover [20],
cycle crossover [21], partially matched crossover [3], edge-
recombination crossover [22, 23], and matrix crossover [24]
have been suggested for the TSP. Order crossover has been
observed to be one of the best in terms of quality and speed,
and yet is simple to implement for solving TSP using GA [1,
3, 6]. However, the random length of substring, chosen from
the parent string for performing crossover may increase the
computational time to some extent.

The TSP, with some minor modifications, can be used to
model the microarray gene ordering (MGO) problem. In or-
der to determine functional relationships between groups of
genes that are often co-regulated and involved in the same cel-
lular process, gene ordering is necessary. Gene ordering pro-
vides a sequence of genes such that those that are functionally

related are closer to each other in the ordering [25]. This func-
tional relationship among genes is determined by microarray
gene expression levels. A microarray is typically a glass slide,
onto which thousands of genes are attached at fixed locations
(spots). By performing biological experiments gene expres-
sion levels are obtained from microarray [26]. A good solu-
tion of the gene ordering problem (i.e., finding optimal order
of large DNA microarray gene expression data) has similar
genes grouped together in clusters. Similarity between genes
can be measured in terms of Euclidean distance, Pearson cor-
relation, absolute correlation, Spearman rank correlation, etc.
Investigations for clustering gene expression profiles include
complete and average linkage (different versions of hierar-
chical clustering) [25, 27], self-organizing maps (SOM) [28]
and Genetic Algorithms [29, 30].

Tsai et al. [29] formulated the MGO problem as TSP and
applied family competition GA (FCGA) for solving it. They
associated one imaginary city to each gene, and obtain the
distance between any two cities (genes) from the matrix of
inter gene distances. For microarray gene ordering it is nec-
essary to minimize the distance between the genes that are
in the neighborhood of each other, not the distant genes.
However, Tsai et al. tried to minimize the distance between
distant genes as well [29, 30]. This problem for TSP formu-
lation in microarray gene ordering using GA is minimized in
NNGA [30], where relatively long distances between genes
are ignored for fitness evaluation. The present investigation
has three parts. First, we define a new nearest fragment oper-
ator (NF) and a modified version of order crossover operator
(viz., modified order crossover, MOC). The NF reduces the
limitation of NN heuristic in path construction. This reduc-
tion is achieved by determining optimum number of frag-
ments in terms of the number of cities and then greedily
reconnecting them. The nearest fragment operator also takes
care of the neighbor genes not the distant ones for MGO and
provides good results without ignoring any long distances
between genes for fitness evaluation. The modified version
of order crossover operator (MOC) handles the indefinite
computational time due to random length of substring and
its random insertion in order crossover. This is done by sys-
tematically determining a appropriate substring length from
the parent chromosome for performing crossover. While the
position of the substring in the parent chromosome is cho-
sen randomly, the length of the substring is predetermined in
MOC. In the second part of the investigation, the effective-
ness of the new operators for solving TSP is established. Fi-
nally, in the third part the microarray gene ordering problem
is considered. Comparison of the proposed genetic operators
is carried out with other techniques based on GAs, neural
networks and clustering in terms of a biological score.

In Section 2 we provide, in brief, a formal definition of TSP
and relevance of TSP in microarray gene ordering. The dif-
ferent components of GAs along with their implementation
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for solving TSP are discussed in Section 3. New operators
such as NF and MOC, and the algorithm based on them for
TSP and gene ordering are described in Section 4. Then we
present in Section 5 the results obtained with our algorithm
for different TSP instances. Section 6 concludes the investi-
gation.

2 TSP definition and relevance in microarray gene
ordering

Let{1,2, ..., n} be the labels of the n cities and C = [c; ;] be
an n x n cost matrix where ¢; ; denotes the cost of traveling
from city i to city j. The Traveling Salesman Problem (TSP)
is the problem of finding the shortest closed route among n
cities, having as input the complete distance matrix among
all cities. The total cost A of a TSP tour is given by

n—1
A() =" Ciip1+ Cus ()

i=1

The objective is to find a permutation of the n cities, which
has minimum cost.

An optimal gene order, a minimum sum of distances be-
tween pairs of adjacent genes in a linear ordering 1, 2, ..., n,
can be formulated as [25]

n—1

Fn) =Y Ciit1. )

i=l1

where n is the number of genes and C; ;4 is the distance
between two genes i and i + 1. In this study, the Euclidean
distance is used to specify the distance C; ;4.

Let X =x1,x2,...,x,and Y = yy, y2, ..., yx be the ex-
pression levels of the two genes in terms of log-transformed
microarray gene expression data obtained over a series of k
experiments. The Euclidean distance between X and Y is

Coy =Vixi =y + -y + +lu—w2 3

One can thus construct a matrix of inter-gene distances,
which serves as a knowledge-base for mining gene order us-
ing GA. Using this matrix one can calculate the total distance
between adjacent genes and find that permutation of genes
for which the total distance is minimized. This is analogous
to the traveling salesman problem. One can simply associate
one imaginary city to each gene, and obtain the distance be-
tween any two cities (genes) from the matrix of inter gene
distances. The formula (Eq. (2)) for optimal gene ordering
is the same as used in TSP, except the distance from the last
gene to first gene, which is omitted, as the tour is not a circular
one.

begin GA
Create initial population
while generation_count <% do
/* k =max. number of generations. */
begin
Selection and Elitism
Produce children by crossover from
-selected parents
Mutate the individuals
Increment generation_count
end
Output the best individual found

end GA

Fig. 1 The Pseudo-code of Genetic Algorithm (GA)

3 Genetic algorithms for solving TSP and MGO

Genetic algorithms (GAs) [3] are randomized search and op-
timization techniques guided by the principles of evolution
and natural genetics, and have a large amount of implicit par-
allelism. GAs perform multimodal search in complex land-
scapes and provide near optimal solutions for objective or
fitness function of an optimization problem. In GAs, the
parameters of the search space are encoded in the form of
strings (chromosomes). A collection of such strings is called
a population. Initially a random population is created, which
represents different points in the search space. Based on the
principle of survival of the fittest, a few among them are se-
lected and each is assigned a number of copies that go into
the mating pool. Biologically inspired operators like mat-
ing, crossover, and mutation are applied on these strings to
yield a new generation of strings. The process of selection,
crossover and mutation continues for a fixed number of gen-
erations or until a termination condition is satisfied. A general
description of Genetic Algorithm is presented in this section
for solving TSP using elitist model. Roughly, a genetic algo-
rithm works as follows (see Fig. 1):

3.1 Chromosome representation and nearest-neighbor
heuristic

Various representation methods are used to solve the TSP
problem using GA. Some of these are binary representa-
tion, path representation, matrix representation, adjacency
representation, ordinal representation [1]. In order to find the
shortest tour for a given set of n cities using GAs, the path
representation is more natural for TSP [1]. We have used this
representation in our proposed GA. In path representation,
the chromosome (or, string) corresponding to a TSP tour is
an array of n integers which is a permutation of (1, 2, ..., n),
where an entry i in position j indicates that city i is visited
in the jth time instant. The objective is to find a string with
minimum cost.
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For solving TSP, the nearest neighbor tour construction
heuristic is a common choice to construct the initial popula-
tion. The salesman starts at some random city and then visits
the city nearest to the starting city. From there he visits the
nearest city that was not visited so far, until all the cities are
visited, and the salesman returns to the starting city. The NN
tours have the advantage that they only contain a few severe
mistakes, while there are long segments connecting nodes
with short edges. Therefore such tours can serve as good
starting tours for subsequent refinement using other sophis-
ticated search methods. In NN the main disadvantage is that,
several cities are not considered during the course of the al-
gorithm and have to be inserted at high costs in the end. This
leads to severe mistakes in path construction. To overcome
the disadvantages of the NN heuristics, we propose a new
heuristic operator, called the Nearest Fragment (NF) opera-
tor (discussed in Section 4). However, unlike NN heuristic
that is used only for constructing the initial population, NF
is used in every generation (iteration) of GA with a prede-
fined probability for every chromosome in the population as
a subsequent tour improvement method.

3.2 Selection and elitism

A number of different selection implementations have been
proposed in the literature [3], such as roulette wheel selection,
tournament selection, linear normalization selection. Here
linear normalization selection, which has a high selection
pressure [3], has been implemented. In linear normalization
selection, an individual is ranked according to its fitness, and
then it is allowed to generate a number of offspring propor-
tional to its rank position. Using the rank position rather than
the actual fitness values avoids problems that occur when
fitness values are very close to each other (in which case no
individual would be favored) or when an extremely fit indi-
vidual is present in the population (in such a case it would
generate most of the offspring in the next generation). This
selection technique pushes the population toward the solu-
tion in a reasonably fast manner, avoiding the risk of a single
individual dominating the population in the space of one or
two generations.

A new population is created at each generation (itera-
tion) and after selection procedure, chromosome with high-
est fitness (least cost) from the previous generation replaces
randomly a chromosome from this new generation provided
fitness of the fittest chromosome in the previous generation
is higher than the best fitness in this current generation in the
elitist model.

3.3 Crossover

As the TSP is a permutation problem, it is natural to en-
code a tour by enumerating the city indices in order. This

approach has been dominant in GAs for solving the TSP.
In such an encoding, the chromosomal location of a city is
not fixed, and only the sequence is meaningful. Some rep-
resentative crossovers performed on order-based encodings
include cycle crossover [21], partially matched crossover [3]
and order crossover [3, 20]. Order crossover has been found
to be one of the best in terms of quality and speed [1], and yet
is simple to implement. Below order crossover is described
briefly.

Order crossover (OC). The order crossover operator [3, 20]
selects at random a substring in one of the parent tours, and
the order of the cities in the selected positions of this parent
is imposed on the other parent to produce one child. The
other child is generated in an analogous manner for the other
parent. As an example consider two parents A and B, and a
substring in A of length 3, selected randomly, as shown [3].

A=123]|56714890
and
B=8711230/9546

The cities in the selected substring in A (here, 5, 6, and 7)
are first replaced by * in the receptor B.

A=123156714890

and

B=8 % 11[230/9% 4x%

Now to preserve the relative order in the receiver, a sliding
motion is made to leave the holes in the matching section
marked in the receiver. The convention followed in [3] is to
start this sliding motion in the second crossover site, so after
the rearrangement we have

A=1231567|4890

and

B=230]% % %|9481

After that, the stars are replaced with the city names taken
from the donor A resulting in the offspring B1

B1=2301567/9481
Similarly the complementary crossover from B to A yields

A1=567]230/4891
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In order crossover (OC) the length of the substring for
crossover (chosen from the parent string) is random and may
often be significantly large; this can have an adverse im-
pact on the computational time. This uncertainity is tackled
with a small and predefined length of substring, obtained af-
ter extensive empirical studies, for crossover (discussed in
Section 3).

3.4 Mutation

For TSP, the simple inversion mutation (SIM) is one of
the leading performers [1]. Here simple inversion mutation
(SIM) is performed on each string probabilistically as fol-
lows: Select randomly two cut points in the string, and re-
verse the substring between these two cut points. For example
consider the tour

(121345/678)

and suppose that the first cut point is chosen randomly be-
tween 2nd city and 3rd city, and the second cut point between
the 5th city and the 6th city as shown. Then the resulting string
will be

C=(12]543678)

4 New operators of GA

In this section, some new operators of GAs for solving TSP
and microarray gene ordering are described. These are near-
est fragment (NF) and modified order crossover (MOC). The
genetic algorithm designed using these operators is referred
to as FRAG_GA. The structure of the proposed FRAG_GA
is provided in Fig. 2.

begin FRAG_GA
Create initial population with Nearest-Neighbor Heuristic
while generation_count <k do
/* k =max. number of generations. */
begin
Apply NF heuristic or (NF and LK) heuristic
Elitism
Linear Normalized Selection
MOC
Mutation
Increment generation_count

end
Output the best individual found
end FRAG_GA

Fig. 2 The Pseudo-code for FRAG_GA

The basic steps of the FRAG_GA are as follows:

Step 1. Create the string representation (chromosome of GA)
for a TSP tour (an array of n integers), which is a per-
mutation of 1, 2, ..., n with Nearest-Neighbor heuristic.
Repeat this step to form the population of GA.

Step 2. The NF heuristic is applied on each chromosome
probabilistically.

Step 3. Each chromosome is upgraded to local optimal solu-
tion using chained LK heuristic probabilistically. (If Step
3. is used in the GA we denote it as FRAG_GALK and
otherwise as FRAG_GA.).

Step 4. Fitness of the entire population is evaluated and
elitism is used, so that the fittest string among the child
population and the parent population is passed into the
child population.

Step 5. Using the evaluated fitness of entire population, linear
normalized selection procedure is used.

Step 6. Chromosomes are now distributed randomly. Mod-
ified Order Crossover operator is applied between two
consecutive chromosomes probabilistically.

Step 7. Simple inversion mutation (SIM) is performed on
each string probabilistically.

Step 8. Generation count of GA is incremented and if it is less
than the maximum number of generations (predefined)
then from Step 2 to Step 6 are repeated.

Local search heuristics, such as 2-swap, 2-opt [19], 3-
opt [19], and Lin-Kernighan (LK) heuristic [12-14, 16],
have been extensively applied in GAs for solving TSPs.
These techniques exchange some edges of parents to gen-
erate new children. Usually, stronger local search methods
correspond to better performing GAs. The mechanisms by
which these methods add and preserve edges vary. 2-swap
arbitrarily changes two cities at a time, removing four edges
at random and adding four edges at random. 2-opt, 3-opt and
LK exchange edges if the generated solution is better than the
original one. In each iteration, 2-opt and 3-opt exchange two
and three edges respectively, while, LK exchanges a variable
number of edges. In the present investigation Concorde ver-
sion of chained-LK [31] is used for fair comparison with [16].
In the following sections, the new operators NF and MOC
are described in details.

4.1 Nearest fragment heuristic (NF)

In this process, each string (chromosome in GA) is randomly
sliced in frag fragments. The value of frag is determined by
FRAG_GA in terms of the total no. of cities/genes (n) for a
particular TSP instance (or microarray data). The systematic
process of determining frag is described later in this sec-
tion. As an example, let us consider a string P that is sliced
into three random fragments (1-8), (9—14) and (15-20) for a
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20-city problem.
P=123456781(91011121314|151617 181920

For tour construction the first fragment (9—14) is chosen
randomly. From the last city of that fragment (14) the nearest
city that is either a start or an end point of a not yet visited
tour fragment is determined from the cost matrix. In this
example, let the nearest city (among 1, 8, 15 and 20) be 20.
The fragment containing the nearest city is connected to the
selected fragment, with or without inversion depending on
whether the nearest city is the last city of a fragment or not
respectively. In this example , the fragment 15-20 is inverted
and connected to fragment 9-14, resulting in the following
partial tour P1.

P1=910111213141201918 17 16 15

The process is repeated until all fragments have been re-
connected. From the last city (15) of P1 the nearest city from
unvisited fragment (1-8) is say 1. From this result the final
string P2, shown below, is formed.

P2=9101112131420191817161512345678

The basic steps of choosing frag value systematically for a
TSP instance with n cities are:

Step (1) Set frag value to frag,,;,,-

Step (2) Run FRAG_GA with the selected frag value for x
generations and store the number of times the best tour
cost is decreased from one generation to the next for that
frag value. Denote the stored values by Decr -

Step (3) Increase frag by amount Afrag.

Step (3) Repeat Step 2 to 3 until frag <= frag, ..

Step (4) Find 6 consecutive frag values for which the sum-
mation of corresponding Decr.,s; values is maximum.
Step (5) The best frag value is set to the average of the

selected five consecutive frag values.

Step (6) Repeat Step 1 to 5 ten times and the average of the
best frag values is fixed as the final frag value for NF for
a particular TSP instance.

In this study we have used frag,,, = 55, fragu. = 3»
X = %, Afrag = %, and 6 = 5, though experiments were
conducted for a few other values as well with similar re-
sults. The value of frag,,,, is not set to n as this will lead to
NN heuristic. Also, the crossover operator was disabled. The
motivation for setting the initial frag value to a low one (and
consequently fragment lengths are larger) and then increas-
ing it is that, first exploring the distant neighbors reduces the

chances of locking at a local optimal tour for the GA. The

probabilistic use of NF also helps to come out from local op-
timal solution by leaving some chromosomes for mutation
and crossover operators to explore.

As an example, consider a 100 city problem with frag =
16» and consequently the fragment length is 16 on an aver-
age. As the initial population of the FRAG_GA is formed
with NN heuristic there is a likelihood that a city at one end
of a fragment is close to the 16th neighbor of the similar end
of the next/previous fragment and consequently, they may be
connected by the NF heuristic. In the later generations of the
GA, using ¢ fragments in NN heuristic, explores on an aver-
age, from any city to the 16th city in the chromosome rather
than the 16th neighbor. Due to random slicing of the chro-
mosome, some fragment lengths will be obviously greater
than 16 and some less than 16, and consequently different
types of neighbors will be considered. The lowest frag value
is set to % from the studies in [14], where it is mentioned
that good/optimal results are obtained for most of the TSP
instances in the TSP library [32] with a search space near
about 16 neighbors. The more distant neighbors are mostly
explored with mutation and crossover operators.

4.2 Modified order crossover (MOC)

As already mentioned, in order crossover the length of a sub-
string is chosen randomly and can lead to an increase in the
computational time, this uncertainty can be minimized if the
length of the substring for performing crossover can be fixed
to a small value. However, no study has been reported in the
literature for determining an appropriate value of the length of
a substring for performing order crossover. Such an attempt
is made in this article for finding a small substring length
for MOC that provides good results for TSP/microarray data
with the lowest computational cost.

Unlike order crossover, where the substring length is ran-
domly chosen, in MOC substring length is determined auto-
matically by the FRAG_GA in a similar way of choosing frag
value in Section 4.1. In the process of choosing appropriate
substring length, NF heuristic is also present in FRAG_GA
with its final frag value. As final frag value for NF is deter-
mined without any crossover operator, it is preferable to start
the process of choosing substring length for MOC initially
with a very small value like % (very close to no MOC) and
then increasing it. For example, for a 10 city problem let the
systematically chosen substring length by FRAG_GA is 2.
Now for the parents A and B the chromosomes may be as
follows

A=0984|56/7321
and

B=9541[23]0687
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The cities in the selected substring in A (here, 5 and 6) are
first replaced by * in the receptor B.

B=9%41[230%87

Now to preserve the relative order in the receiver, the con-
vention followed in [3] is to gather the holes in the second
crossover site and insert the substring there. But this conven-
tion leads to loss of information and increases randomness
in the receiver because, after insertion of substring 56 in B
neither 5 is nearer to 3, nor 6 is nearer to 0. To reduce this
randomness, in MOC the holes are gathered in the position
of the last deleted city (here city 6) of the receiver B.

B=941230]|%x%|87
So after substring insertion, B is as follows:
B=9412305687

Now, at least one edge of the substring is nearer to the next
city (city 6 is nearer to 8 according to chromosome B, and
this information is preserved). Same convention is followed
for inserting substring in chromosome A.

5 Experimental results

FRAG_GA is implemented in C on Pentium-4 (1.2 GHz)
and the results are compared with those obtained using
SWAP_GATSP [6], MMGA [4],IGA [5], OX_SIM, (standard
GA with order crossover and simple inversion mutation) [1]
MOC_SIM (Modified order crossover and SIM), and self or-
ganizing map (SOM) [10] for solving TSP. For fair compari-
son with the above mentioned methods Lin-Kernighan (LK)
heuristic is not used with FRAG_GA, whereas, for compar-
ison with HeSEA [16] and other LK based methods each
chromosome in FRAG_GALK is updated probabilistically
with 20 runs of consecutive chained LK and mutation (as rec-
ommended in [16]). Several benchmark TSP instances, for
which the comparative study with various recently developed
pure genetic algorithms (without LK), and SOM are available
in the literature, are taken from the TSPLIB [32] without any
bias on data sets. These include Grtschels24.tsp, bayg29.tsp,
Grtschels48.tsp, eil51.tsp, St70.tsp, eil76.tsp, kroA100.tsp,
d198.tsp, ts225.tsp, pcb442.tsp and rat783.tsp. For compar-
ative study between HeSEA, FRAG_GALK, and other LK
based methods the available TSP instances are 1in318, rat783,
pr1002, vim1084, pcb1173,ul1432, u2152, pr2392, pcb3038,
fnl4461, and usal3509. For biological microarray gene or-
dering, Cell Cycle cdc15, Cell Cycle and Yeast Complexes
datasets are chosen [33]. The three data sets consists of about
782, 803 and 979 genes respectively, which are cell cycle

Table1 Different parameters of FRAG_GA, SWAP_GATSP, OX_SIM,
and MOC_SIM

Population NF Probability Crossover Mutation
size for FRAG_GA probability probability
100 0.3 0.6 0.02

regulated in Saccharomyces cerevisiae, with different num-
ber of experiments (24, 59 and 79 respectively) [26]. Each
dataset is classified into five groups termed G1, S, S/G2,
G2/M, and M/G1 by Spellman et al. [26]. Results are com-
pared with those obtained using GAs [29, 30], different ver-
sions of hierarchical clustering [25, 27] and self-organizing
map (SOM) [28] for solving microarray gene ordering.
Throughout the experiments for FRAG_GA, SWAP_GATSP,
OX_SIM, and MOC_SIM the population size is set equal to
100. Crossover probability is fixed at 0.6 and mutation prob-
ability is fixed at 0.02 across the generations. For FRAG_GA
and FRAG_GALK the probability of applying NF heuristic
is fixed at 0.3. Using these parameters FRAG_GA first sys-
tematically determines and stores the appropriate frag value
for NF heuristic and substring length for MOC for each prob-
lem instance in a way mentioned in Sections 4.1 and 4.2, and
then with these values, tour cost is optimized. Table 1 shows
the various parameters of different genetic algorithms used
in this current investigation.

First, we provide results comparing our method
(FRAG_GA) with other methods that do not use LK heuristics
and then comparisons of results are provided with our method
incorporating LK heuristic (FRAG_GALK) with other LK
based methods .

5.1 Comparison with other GA approaches for TSP

Table 2 summarizes the results obtained over 30 runs by
running the FRAG_GA, SWAP_GATSP [6], OX_SIM and
MOC_SIM [1] on the aforesaid eleven different TSP in-
stances. For SWAP_GATSP, OX_SIM and MOC_SIM, the
overlapping parameters (Table 1) are taken from FRAG_GA.
For each problem the total number of cities and the opti-
mal tour cost are mentioned below the problem name in the
first column. The total number of generations in which the
best result and the average result are obtained is mentioned
in columns 3-6 within parentheses. The error percentages
are shown in third row for each problem, where the error
percentage is defined as

E— average — optimal < 100. @)
optimal

Experimental results (Tables 2 and 3) using FRAG_GA
are found to be superior in terms of quality of solution (best
result, average result and error percentage) with less number
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Table 2 Comparison of the

results over 30 runs obtained Problem FRAG_GA SWAP_GATSP OX_SIM MOC_SIM
using FRAG_GA,
SWAP_GATSP, OX_SIM, and Grtschels24  best 1272 (13) 1272 (50) 1272 (800) 1272 (600)
MOC_SIM for different TSP 24 average 1272 (100) 1272 (200) 1322 (1500) 1272 (1500)
instances 1272 error (%)  0.0000 0.0000 3.9308 0.0000
Bayg29 best 1610 (30) 1610 (60) 1620 (1000) 1610 (700)
29 average 1610 (100) 1615 (200) 1690 (1500) 1622 (1500)
1610 error (%)  0.0000 0.3106 4.9689 0.7453
Grtschels48  best 5046 (40) 5046 (200) 5097 (2500) 5057 (1700)
48 average 5054 (150) 5110 (700) 5410 (3000) 5184 (3000)
5046 error (%)  0.1585 1.2683 7.2136 2.7348
eil51 best 426 (45) 439 (220) 493 (2500) 444 (1600)
51 average 432 (150) 442 (700) 540 (3000) 453 (3000)
426 error (%)  1.4085 3.7559 26.7606 6.3380
St70 best 675 (40) 685 (600) 823 (4500) 698 (4500)
70 average 679 (150) 701 (1000) 920 (7500) 748 (7500)
675 error (%) 0.5926 3.8519 36.2963 10.8148
eil76 best 538 (75) 548 (700) 597 (5000) 562 (3800)
76 average 544 (150) 555 (1000) 620 (7500) 580 (7500)
538 error (%) 1.1152 3.1599 15.2416 7.8067
KroA100 best 21282 (80) 21397 (2000) 21746 (10000) 21514 (8200)
100 average 21303 (500) 21740 (3000) 22120 (12000) 21825 (12000)
21282 error (%)  0.0987 2.1521 3.9376 2.5515
d198 best 15780 (850) 15980 (4000) 16542 (10000) 16122 (9000)
198 average 15865 (2000) 16106 (4000) 17987 (16000) 16348 (16000)
15780 error (%)  0.5387 2.0659 13.9861 3.5995
ts225 best 126643 (1000) 127012 (4000) 135265 (10000) 128994 (10000)
225 average 126778 (2000) 128467 (4000) 138192 (16000) 130994 (16000)
126643 error (%)  0.1066 1.4403 9.1193 3.4356
pcb442 best 50778 (1900) 52160 (8000) 53320 (16000) 52852 (13000)
442 average 50950 (4000) 53800 (8000) 56330 (26000) 54173 (26000)
50778 error (%)  0.3387 5.9514 10.9339 6.6860
rat783 best 8850 (7500) 9732 (12000) 10810 (28000) 10155 (20000)
783 average 9030 (16000) 10087 (16000) 11136 (40000) 10528 (40000)
8806 error (%)  2.5437 14.5469 26.4592 19.5548
of generations when compared with those of other existing Table 3 Average results for various GAs
GAs.[l, 4-6]. It is evident from the table that for different Problem  Optimal IGA MMGA SOM  FRAG.GA
TSP instances the error percentages are lowest for FRAG_GA
and the error percentages for MOC_SIM is much less than eil51 426 499 446 432 432
OX_SIM . The average of error percentages over all the TSP SF70 675 - - 683 679
. . . eil76 538 611 568 556 544
instances for MOC_SIM is 5.8425, which is also less than Kroal00 21282 04001 22154 21303
14.4407 of QX-SIM. The error averages clearly. indicates 4198 15780 17925 16360 _ 15865
that the modification of order crossover improves its perfor- (5225 126643 135467 129453 — 126778
mance significantly over the existing order crossover which pcb442 50778 59380 55660 55133 50950

uses random substring length and its random insertion. The
average of error percentages over all the TSP instances for
FRAG_GA and SWAP_GATSP are 0.6274 and 3.5003 re-
spectively.

Figure 3 shows a comparison of FRAG_GA,
SWAP_GATSP and OX_SIM when the fitness value of
the fittest string is plotted with iteration. The three pro-
grams were run for 12000 iterations for kroal0O.tsp with
population 100. At any iteration, the FRAG_GA has the

lowest tour cost. It took 15.36 seconds, 19.94 seconds and
15.14 seconds by FRAG_GA, SWAP_GATSP and OX_SIM
respectively for executing 12000 iterations. Moreover, only
FRAG_GA is seen to converge at around 250 iterations at
the optimal cost value of 21282 km. On the other hand, the
cost is 21397 km for SWAP_GATSP after 3100 iterations
and 21990 km for OX_SIM even after 12000 iterations.
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Note that FRAG_GA takes almost the same time as
OX_SIM using one more operator (NF), but provides bet-
ter result in less number of paths. It is further to be pointed
out that the NF operator creates an overhead, leading to an
increase in the computation time for FRAG_GA, as com-
pared to OX_SIM. However, this is compensated by the
gain obtained in using the proposed MOC operator. As a
consequence, the time required to execute one iteration, on
an average, becomes almost equal for both FRAG_GA and
OX_SIM. Similar observations are also made when the pro-
posed method is compared with other GAs [1, 6] and other
methods like Self Organizing Map (SOM) [10].

In Table 3 average results of FRAG_GA are compared to
other GA based approaches viz., IGA and MMGA (whose
results are taken from [4]) and Self Organizing Map (SOM)
[10]. As can be seen from the table, the proposed approach
is again found to consistently outperform IGA, MMGA, and
SOM.

5.2 Comparison with other LK based approaches for TSP

Table 4 summarizes the results obtained over 20 runs by
running the FRAG_GALK on different TSP instances men-
tioned in first column. 20 runs of LK [31] and mutation are
applied on randomly chosen 50 chromosomes (among those
who are not operated with NF heusristic) in each generation
of FRAG_GALK. For HeSEA (with LK) [16], LKH (Multi-
trial LK) [13], iterated LK (ILK) [19], and tabu search with
LK [8] the results are taken from [16]. While FRAG_GALK,
HeSEA, LKH, and concorde chained LK (concorde) [31] are
executed on Pentium-4 (1.2 GHz) personal computer, ILK
and tabu search with LK are executed on Silicon Graphics
196 MHz MIPS R1000 and Pentium III 800 MHz respec-
tively in [16]. For fair comparison Concorde chained LK is
executed separately for same time as FRAG_GALK, but on

average concorde converged to the mentioned solutions (in
terms of error) before the allocated time. The total number of
cities and the optimal tour cost are mentioned below the prob-
lem name in the first column. The error percentages (Equation
4) are shown in first row for each problem. The average num-
ber of generations over 20 runs for which the error percent-
ages are obtained is mentioned in second row for each TSP
instance. The third row for each TSP instance shows the av-
erage time in seconds taken by each method. From the table it
is clear that FRAG_GALK produces comparable results with
HeSEA with same version of LK in less computational time,
whereas the quality of solution of FRAG_GALK is better
than other algorithms with comparable computational time.
So FRAG_GALK seems to be a better TSP solver among the
existing ones. The time gain obtained by FRAG_GALK over
HeSEA is due to probabilistic single run of computation-
ally effective NF heuristic and MOC over each chromosome
in FRAG_GALK, whereas, HeSEA uses 20 runs of edge-
assembly crossover between the selected chromosomes and
for all possible combinations of chromosomes with proba-
bility 1. Generations of LKH, ILK, and tabu with LK are not
available.

5.3 Results for microarray gene ordering

FRAG_GA is applied for ordering the genes based on their
expression levels obtained from microarray datasets. Perfor-
mance of FRAG_GA for gene ordering is compared with
other methods based on GAs, clustering and neural net-
works. GA based investigations include NNGA [30] and
FCGA [29] (discussed in Section 1). Clustering methods can
be broadly divided into hierarchical and nonhierarchical clus-
tering approaches. Hierarchical clustering approaches [25,
27] group gene expressions into trees of clusters. They start
with singleton sets and keep on merging the closest sets
until all the genes form a single cluster. Complete-linkage
and average-linkage belong to this category of clustering
technique, differing only in the way the distance between
clusters is defined. Nonhierarchical clustering approaches
separate genes into groups according to the degree of sim-
ilarity (as quantified by Euclidian distances, Pearson cor-
relation) among genes. The relationships among the genes
in a particular cluster generated by nonhierarchical cluster-
ing methods are lost. Self-organizing map (SOM) [28], a
particular class of neural network, performs nonhierarchical
clustering.

Table 5 summarizes the results in terms of the sum of gene
expression distances (Eq. (2)), by executing the FRAG_GA,
complete linkage, average linkage and SOM on the three
different microarray datasets (results in terms of sum of gene
expression distance and code for NNGA and FCGA are not
available in the literature [29, 30]). For FRAG_GA and SOM,
best and average results obtained over 30 runs are provided,
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Table 4 Average results for

various LK based algorithms Problem FRAG_.GALK HeSEA+LK LKH Concorde ILK Tabu+LK
1lin318 error (%)  0.0000 0.0000 0.1085  0.0000 - -
318 generation 2.8 32 - - - -
42029 time (sec.) 1.4 2.3 1.4 1.4 - -
rat783 error (%)  0.0000 0.0000 0.0000  0.1761 - -
783 generation 8.0 8.4 - - - -
8806 time (sec.) 5.9 39.1 2.2 5.9 - -
pr1002 error (%)  0.0000 0.0000 0.0000  0.0215 0.1482  0.8794
1002 generation 22.2 12.0 - - - -
259045 time (sec.) 34.6 91.0 7.5 34.6 298.0 1211.4
vm1084 error (%)  0.0000 0.0000 0.0068  0.0172 0.0217  0.3932
1084 generation  23.6 10.2 - - - -
239297 time (sec.) 34.2 80.6 12.6 342 377.0 597.0
pcbl173  error (%)  0.0000 0.0000 0.0009  0.0070 0.0088  0.6996
1173 generation  22.5 11.5 - - - -
56892 time (sec.) 38.7 84.5 11.8 39.0 159.0 840.0
ul432 error (%)  0.0000 0.0000 0.0000  0.0153 0.0994  0.4949
1432 generation  22.0 11.0 - - - -
152970 time (sec.) 37.7 107.0 6.9 38.0 224.0 775.0
u2152 error (%)  0.0000 0.0000 0.0495  0.0242 0.1743  0.7517
2152 generation  31.5 17.5 - - - -
64253 time (sec.) 48.3 211.0 135.0 49.0 563.0 1624.0
pr2392 error (%)  0.0000 0.0000 0.0000  0.0294 0.1495  0.6492
2392 generation  25.0 14.5 - - - -
378032 time (sec.) 46.6 208.0 26.2 47.0 452.0 1373.0
pcb3038  error (%)  0.0000 0.0000 0.0068  0.1123 0.1213  0.8708
3038 generation  120.6 29.7 - - - -
137694 time (sec.) 245.0 612.0 226.0 219.0 572.0 1149.0
fnl4461 error (%)  0.0014 0.0005 0.0027  0.0734 0.1358  0.9898
4461 generation  265.0 67.8 - - - -
182566 time (sec.) 519.0 2349.0 528.0 519.0 889.0 1018.0
usal3509 error (%)  0.0061 0.0074 0.0065  0.1201 0.1638  0.8897
13509 generation  1102.5 223.0 - - - -
19982859  time (sec.) 19203.0 34984.0 19573.0  19203.0 10694.0 5852.0
Table 5 Comparison of the
results over 30 runs in terms of Cell cycle cdcl5 Cell cycle Yeast complexes
sum of gene expression Algorithms Best Average Best Average Best Average
distances for microarray data
using various algorithms FRAG_GA 1272 1278 2349 2362 3382 3396
(1690) (4000) (2320) (4000) (3890) (6000)
Complete-linkage 1419 1419 2534 2534 3634 3634
Average-linkage 1433 1433 2559 2559 3681 3681
SOM 1874 1905 3018 3094 4376 4449
(100000)  (100000)  (100000)  (100000)  (200000)  (200000)

whereas, for complete and average linkage results remain
same for all runs. The genetic parameters for FRAG_GA are
the same as used before (see Table 1). For FRAG_GA and
SOM the total number of generations/iterations, for which
the best and average results are obtained are mentioned in

columns 2-7 within parentheses. From the table it is clear
that FRAG_GA produces superior gene ordering than related
methods in terms of sum of the gene expression distances.
A biological score, that is different from the fitness func-
tion, is used to evaluate the final gene ordering. The biological
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Table 6 Comparison of the best results over 30 runs in
terms of S(N) values for microarray data

Cellcycle Cell Yeast

Algorithms cdel5 cycle complexes
FRAG_GA 540 635 384
NNGA 539 634 384
FCGA 521 627 -
Complete-linkage 498 598 340
Average-linkage 500 581 331

SOM 461 578 306

score is defined as [29]

n—1

Sy =Y si.in
i=1

where

s;i i+1 = 1, if geneiandi 4 lare in the same group

=0, ifgeneiandi + 1arenotinthesame group

Using this, a gene ordering would have a higher score
when more genes within the same group are aligned next
to each other. So higher values of S(n) indicate better
gene ordering. For example consider the genes YML120C,
YJR048W, YMROO2W and YDR432W belonging to groups
G2/M, S/G2, S/G2 and G2/M respectively. In the above-
mentioned ordering they will return a biological score of
0+ 1+ 0 =1, whereas if they are ordered like YJR048W,
YMRO02W, YDR432W and YML120C then the score will
be 1 + 0+ 1 = 2. The scoring function is therefore seen to
reflect well the order of genes in biological sense. Note that,
although S(n) provides a good quantitative index for gene or-
dering, using it as the fitness function in GA based ordering
is not practical, since the information about gene categories
is unknown for most of the genes in the real world .

Table 6 shows the best results over 30 runs of the above
methods in terms of S(n) value, where larger values are better
(S(n) values for NNGA are FCGA are taken from [30]). It
is clear that FRAG_GA and NNGA [30] are comparable and
they both dominate others. Note that FRAG_GA is a con-
ventional GA, while NNGA (hybrid GA) is a one using LK
heuristic [12]. The main reason for the good results obtained
by FRAG_GA is that, biological solutions of microarray gene
ordering lie in more than one sub optimal point (in terms of
gene expression distance) rather than one optimal point and
there exists different gene orders with same biological score.

6 Discussion and conclusions

A new “nearest fragment operator” (NF) and a modified
version of order crossover operators (MOC) of GAs are

described along with demonstrating their suitability for solv-
ing both TSP and microarray gene ordering (MGO) problem.
A systematic method for determining appropriate number of
fragments in NF and appropriate substring length in terms
of the number of cities/genes in MOC are also provided.
These newly designed genetic operators showed superior
performance on both TSP and gene ordering problem. The
said operators are capable of aligning more genes with the
same group next to each other compared to other algorithms,
thereby producing better gene ordering. Infact, FRAG_GA
produces comparable and sometimes even superior results
than NNGA, a GA which implements Lin-Kernighan lo-
cal search, for solving MGO problem in terms of biological
score.

The representation used in the present investigation is a
direct one (integer i = city/gene i) and also used in all other
state-of-the-art TSP solvers using genetic algorithm and LK
heuristic based approaches. An indirect representation, like
offset-based representation, in general takes more computa-
tional time in representation, whereas, there is no chance for
improving the solution quality over optimal results for most
of the TSP instances.

An advantage of FRAG_GALK is that the quality of the
solution seems to be more stable than that obtained by LKH
and concorde chained LK, when used to solve the bench-
mark TSP problems. An evolutionary algorithm for solving
combinatorial optimization problems should comprise mech-
anisms for preserving good edges and inserting new edges
into offspring, as well as mechanisms for maintaining the
population diversity. In the proposed approach, nearest frag-
ment heuristic, modified order crossover, and LinKernighan
local search preserve good edges and add new edges. The
proposed method can seamlessly integrate NF, MOC, and
LK to improve the overall search.

The present investigation indicates that incorporation of
the new operators in FRAG_GA and LK in FRAG_GALK
yield better results as compared to other pure GAs, Self Or-
ganizing Map, and related LK based TSP solvers. With its su-
perior results in reasonable computation time FRAG_GALK
can be considered as one of the state-of-the-art TSP solver.
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