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Abstract—Motivation: One of the important goals of biological
investigation is to predict the function of unclassified gene. Al-
though there is a rich literature on multi data source integration
for gene function prediction, there is hardly any similar work in
the framework of data source weighting using functional annota-
tions of classified genes. In this investigation, we propose a new
scoring framework, called biological score (BS) and incorporating
data source weighting, for predicting the function of some of the
unclassified yeast genes. Methods: The BS is computed by first eval-
uating the similarities between genes, arising from different data
sources, in a common framework, and then integrating them in a
linear combination style through weights. The relative weight of
each data source is determined adaptively by utilizing the infor-
mation on yeast gene ontology (GO)-slim process annotations of
classified genes, available from Saccharomyces Genome Database
(SGD). Genes are clustered by a method called K-BS, where, for
each gene, a cluster comprising that gene and its K nearest neigh-
bors is computed using the proposed score (BS). The performances
of BS and K-BS are evaluated with gene annotations available
from Munich Information Center for Protein Sequences (MIPS).
Results: We predict the functional categories of 417 classified genes
from 417 clusters with 0.98 positive predictive value using K -BS.
The functional categories of 12 unclassified yeast genes are also
predicted. Conclusion: Our experimental results indicate that con-
sidering multiple data sources and estimating their weights with
annotations of classified genes can considerably enhance the per-
formance of BS. It has been found that even a small proportion of
annotated genes can provide improvements in finding true positive
gene pairs using BS.

Index Terms—Bioinformatics, combinatorial optimization, gene
expression, phenotypic profile, protein sequence, transitive
homology.

1. BACKGROUND

NCREASING quantities of high-throughput biological data
have become available in recent years. Many of these, such
as phenotypic profiles [1], gene expression microarrays [2], pro-
tein sequences [3], Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway [4], protein—protein interaction data [5], [6],
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protein phylogenetic profiles [7], and Rosetta Stone (RS) se-
quence [8], assess functional relationships between genes on a
large scale. These high-throughput data can be the key to assign
accurate functional annotation to a significant number of unclas-
sified genes [9] but they alone often lack the degree of specificity
needed for accurate gene function prediction. This improvement
in specificity can be achieved through the incorporation of het-
erogeneous functional data in an integrated analysis [9].

The value of combining informations, obtained from
different methods for gene function predictions has been
illustrated by several studies [3], [9]. Marcotte et al. [3]
predicted many potential protein functions for Saccharomyces
cerevisiae based on a heuristic combination of different types
of data. Von Mering et al. [10] first developed quantitative
methods to measure functional relationship among genes from
three different sources of information. Heterogeneous data
sources are integrated in [9] in Bayesian network approach
and functional modules are predicted by using a clustering
algorithm based on the principle of K-nearest neighbor (K-NN)
algorithm. Lee et al. [11] compared different classes of data
and integrated them by using Bayesian score (BS).

While there are many works regarding data source integration,
the relevance of integrating information from data sources in a
linear combination style through functional-annotation-based
adaptive weights is still unexplored. Moreover, all the premen-
tioned works do not incorporate transitive nature of protein
homology and KEGG pathway similarity extraction excluding
yeast genes. In this investigation, we present a new computa-
tional framework, using functional-annotation-based weighting
of data sources, for the prediction of gene function in yeast. The
novelty of our method lies in the way of estimating the weights
in a linear combination style using gene annotations in (4) (de-
scribed in Section II-C). In the related work of Lee et al. [11], all
available log-likelihood scores derived from the various datasets
are added with a rank-order-dependent weighting scheme. They
used a single free parameter for estimating weights.

II. METHODS

We mainly focus on integrating phenotypic profiles, microar-
ray gene expression, KEGG pathway-related protein database in
protein information resource (PIR) [12], protein sequence sim-
ilarity by transitive homology, and protein—protein interaction
information as data sources. The main steps of our methodology
for predicting gene functions can be summarized as follows.

S1) Extract pairwise similarity of genes obtained from
different data sources (see Section II-A).
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S2) Separately rescore the similarities in a common
framework of yeast gene ontology (GO)-slim: pro-
cess annotations (see Section II-B).
Integrate the rescored similarities from different data
sources through the proposed scoring framework (see
Section II-C) and calculate the combined score.
for each gene g, form a cluster comprising that gene
and its K -NNs using the proposed score, and predict
the function of g by noting the functional enrich-
ment of the cluster using Munich Information Center
for Protein Sequences (MIPS) [13] annotation (see
Section I1-D).

Each of the earlier steps are discussed in detail in the following
sections.

S3)

S4)

A. Data Sources and Similarity Extraction Techniques

Here, we describe the different data sources and their respec-
tive similarity extraction techniques.

1) Phenotypic Profile: Recently, Brown et al. [1] presented
a method for the analysis of the function of genes in budding
yeast. The method is based on hierarchical clustering of the
quantitative sensitivity profiles of the 4756 strains with indi-
vidual homozygous deletion of all nonessential genes. They
showed the method to be superior than other global meth-
ods for identifying various interrogated functions. The detailed
procedure of generating and normalizing the data is available
from Brown et al. [1]. The normalized data are downloaded
from the supplimentary material and we use Pearson correla-
tion for phenotypic profile similarity extraction. The genes with
more than 50% missing values are first eliminated from the
dataset. For the remaining genes, missing values are estimated
using LSimpute_adaptive method available in LSimpute [14]
software.

2) Gene Expression: We use the all yeast [2], [15] data for
gene expression similarity extraction. Brown et al. [1] have
shown that even with 30 distinct biological conditions for gene
expression, GO term ribosome biogenesis (GO:0007046) tends
to dominate gene pairs implicated by coexpression. As we have
already used phenotypic profiles, which implicate gene rela-
tionships over a broad range of biological processes, here we
use only the widely studied all yeast data and use centered
Pearson correlation for extracting gene expression similarity.
The all yeast dataset is downloaded from Stanford Microarray
Database [16] with default normalization parameters, as sug-
gested by the experts. The missing values in the dataset are
estimated using LSimpute_adaptive [14] in a similar fashion to
phenotypic profiles mentioned in Section II-A1.

3) KEGG Pathway: The pathway information for genes in
KEGG [4] can be utilized as a reference for functional recon-
struction. All the protein sequences, except yeast proteins, cor-
responding to each pathway (121 pathways in the second level)
are downloaded from PIR [12]. Profile vector for each pro-
tein in yeast is computed by comparing its sequence across
121 pathway databases using basic local alignment search tool
(BLAST) [17]. The method is similar to phylogenetic profile [7]
construction, where each pathway database is replaced by all
proteins within a species. The pathway profiles of genes, com-

puted using KEGG pathway databases, are denoted as KEGG
profiles. To find the similarity between two genes using KEGG
profiles, we used the ratio of dot product value and OR value
between two profiles. The similarity matrix has the highest sim-
ilarity value of 1. Hence, the similarity values, obtained by all
pairwise comparison, have a dynamic range from O to 1, and its
normalization is unnecessary. Note that the genes whose pro-
tein sequences are not available are assigned a pathway profile
similarity value of 0 w.r.t. all other genes (proteins).

4) Protein Sequence: Comparing the protein sequences
presents an alternative prominent approach for gene annota-
tion and analysis. Intuitively, one can assume that all the protein
relations, arising from direct protein similarity search, are avail-
able in the literature and will not help in predicting functions
for unclassified genes in a widely studied organism like yeast.
As compared to direct protein similarity search, the field of
searching gene/protein similarity through phylogenetic profiles
(PPs) [7], RS sequence [8], and transitive homology [18] are
relatively new methods. In this investigation, transitive homo-
logues are used instead of PP and RS for extracting protein
similarity, as its performance is reported to be better than PP
and RS in literature [19], [20].

Transitive homology detection method [18], [20] works by
searching the query sequence against the database with a con-
servative threshold to find the closely homologous sequences
and using these homologous sequences as seeds to search the
database to find remotely homologous sequences with a less
conservative threshold. The method has been shown to be close
to the profile [7] based methods and better than a direct pairwise
homology search [18]. To find the transitive homologues, ho-
mology comparisons are performed among target proteins and
3 766 477 proteins downloaded from UniProt [21] by using
BLASTP in BLAST [17]. Before comparison, all the yeast pro-
teins are removed from the downloaded database. Let the simi-
larity (E-values using BLAST) between two protein sequences
Aand Bbe B4 p.The value By g isreplacedby B4 ¢ X Be g
if there exists a sequence C such that B4 ¢ X B¢ p is larger
than the current value of B4 p. This transformation takes advan-
tage of the transitive homology of sequences A and B through
the intermediate sequence C, assuming that sequences A and C
and sequences B and C are independently homologous [20]. In-
stead of storing raw BLAST score as the similarity between two
protein sequences, we use the metric of ProClust [22] where the
metric value scales from O to 1. Here also, the genes whose pro-
tein sequences are not available are assigned a transitive protein
similarity value of O w.r.t. all other genes.

5) Protein—Protein  Interaction: Protein—protein  maps
promise to reveal many aspects of the complex regulatory
network underlying cellular function [10]. For this study,
manually curated catalogs of known protein—protein inter-
actions are downloaded from Biological General Repository
for Interaction Datasets (BioGRID) [6]. For a given pair of
genes/proteins, the similarity value is 1 or 0, indicating an
interaction present or absent, respectively. The BioGRID
database/catalog includes more than 90000 interactions by
combining results obtained from different experiments. The
related references of experiments are available in BioGRID.
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B. Scoring the Similarities in a Common Framework

Scoring the datasets by a single criterion allows us to directly
measure the relative merit of each data set and then to integrate
the datasets with weights that reflect this merit even when the
datasets are accompanied by their own intrinsic scoring schemes
(such as Pearson correlation for gene expression). In this regard,
the similarities arising from various data sources are separately
rescored, based on the common framework of yeast GO-slim
process annotations of genes in the Saccharomyces Genome
database (SGD) [23]. The proportion of true positive (TP) gene
pairs at a particular similarity value (computed from a data
source) can be used as a single criterion for rescoring the simi-
larity values, where TP gene pairs are defined as pairs of genes
7 and 7, such that genes 7 and j have an overlapping (explicit or
implicit) GO term annotation. Proportion of TP pairs (positive
predictive value (PPV)) of a method is defined in [9] as

PPV — no. of predicted pairs with common GO term.

total no. of predicted pairs M
The hierarchical nature of GO and multiple inheritance in the
GO structure can lead to evaluation problems if we consider
only the particular GO term with which a gene is annotated [9].
To alleviate this problem, we consider the SGD yeast GO-slim
process annotations, where every gene is annotated in the same
level without any tree-based structure. For every gene g, which
has undergone yeast GO-slim process annotation, a vector

V(g) = (vi,v2,...,v;) )

is used to represent its category (yeast GO-slim process) status,
where j is the number of categories. The value of v; is 1 if
gene g is in the jth category, otherwise it is zero. Based on the
information about categorization, the PPV at a given similarity
value can be defined as

PPV = Z?:l Zyjn—l(v(ﬁg»m X V(gir)m) 3)

where >/ (V(gi)m X V(gir)m) is set to 1 if

s 1 (V(gi)m xV(gir)m) >1, g and g¢;, form a gene
pair, n is the number of predicted gene pairs at a given
similarity value, and V'(g; )., represents the mth entry of vector
V(g;). Hence, if a gene pair, associated with any method or
data source, belongs to two or more GO categories, then it
contributes with a 1 at the numerator of the PPV. Its contribution
to the denominator is 1 if both the genes in a gene pair belong
to at least one GO category (i.e., both are classified). If any one
of them is unclassified, then contribution of that gene pair in
the denominator of PPV will be 0.

Fig. 1 compares the similarity values obtained from different
data sources in terms of their PPV. The PPV for intermediate
similarity values, which are not plotted in Fig. 1, are calculated
from the slopes of the respective curves. The similarities ex-
tracted from protein—protein interactions are binary relations in
our study. Therefore, PPV for protein—protein interactions has
a constant value 0.69 at a similarity value of 1, and hence, it is
not shown in Fig. 1.
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—A— KEGG Pathway profile

positive predictive value (PPV)------>
o

O'2A —=&— Microarray
—<&— Phenotypic Profile
0 0.2 0.4 0.6 0.8 1
Similarity Value——--- >

Fig. 1. Comparing the rescored similarity values for different types of data
sources to obtain equivalency in the common framework of yeast GO-slim
process annotations. The PPV versus the similarity values are plotted for each
data source.

C. New Framework for Data Source Integration

As the similarities computed from different data sources are
rescored (see Section II-B) on a single criterion and common
framework of yeast GO-slim process annotations, they are di-
rectly comparable and can be integrated even when the natures
of experiments are distinct. The PPV reflects the usefulness of
a data source at a given similarity value, but do not provide any
information about weight of one data source in the presence of
the other data sources, in predicting gene pairs. Consequently,
it will be more appropriate and better if

1) PPV of each data source, in the presence of other data

sources, is separately weighed by a factor and then
integrated;

2) factors are dependent on the PPV of the integrated PPV

of different data sources.

Such an attempt is made in this paper with a new score where
PPVs computed from phenotypic similarity (F), gene expres-
sion similarity (M), KEGG pathway profile similarity (K), pro-
tein similarity through transitive homologue (B), and protein—
protein interaction information (/) between two genes X and Y
are integrated through weights a, b, ¢, d, and e in a linear combi-
nation style. The weights of the PPVs, computed from different
data sources, are determined by adaptively maximizing the PPV
of the new score using yeast GO-slim process annotations [23]
of known genes. This score is referred to as BS and is defined
as

axPxy+bxMyy+cxKxy
a+b+c+d+e
dx Bxy +exIyy
a+b+c+d+e

BSxy =

“4)

where a, b, ¢, d, and e are varied within the range O—c in steps of 1
to find a combination that maximizes the PPV for a user-defined
number of top gene pairs. The weighting scheme enables all
possible weighting (including equal and zero weighting). Note
that the weights a, b, ¢, d, and e are assigned to the complete PPV
matrices calculated from individual data sources. The following
can be stated about the score.

1) 0<BSyy <1

2) BSx y = BSy x (symmetric).
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The proposed scoring framework for data source integration,
in (4), is based on data source weighting, where the rescored
similarity spaces, available from different data sources, are adap-
tively transformed using a set of weighting coefficients. Intu-
itively, more important similarity spaces should be assigned
larger weights than less important ones, while irrelevant ones
should be assigned zero weight. Although the proposed frame-
work has some common working principle with feature weight-
ing (FW) [24], it cannot be categorized as FW because what is
computed using BS is the pairwise gene similarities and not the
set of features of any individual gene.

D. Estimation of Weights for Maximization of PPV

We maximize the PPV, using yeast GO-slim process annota-
tions, for top gene pairs by varying the weights a, b, ¢, d, and
e in the BS (4). For each set of values of a, b, and ¢, the top
gene pairs are identified with a gold standard cutoff value. Our
gold standard cutoff value and gold standard of top gene pairs
are determined from KEGG pathway profiles, which provides
26 432 gene pairs with similarity value 1 and constant PPV of
0.81. These gene pairs are the most predictive of all, whereas
the PPV of other data sources, as well as gene pairs below top
26 432 for KEGG pathway profiles, vary considerably. We now
use the following steps to estimate the weight factors a, b, ¢, d,
and e in the BS.

S1) All the factors are assigned an initial value of 1.

S2) BS values are calculated for all the gene pairs and
sorted in descending order to identify the cut-off value
above which the top 26 432 gene pairs are available.

S3) PPV is calculated for the top 26 432 gene pairs.

S4) The weight factors are now varied in steps of 0.1 and
the steps from 2 to 3 are repeated to find a combination
of weights for which the PPV is maximized.

Fig. 2 shows how PPV, using yeast GO-slim process, varies
for different values of weight factors ranging from O to 100 in
steps of 1. The curves show instances where one weight factor
is varied and the other weight factors are kept constant. Ex-
periments are also conducted by excluding the KEGG pathway
profile database and the corresponding curves are referred to as
c=0.

E. Gene Function Prediction

The biological function for each gene is predicted from a
cluster comprising that gene and its top K-NNs [3], [9] by
selecting a gold standard BS cutoff value obtained from KEGG
pathway profiles using MIPS October 2005 classification. This
gene clustering method using BS is denoted as K-BS, where each
gene is considered once for its function prediction and allows
its neighbor genes to be a member of multiple gene clusters. As
yeast GO-slim process annotations were used for determining
the weights of the data sources, 510 different MIPS (October
2005) functional categories are used to evaluate the biological
significance of the clusters generated by our K-BS. One or
several predominant functions are then assigned to each cluster
and the target gene by calculating the P-values for different
functional categories.
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Fig. 2. Comparing the values of PPV using BS, by varying weights of PPV

of different data sources for top 26 432 gene pairs. When a particular weight is
varied, the other weights are kept constant at the values shown in the figure. The
curves obtained with ¢ = 0 indicate that KEGG pathway profile is excluded in
the integration process.

III. RESULTS

As yeast GO-slim process was used for determining the
weights of the data sources, MIPS annotation is now used to
evaluate the performance of BS. Genes/proteins that could not
be mapped to their MIPS identifier are eliminated. Our gold stan-
dard PPV of top gene pairs is now changed and determined from
KEGG pathway profiles, which provides 26 432 gene pairs with
constant PPV of 0.8874, using top level classification of MIPS
annotation. In this section, we first discuss about the various
paremeters involved in the clustering method and the biologi-
cal significance of some clusters in Section III-A. Influence of
number of classified genes on the proposed scoring framework
is demonstrated in Section I1I-B. In Section III-C, we present the
comparisons of our method with Lee ef al.’s [11] probabilistic
network and individual data sources. Finally, the performance
of BS and some comparisons based on independent training (es-
timating weight factors) and test set with null intersection are
presented in Section III-D.

A. Gene Function Prediction Based on Clustering Results

Genes are considered to be linked if they are among the ten
closest neighbors within a given distance or similarity cutoff [3].
The biological function for each gene is predicted from the
cluster consisting the top ten neighbors of that gene by selecting
K to be at most ten and BS cutoff value of 0.77. Above this
cutoff value, the gold standard PPV of 0.8874 is achieved for 36
033 gene pairs using the MIPS October 2005 classification. We
found several clusters to be significantly enriched with genes of
a similar function. Clusters with P-values greater than 10~° are
not reported.

To predict a genes function from it’s neighbor genes, we use
the following steps.
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TABLE I
Top 12 FUNCTION PREDICTIONS OF UNCLASSIFIED GENE AT BS CUTOFF VALUE OF 0.77
Unclassified Functional P-value Genes Genes
Gene category within within
cluster | category
YILOSOW ABC transporters 2.2204e-16 8 28
YLRO57W modification with sugar residues 2.2871e-14 8 67
YHR218W DNA topology 0 9 52
YHR219W DNA topology 0 10 52
YIL170W C-compound and carbohydrate transport 1.3656e-14 8 63
YDR441C purin nucleotide/nucleoside/nucleobase metabolism 6.7724e-15 8 58
YCL074W | TRANSPOSABLE ELEMENTS, VIRAL AND PLASMID PROTEINS | 3.3307¢-16 8 34
YBLI112C DNA topology 0 10 52
YLR464W DNA topology 2.6645e-15 8 52
YMRO10W modification with sugar residues (e.g. glycosylation, deglycosylation) 0 9 67
YIL067C vesicle fusion 2.2204e-16 9 32
YHRO049W metabolism of secondary products derived from glycine, L-serine 3.3307e-16 7 19
and L-alanine

S1) 2507 clusters are identified with at least three or more
members by selecting K = 10 and with BS gold stan-
dard cutoff value 0.77.

Out of these clusters, 1915 clusters are identified with
functional enrichment in one or more categories and
P-values less than 1075,

From functionally enriched clusters, we predict the
functions of 1855 classified and 60 unclassified genes
by assigning the function related with the smallest
P-value. This, in practice, resulted in more accurate
predictions than if multiple functions are allowed per
cluster.

The functions of 1855 classified genes are predicted with
0.95 PPV. The functional enrichments for clusters intended
for 60 unclassified yeast genes are available in tabular form
(tab delimited file) at http://www.isical.ac.in/~scc/Bioinfor-
matics/AdS/unclassifiedprediction.xls. The function with the
smallest P-value in the table represents the predicted function
for the unclassified gene, and the three values in the parenthesis
denote the function-related P-value, function-related number of
genes in the cluster, and the function-related number of genes in
the genome, respectively. The table also includes all the genes
within each cluster, the PPV arising from various data sources,
and the BS values. A table with similar format, containing the
predicted functions of 1855 classified yeast genes, is available at
http://www.isical.ac.in/~scc/Bioinformatics/AdS/classifiedpre-
diction.xls.

Out of 60 unclassified genes, YEL041W and YDR459C are
now classified in MIPS, and our function predictions for these
two genes are in agreement with MIPS. YELO41w and its four
neighbors YJR049C, YPL188W, YDR226W, and YER170W
form a cluster. From the functional enrichment of the cluster,
we correctly predict that YELO4 1w is related with the category
“phosphate metabolism” (with P-value 1.42 x 107%) as the four
remaining genes belong to this category. The cluster containing
gene YDR459C and its ten neighbor genes shows functional
enrichment in categories “protein modification” (8 out of 11, P-
value 1.16 x lO’G), “modification with fatty acids” (4 outof 11,
P-value 2.3 x 10~7), and “modification by acetylation, deacety-
lation” (4 out of 11, P-value 4.4 x 107%). We correctly predict
that YDR459C is related to “modification with fatty acids.”

S2)

S3)

Our top predictions consist the function of 12 unclassified
(MIPS 2007) and 417 classified genes at BS cutoff value 0.77,
and P-value cutoff 1 x 107'2. At these cutoff values, the func-
tions of the classified genes are predicted with 0.98 PPV. Table I
summarizes the top 12 predicted functions for 12 unclassified
genes. Each of the clusters contain 11 genes, and they are avail-
able in the table representing 60 clusters for function prediction
of unclassified genes. Since 4 of the 12 clusters show functional
enrichment in a single category of “DNA topology,” we analyze
these clusters manually. We observe that 15 classified, four un-
classified, and two recently deleted (YELO76C and YPR203W)
genes are distributed in these clusters with 80% genes in com-
mon. On examination of the literature for four unclassified genes
(YHR218W, YHR219W, YBL112C, and YLR464W), we find
that their involvement in DNA processing and DNA topology is
likely due to their relation to helicase proteins [23], [25].

B. Influence of the Number of Classified Genes on Functional-
Annotation-Based Weighting

Here we study how the increase in the number of classified
genes in yeast GO-slim affects the PPV for the classified genes
in MIPS for top 26432 gene pairs using BS. We found that
even with 20% of classified genes, the estimated values of a,
b, ¢, d, and e, in maximizing PPV, differs by an amount of 1
than the estimated values with 90% of classified genes. Hence,
the value of PPV also varies by an amount of 0.02-0.03 with
classified genes ranging from 20% to 90%. Fig. 3 shows that the
percentage of classified genes clearly has a limited contribution
to the PPV of the BS. Thus, BS may also be successfully used
for organisms where the number of classified genes is as low as
20%.

C. Comparative Performance of Methods and Data Sources

In order to demonstrate the power of data source integration,
we compare the PPV of gene pairs identified by the BS with
those identified by the individual data sources. Since BS uses
GO annotations for adapting its weights, it is not used for
performing the comparisons. Rather, the MIPS annotation of
classified genes is used (see Fig. 4). We sorted the similarity
values computed from BS, phenotypic profiles, gene expression,
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individual data source in terms of PPV versus the number of top gene pairs.

KEGG profiles, and protein similarity from transitive homology
in descending order, and drew a curve for top gene pairs verses
PPV from the sorted data for each form of data source. In
contrast, PPV for protein—protein interactions has a constant
value of 0.69 and is not shown in Fig. 4. We found that the curve
of BS is above the other curves. Moreover, the top 26 432 gene
pairs has a PPV greater than the gold standard KEGG pathway
profiles. The gene pairs are also reasonably distinct from gene
pairs of KEGG pathway profiles. Fig. 4 also compares the
performance of BS and “final log likelihood scores” of Lee
et al.’s probabilistic network (downloaded from the Web site
mentioned in [26]) in terms of PPV with MIPS annotation.
The curve of Lee et al.’s probabilistic network is drawn from
top 34000 gene pairs (as mentioned in [11]). For a direct
comparison between our method and the probabilistic network,
we implemented the probabilistic network as described in Lee

et al., using the same datasources as in BS and plotted the
respective curve in Fig. 4. From the figure, it is clear that the
top gene pairs identified in this investigation are better than any
other existing network or data sources. The earlier statement is
true not only for gold standard 24 632 gene pairs, but also for
top 80 000 gene pairs that can be used further for gene function
prediction. The top 100 000 gene pairs predicted by our method
with PPV above 0.755 (not shown in the data) are available at
http://www.isical.ac.in/"scc/Bioinformatics/AdS/toprelation.txt
in tabular (tab delimited) form. The PPV computed from
individual data source are also shown in the file. The KEGG
pathway profile information may be a bit redundant with
functional annotations available in MIPS and yeast GO-slim
process. In this regard, experiments are also conducted by
excluding the KEGG pathway profile dataset from the data
source integration procedure in BS and our implemented
version of Lee et al.’s probabilistic network, while all other
aspects are kept unchanged. The two corresponding curves are
also shown in Fig. 4.

D. Evaluation Based on Independent Training and Test Sets

To perform a fair evaluation of the methods, the training and
test set should be independent with null intersection, and in this
regard, we also experimented with a method based on cross-
validation. The KEGG pathway profile dataset also remains
excluded from the integration procedure to avoid any redun-
dancy in KEGG pathway information and annotations available
in MIPS and yeast GO-slim process.

In this study, we randomly picked 3036 genes with yeast GO-
slim process annotations [using (2)] to train the weights in BS,
and then evaluated the performance with the remaining 3036
genes with MIPS annotations. All links among the genes within
the same training subset and the same test subset are calculated,
with neither links nor genes shared between the training and
test sets. Because data are integrated using weights derived only
from a part of genes with yeast GO-slim process annotations,
the performances measured on remaining genes with MIPS an-
notations are expected to be free from circular logic and memo-
rization of the annotation set during the training procedure. All
other steps prior to the final assessment of BS are performed
using only the training set. The final assessment is performed
on the independent test set. The cross-validation procedure is
repeated ten times and the performance of BS is evaluated.

Fig. 5 shows the curves comparing BS, Lee et al.’s proba-
bilistic network and individual data sources in terms of PPV for
top gene pairs in one of the cross-validation procedures. Simi-
lar curves are obtained when the cross-validation procedure is
repeated. The curves show that BS performs better than Lee
et al.’s probabilistic network and individual data source. In or-
der to compare the performance of cross-validation results with
the results reported in Section III-C for BS and Lee et al.’s prob-
abilistic network without KEGG as a data source, the top two
curves are provided in Fig. 5 (these curves also appear in Fig. 4,
and are provided here for convenience). These two curves are
at the top of Fig. 5, and are superior to the two other curves
of BS and Lee et al.’s probabilistic network where half of the
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Fig. 5. Comparison between the BS, Lee et al.’s probabilistic network, and
individual data source in terms of PPV versus the number of top gene pairs. The
cross-validation results of BS and Lee et al.’s Probabilistic Network (with two
different sets of 3036 genes) are shown in curves 5 and 6, respectively.

genes with yeast GO-slim process annotations are used to train
weights and half of the genes with MIPS annotations are used
for evaluation. Experiments are also conducted by randomly
picking half of the genes with yeast GO-slim process annota-
tions to train weights, and all the genes with MIPS annotations
for evaluation of BS and Lee et al.’s probabilistic network. The
corresponding curves are shown in Fig. 5 for the purpose of
illustration.

In clustering solutions, using K-BS and repeteting cross-
validation procedure, on average 642 clusters are identified with
functional enrichment in one or more categories by selecting
K <10, BS > 0.77, and P-values < 107°. From function-
ally enriched clusters, on average we predict the functions of
405 classified genes with 0.95 PPV and 237 unclassified genes
by assigning the function related with the smallest P-value.
In one of the cross-validation process (out of ten repetitions),
functions of 454 classified yeast genes are predicted with
0.96 PPV from 454 clusters. The predicted functions of 454
classified yeast genes are available at http://www.isical.ac.in/
~scc/Bioinformatics/AdS/classifiedpredi-ctionreview.xls.

IV. CONCLUSION

In this study, we proposed a framework for data source
integration, through functional annotation based weighting, to
predict gene function for yeast. Five data sources, namely, phe-
notypic profiles, gene expression data, KEGG profiles, protein—
protein interaction, and protein sequence similarity through tran-
sitive homologues are used. Functional categories of 60 unclas-
sified (MIPS October 2005) yeast genes and 1855 classified
genes are predicted with 0.95 PPV. Evaluation on the predicted
gene pairs confirmed the validity and potential value of the pro-
posed framework for gene function prediction.

Although a neighbor-based clustering method needs a user-
defined neighbor number, from this investigation, we find that
K-BS is a highly accurate and efficient gene function annota-
tion tool. The system integrates heterogeneous biological infor-
mation in a functional-annotation-based weighting framework,
leading to more biologically accurate gene groupings, which
can be used for gene function prediction. The flexibility of the
system also allows for easy inclusion of other data sources.
Furthermore, we plan to examine our proposed framework on a
larger test bed by including similarities arising from gene-fusion
and gene-order conservation-based methods.
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