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Error Correcting Capability of Cellular
Automata Based Associative Memory

Pradipta Maji, Niloy Ganguly, and P. Pal Chaudhuri, Senior Member, IEEE

Abstrace—This paper reports the error correcting capability
of an associative memory model built around the sparse network
of cellular automata (CA). Analyvtical formulation supported
by experimental results has demonstrated the capability of CA
hased sparse network to memorize unbiased patterns while
accommodating noise. The desired CA are evolved with an
efficient formulation of simulated annealing (SA) program. The
simple, regular, modular, and cascadable structure of CA hased
associative memory suits ideally for design of low cost high speed
online pattern recognizing machine with the currently available
VLSI technology.

Index Terms—Associative memory, cellular automata (CA), gen-
eralized multiple attractor CA (GMACA), multiple attractor CA
{MACA), pattern recognition, simulated annealing (SA).

I INTRODUCTION

HIS paper meports an associative memory model 1o ad-
Tdruss the problem of “pattem recognition.” The solution
is based on an elegant computing model of a particular class of
sparse network referred to as cellular automata (CA). Analyt-
ical formulation supported with extensive experimental results
has established CA based associative memory as an efficient and
cost-effective allemative o the solutions generated with dense
network of neural net.

By convention, the task of pattern recognition demands au-
tomatic identification of objects and images by their shapes,
forms, outhnes or some other atributes. In the internetworked
society of cyber-age, the task of pattem recognition has become
ubiguitous, involving automated recognition of specific pattems
of bit'symbol string. It is an integral part in machine intelligence
systems.

In conventional approach of pattern recognition, machine
compares the given input pattem with each of the leamt/stored
patterns and identifies the closest match. If there are & patlerns,
time 1o recognize the closest match is £330k ). As the number of
stored patterns goes up, recognition process becomes slow.

Owerthe years, research in the field has been directed toward
development of recognition algorithm in constant time. In pat-
tern recognition, there are mainly two steps— 1) learning the
pattern set; and 2) identifying one of the leamt patterns that has
closest match o the given input pattern o be recognized. The
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Fig. 1. Muodel of associative memaory.

process of learning a pattern sel involves one lime compulation
cost, while recognition of the incoming palterns is a repetitive
process. In this context, schemes which take longer time for
learning but reduce delay of the recognition process, have at-
tracted considerable attention.

The “associative memory” model provides a solution o the
problem where time Lo recognize a pattern is independent of the
number of patterns leamt/stored [ 1]. This model divides the en-
Ltire state space into privotal points a-d (Fig. 1) that represent the
patterns leamt. The pivotal points are also referred o as “stable
states.” On the other hand, states close o a pivolal pomt get as-
sociated with the corresponding learnt pattem and are refemred
Lo as “ransient states” A ransient state can be also viewed as
a stable state with some noise. ldentification of an inpul pattem
(without or with distortion due to noise) amounts Lo traversing
the transient path, as shown in Fg. 1, from the given input pat-
tern to the closest pivolal point. As a result, the process of recog-
nition “associates” 4 set ol ransient states with a leamt patern
and the process of identification becomes independent of the
number of patterns leamt. A logical evolution is to build the as-
sociative memory model for pattern recognition.

In eady 1980s, the seminal work of Hopfield [9] made a
breakthrough by modeling a mecumrent, asynchronous, neural
nel as an associalive memory system. Extensive rescarch [2],
[1O] [13], [16], [22] have been meported in this field in last two
decades. However, the user community of the networked society
of present age look forward for high speed, low cost, online pat-
tern recognition systems. The dense network of neural net and
its complex structure cannot efficiently support such demands of
current age. In this background, search for alternative model of
pattern recognizing maching around the simple sparse network
of CA continued [3], [11], [17], [18], [20]. The simple, regular,
modular, cascadable local neighborhood structure of CA serves
as an excellent sparse network. This network, as reported in [4],
can be efficiently realized in hardware.

In this paper, we propose an elegant model of associative
memory for pattem recognition. The model is built around a
general class of CA termed as generalized multple attractor CA
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(GMACA). This specific class of CA displays encouraging re-
sults in the field of pattern recognition [5], [6], [8], [14], [15].
While in [8] we have mainly dealt with memorizing capacily
of CA based associative memory, in the present one we focus
our altention on its error comrecting capability. The evolutionary
scheme of simulated annealing (SA) is employed to evolve de-
sired GMACA configurations.

In the above context we present CA preliminanes in
Section Il followed by an overview of GMACA synthesis
scheme in Section 1. Theoretical analysis of the error
correcting capability of GMACA mle space is reported in
Section 1V, The problem of exponential complexity of synthesis
algorthm has been addressed with efficient formulation of
simulated annealing (SA) m Secton V. The rule space theo-
retically derved in Section IV, can be found 1o be a subset of
the CA rules of GMACA evolved with SA program. Finally,
the experimental results reported in Section VI confirm the
GMACA based associative memory as an efficient model for
pattem recognition.

1I. CELLULAR AUTOMATA (CA)

A CA consists of 8 number of cells organized in the form of a
lattice. It evolves in discrete space and tme [ 19]. The next state
of acell dependson its own state and the states of its neighboring
cells. In this paper we develop an associative memaory maodel
around three-neighborhood (left, self, and right neighbor) one-
dimensional (1-D) CA with each cell having two states—0 or 1.

In a two state three-neighborhood CA, there can be a total of
92" that 15, 256 distinct next state functions. If the next state
function of a cell is expressed in the form of a truth wable, then
the decimal equivalent of the output is referred to as “rule”™ for
the cell [23]. Two sample rules 90 and 150 are illustrated in the
equation at bottom of the page.

The first row lists the possible % —that is, eight combinations
of present states (left, self, and right) for a three-neighborhood
CA cell attime . The next two rows list the next states for the
dth cell at time mstant & 1% for two different rules. The truth
tables specified on the rows provide the next state logic of CA
rules. For example

Rule 00: g:(# | 17 = (813 gy 108}
Rule [50: g+ 11 = g () & {8 S qait)

where = denotes XOR logic function.

Out of total 256 rules there are only 14 rules that em-
ploy linear Additve logic of XOR/XNOR function. Such
CAs are referred w as Linear/Additive CA [4). Other rules
employ nonlinear logic imvolving AND, OR, NOT, etc.,
logic functions. An re-cell hybrid CA (with different rules
applied to different cells) is configured with the mle vector
R SR Ry R R where dth cell is configured
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Fig. 2. State space of a four-cell MAC A divided into four attractor basins.
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(0D 168, 215, 42).

with the rule 72, ; each R, being one of the possible 256 rules.
In an uniform CA, same rule is applied on each of the CA cells.

A. Generalized Multiple Attractor CA

The concept of Multiple Attractor Cellular Automata
(MACA)Y has been introduced in [4]. [ts state transiion be-
havior consists of multiple components—each component, as
noted in Fig. 2, is an inverted tree. A node with self loop is
referred to as an attractor. The nodes with binary number (000,
0001, 1000, and 1001 are the attractors of the four components
in the MACA of Fig. 2. The set of nodes in a component with
attractor rr is referred 1o as c-basin.

Even though such an MACA displays mteresting charac-
teristics, it employs only XORMNOR rules. This mle set
is functionally incomplete in the sense that any next state
function cannol be realized with this restricted rule set. Hence,
the research meported in this paper explomes a more general
class of MACA termed as Generalized Multiple Attractor CA
(GMACA) designed with nonlinear CA rules implementing all
possible logic functions—AND, OR, XOR, NOT, ete.

A GMAC A is a hybrid CA—that is, unlike uniform CA, same
rule is not applied for each of the cells. It can efficiently model
an associative memory [5]-[8], [14], [13] to perform patiern
recognition task. Fig. 3 illustrates the state space of a four-cell
hybrid GMACA with rule vector (202, 165, 215, 12 —hat is,
rule 202 is applied on left most cell, followed by rule 168 on
next one and so on. The state space of this CA is divided into two
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attractor basins—Basin-1 and Basin-2 built around attractor- 1
and attractor-2. Unlike MACA (Fig. 2), a GMACA has attrac-
tors of cycle kength greater than or equal to 1. For the GMACA
of Fig. 3, the attractor- 1 and attractor-2 have cycle kength 1 and
2. respectively. The states ina basin notcovered by the atractor
cycles are referred 1o as “transient states™ in the sense that a CA
finally setthes down in one of its attractor cycles afier passing
through such transient states.

B. GMACA Modeling an Associative Memaory

A GMACA having its state space distributed into disjoint
basins (Fig. 3) with tmnsient and attractor states, models
an associative memory. The patterns 1o be learnt, as shown
i Fig. 1, ae modeled as “pivotal point/stable state.”™ The
entire state space buill around the given set of pivotal points
is the state space generated by 8 GMACA with its attractors
and transient states. Memonzing the set of pivotal points
F P By ) is equivalent to design of a GMACA
with the pivotal points as the states in different attractor eyeles.
The states in an attractor cycle other than the pivotal point are
viewed as “pseodo-transient states/poimnts™ in the present work
and treated as tmnsient states. Any tansienlt point 7. with
limited distance from a pivotal point P;, can be considered as a
pattern with some noise. The comrect output 7; can be produced
in time proportionate to the traversal of GMACA from the state
i In the present work we have assumed bamming distance
(HD) as the distance metne.

A GMACA satisfying following two relations models an as-
sociative memory storing theset P = [P Pe L PG

1) R1: Each attractor basin of the GMACA should contain

one and only one pattermn {F;) to be learnt in its aliractor
cycle; the corresponding basin is referred to as 37, -basin.

2) R2: The hamming distance (HD) of each state G

T -basin with T, 15 lesser than that of 'I':",L with any other
Ps,—that is, TIINF;. 2} « A, P3P € P and
P # P

The relation R1 ensures unigueness of the stored patterns in
an attractor cyele, whereas the relation R2 ensures recognition
of pattemns with distortion due to noise. The following example
illustrates the relations for the example GMACA of Fig. 3.

Example 1: Todesign a machine for recognition of 1wo pat-
terns T = 0000 and P» = 1111 with single bit noise, we first
synthesize a CA (rule vector) for which the state transition be-
havior of GMACA is similar 1o that of Fig. 3 while satisfying
both the relations R1 and R2.

It learns two pattems, ™y 0000 and P, L1111, The state
P = 0001 has the hamming distances | and 3 with 7} and 7,
respectively. Let ?3hcgivun as the input and its closest match 1s
to be identified with one of the learnt patterns. The recognizer
designed with the GMACA of Fig. 3 is loaded with T = [0
and returns the desired pattern ™ after two lime steps.

Next section addresses the problem of GMACA synthesis
scheme for recognizing a given set of patlerns.

II. GMACA SYNTHESIS SCHEME

The synthesis algorithm of GMACA can be viewed as the
training phase of CA based patlern recognizer o recognize

a given sel of pattems. The output of synthesis algorithm is
OMACA based pattern recognizer with its rule veclor speci-
fying the rule number applied for each of the cells. For example,
the rule vector of the GMACA having patlern recognizing
capability illustrated in Example 1 is {202, 165, 218, 125,

A. Design of GMACA Rule Vector

The GMACA synthesis algorithm consists of three phases. It
is assumed Lo recognize patterns with maximum noise of v,
bits.

1} Phase I—Generate a drected graph with a cyele, and
map a pattem P; (10 be leamt) on to a cyclic node of
this graph. Also, map the noisy pattems 7 (where
TP, el 1=l ) Lo other nodes of the graph. Two
associated paramelers—aumber of nodes in a graph and
is cycle length—have been dealt with in subsequent
discussions. In order 10 recognize & patlerns, & number
of directed graphs are generated.

20 Phase [I—Denve state transition table for each of the
graphs generated in Phase 1

3 Phase [T—Generate rule vector of the GMACA satis-
fying the next state logic specified in the state transition
tables derived in Phase 11,

The synthesis  algonthm  accepts  the  pattem  set
o= IPL . P Pyl of cardinality K oto be leamt as
the mput, each Pyfi = 1,2, &7 being an r-bit pattem. It cy-
cles through three phases m successive stages tll desired w-bit
GMACA with k-attractor basins is reached or the specified time
limit gets elapsed with null output. The search 1s guided by the
rules R1 and R2 reported in Section ILB. The rule R1 ensures
presence of only one pattemm P; & 77 in the cycle of a graph
that can be viewed as an attractor cycle of 8 GMACA o be
synthesized. “Maximum permssible cycle kength™ 15 assumed
o be {0 For implementing R2, the algorithm accepls an
input i, that specifies “maximum permissible noise.” That
15, 4 noisy patlern say f"l (where HINT,. }"’ T = ) should
be correctly recognized as 7 by GMACA based model

The three phases of synthesis algorithm is next illusrated
with an example.

Phase I—5ince, the state tmnsiton diagram of a GMACA
can be conceived as a graph, we first randomly generate &
number of directed graphs with each node coded as an n-bit
string. The cycle length § permissible for the generated graph is
assumed tobe less than or equal o £, Each graph represents
a basin of the candidate GMACA to be synthesized, while its
eycle represents an attractor eycle. Each directed graph has a
unique pattern P, in its attractor cycle, while those with limited
noise added to Ty are the patterns in the Ty-basin.

The number of nodes p of each graph is equal to the number of
states in the comresponding basin—that s, the patterns without
or with specified noise. So

p= E(f) (1)

where r is the number of noisy bits and r.. .., is the maximum
permissible noise that can be wlerated by GMACA based pal-
tern recognizer. After mapping a particular pattern (say Py 1o be
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learnt) in the cyclic node of a graph, we randomly map other pat-
terns Lo be covered by F-basin at different nodes of same graph.
Note that the P;-basin of GMACA 10 be synthesized covers the
states with permissible noise of v bits (v = U 10+, ;) added o
P A design example follows.

Example 2: Fig. 4(a) represents two arbitrary graphs gener-
ated in Phase I for n = 1 and v, = 1. Patterns to be learnt
Py 00 and Pe o 1111 are mapped onto the nodes of the at-
tractor cyele of length 3 and 1 respectively. The sets 0001, 0010,
0100, 1000 and 1110, 1101, 1011, 0111 are the noisy patlems
with noise of 1 bit added to P [+ 1, 2] respectively. These are
mapped in two attractor basing as shown in Fig, 40a).

Phase lI—Fig. 4b) represents a state transition table denved
from two directed graphs shown in Fig. 4(a). Total number en-
tries in the state tansition table is [ pl, where & is the number
of patterns to be learnt and v is the number of states in each
eraph (1). For the example graphs of Fig. 4(a), the number of
patterns o be learnt [} is 2 (P and 7)) and the number of
states in each basin !f-,:J_‘_l 15 3. 50, total number entries in the state
transition table of Fig. 4(b) is 10.

Phase HI—Design rule vector of the GMACA cells from the
state transition tablke.

Consider a cell (say vth cell) whose rule is w0 be identified.
We concentrate on three columns—i§ — L1th, ith and fv 4 1'th
columns of all the (91 number of patterns of the state transition
table of Fig. 4(b). Suppose, for a present state configuration of
the +th cell, the next state is 07 for yg umes and “17 for )
i, then state *(F and *17 colhdes with each other to becomse
the next state of the éth cell for that configuration.

Fig. 4ic) represents the neighborhood configurations along
with the next state of second and third cells of the pattems of
two basins noted i Fig. 40b). For second cell, there 1s no colli-

wihihs s 1 ag por e 4 oo of
13k LA fable - b eollizion

te} Ceznernbion of Bnle Yestoe ns per Fanse 111

with illustratisr. oF Collistun

Randomly generated directed grphs with state tmnsition tubles and CA rules,

sion between state “07 and “17 for eight possible configurations.
Whereas for “0" neighborhood configuration, the next state of
3rd cell is 07" ( 2nd row of Fig. 4(b)) for 1 time and *1” [fourth
row of Fig. 4(b)] for one time—that is, wp = 1 and ny = 1. So,
for “0N" configuration, the next state of third cell may be 07
or *“17 generating an instance of collision.

In order to resolve this conflict we introduce the following
heuristic.

B. Resolution of Collision

1y If g = rq. the collision between state “07 and “17 1s
high. In that case, we rmandomly decide the next state of a
cell.

23 Wiy 2 owe orng =€ vy, the collision s mmimum. In that
case, the next state of a cell s 07 if g = ey, otherwise
“pm
The synthesis scheme searches for desired GMACA con-
forming rules R1 and R2 while resolving the collision, if there
15 any. Chamctenzation of GMACA rule space undertaken in
nexl section amms o reduce this search space.

IV, CHARACTERIZATION OF RULE SPACE OF DESIRED GMACA

This section charmctenzes the rule space of desired GMACA
displaying pattern recognition capability. Such chametenzation
is based on noise immunity of synthesized GMACA 10 recog-
nize patlerns.

The characterization of rle space proceeds under the fol-
lowing assumplions.

Assumptions:

1y Attractor cycles of GMACA are of length 1.
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2y GMACA 15 designed o recognize patterns with single bit
NOLSE.
Note: (According o the analysis reported in Sec-
pon VI-AL, this does not pose any restriction o
recognize pattems corrupted with multiple bit nose).
3) Transient length of the pattern cormupted with single bit
noise 15 equal o 1.

4) Rule space generated for 8 GMACA designed 1o recog-
nize Lwo patterns is a superset of the rule space generated
W recognize more than two patlems.

Each of the above assumptions, as per the analysis and ex-
perimental results reported in Sections VI-AL VI-AZ, VI-BI,
VI-C, can be found to be valid for the GMACA model devel-
oped for pattem recognition.

Based on the above assumptions, the patlem mecognizer s
built with three-neighborhood CAL S0 in order o analyze the
noise immunity (that is, error comrecting capability (ECC)) of
the ith cell, we concentrate only on the bit patlems of = th,
ithand (¥ — 17th cells as explained below.

Definition 1: For & number of r-bil patterns, total number
of noisy pattems with single bit noise is (% - n) [as per the As-
sumption (2)]. To ensure ECC for the «th cell, its rle should be
s0 designed that the cell recovers correct bil imespective of the
noise on (7 — L]th, ith, or (i — 1]th bil positions [as per the As-
sumptions {3)]. So, total number of noisy patterns with single
bit noise to be recovered by the rule of ith cell is 33 - &), Thus,
the error corecting capability { ECC) of the #th cell is defined as
the ratio of number of noisy patterns correctly recognized and
ik

For ease of subsequent discussions we introduce the fol-
lowing terminologies. All three bit configurations are noted as
a bit string of b;_) ;b with middle one refers 1o dth cell
(Fig. 5).

Terminologies:

1) F.ame denotes the probability that the state of «th cell of
all attractors 15 same.

2y Py denotes the probability that the state of th cell of all
atractors is different.

3) TITH# =, = =« =) denotes the hamming distance between
3-bit neighborhood configurations of the tth cell of
two attractors—ithat is, HI30b ¢ by By, [P 1
(Fig. 5).

4) m denotes the number of distinet neighborhood configu-
rations of the ith cell {1 |,

53 I denotes the probability of occurrence of e dis-
tinct neighborhood configurations for the dth cell in the
patterns to be learnt.

6) ; denotes the number of configuration pairs of {th cell
with HD as j.

2. .00 henee e < v,
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7y ECCil) denotes the error correcting capability of the ith
cell if state of the ith cell is same in the patiems o be
learnt.

B) BOC ) denotes theerror correcting capability of the ith
cell with v number of distinet neighborhood configura-
tons in the patterns o be learnt.

9y INCC, denotes the error correcting capability when HD
between two configurations is .

Based on the Assumption (4), we first characterize CA rule

space for “two attractor basins” GMACA recognizing Lwo
patterns.

A. Rule Space of GMACA With Two Attractor Basing

Under the assumption of single cycle attractor [Assumption
[ 1)], we investigale effective CA rles for “two attractor basins™
OMACA recogmizing two pattems without or with single bit
noise. The CA rule correspondmg to the <th cell depends on
its next state value for different neighborhood configurations
in the GMACA state transition graph. For example, in Fig. 35,
the CA rule corresponding o the second cell depends on 1s
next state value for different neighborhood configurations (i.e.,
L11, 110, ., 000, I the state of the ith cell is different, there
are - —ithat is, 16 possibilities (Fig. 5). Evaluation of each of
these cases are nexl formalized in the following theorems based
on the analysis of bit pattems of two attractor stales.

Theorem 1: I state of the ith cell of two atiractors is same,
its error comrecting capability (ECC{1)) is 100%.

Proaf: Suppose, the state of the vth cell is 0 for two at-
tractors. The neighborhood configurations of the ith cell may
be 000, 001, 100, 101, which must map to ). Besides these,
as the cell accommodates some noise, other neighborhood con-
figurations (i.e., 010, 011, 110, 111} which are regarded as the
noisy configurations of the {thcell corrupted with single or mul-
tiple bit noise, also map to 0. So, there 15 no collision between
state “0F and *17 for any one of eight configurations; thus, it
can recover single bit noise al one of the three positions—is —
17,4, (i 1. In this case, the effective rule of the ith cell is 0 and
the error corecting capability is 100%. Similardy, if the state of
the ith cell is 1, the effectve rule muost be 255 1o act as an useful
memory and 11s error correcing capability 15 100%. Two rules O
and 255 are illustrated in the equation at the bottom of the page.

|

Meighborhood 11 110 1411
1 Nexl Slaler 0 1] i)
(I NeaL Stane ] 1 1

00 e ol el 000 Ruke
0 ] 0 ] 0 1l
1 1 1 1 1 255
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CA Rufes: If the state of the ith cell of two attractors is same,
the effective CA rule 1s O0if the state 15 0, otherwise 255,

Thearem 2: I IID 4ll4, 4141 = 1, the emror correcting capa-
bility (L) | of the ith cell is 66.67%, where © denotes any bit
Oor L.

Proaf: 16 1=, =1+] = 1, two configurations of two
attractors of the ith cell differ only al their ith position; ¢ —
Tithand & 1ith positions of two configurations are same. So,
two noisy configurations corrupted with single bit noise at {th
position create a collision while that of (i — 1ith and (% + 11th
positions don’t ereate any collision. S0, the déth cell can meover
noise at (7 — Lith and (i — |Jth positions but not at ith position;
thus the error correcting capability of the ith cell is [2. &73 .
fy—that 1s, 66.67%. u

CA Rules: If H1¥ «0-, «1:7% = 1, there are 4 possible config-
urations [N, of the sth cell—UM UL, {001 0115, (LG 110
and {1011 lllt}-. In these cases, the effective CA rulesare Rule 76,
108, 144, 156, 196, 198, 200, 201, 204, 205, 206, 22 and 236.

Thearem 30 I HI 40w %41 = 2, the eror correcting capa-
bility {0105 of the ith cell is 66.67%.

Proof: IFHD{=0:, 514 = 2, twoconfigurations of the ith
cell differ at their ¢th position as well as one of the (v — Lithor
{# 4+ 17th positions. So, the ith cell can accommodate noise on
ith position and one of its [« — Dith or (i + L]th positions where
the state is same. But, it cannot recover noise of third positions
(where the state 1s different) as there are collisions between stale
0 and “1.7° Thus, the error correcting capability of the fth cell
is [2- &3 k)—that is, 66.67%. Hence, the result follows, W

CA Rules: If TID{=i0=,=15] = 2, there are eight possible
configurations { &%) of the dth cell. These configurations
are (OO0 O LT CHO0, FEDY 000, L0, (00T, FEE, (01,010,
CHORE DI 10y and (101,011, The effective CA rules
for these configurations are Rule 12, 13, 14, 15, 68, 69, 76, 77,
T8, 79, B4, B3, 092,93, 136, 138, 140, 141, 142, 143, 168, 170,
172, 174, 192, 196, 197, 200, 202, 204, 205, 206, 207, 208,
212, 213, 216, 220, 221, 224, 228, 232, 234, 236, 238, 24,
244, 248, and 252.

Theorem d: 1 HI 40w %41 = 4, the error correcting capa-
bility (FCC 0 of the dth cell is 100%.

Froaf- If HD{ 08,01+ = 3, two configurations of two
attractors of the eth cell differ at all their three positions. 50,
the hamming distance between one of noisy configurations cor-
rupted with single bit noise at (i — Lith, ith or [ + 1)th posi-
tions of an attractor with attractor itself is always less than that
of another attractor; in effect there 15 no collision between siale
0 and “17 for any one of eight possible present state config-
urations. Thus the ¢th cell can recognize a noisy configuration
correctly if 1 out of 3 bits differs from its original configuration.
Hence, the error correcting capability of the vth cell is 100%. &

CA Rules: If [ID{=0==14] = I, there are four pos-
sible configurations of the dth cell. These are (00, [},
(0¥ T, I:ﬂ'HJ} T} and I:'H](J}(]'I I The effective CA rules
for these configurations are Rule 77, 142, 212 and 232,

Theorem 50 If the state of the sh cell of “two atractors” is
different, the error correcting capability (ECC(2)) of the «th cell
is 75%.
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Fig. 6. Dstibution of CA rules for two attmetor basins,

Proaf: If the state of the ith cell is different for “two at-
tractors,” then according 10 Theorems 2—4, the error cormrecting
capability [ECC(2)] 1s given by

T ECU
3 r
z__:': 1 "‘II" _|'

Hence, the result follows, [ ]
Thearem 6; Theaverage error correcting capability of the ith
cell of “two attractor basins” GMACA 1o recover single bil noise

T TH%. (2)

in single time step s 87.5%.

FProaf: The probability that the state of the éth cell of two
attractors is same [F,, .1 15 (L3 and that of different {717 is
(.6, MNow, according 1o Theorem | and Theorem 5,10 the ith cell
of “two attractor basing” GMACA recovers single bil noise in
single tme step, RCCT = 100% and ROCI2 = TA%. So,
the average ermor comecting capability 1s given by

ECC = Pome - B | Powr - £CC(2) (3)
LOC 05 L4+ 05-75  47.5%. (41
Hence, the results follows. [ ]

Based on the above theoretical formulation dealing with all
possible three-bit configurations, we can evaluate the proba-
bility of oceurrence of different CA rles appearing on ith cell
to ensure its ECC of single bit noise. Fig. 6 reports the distribu-
tion of effective rules in CA rule space for “two attractor basins™
GMACA memonzing two pattems with average single bit ECC
of 87.5%.

B. Rule Space of GMACA With Multiple Attractor Basing

This subsection analyzes the mle space of GMACA with
“multiple attractor basins™ formalized in the following theo-
rems. In the subsequent discussions o is denoted as follows:
in 18 the number of distinet neighborhood configurations of the
ihi(i  1.2,.... nicell; hence, 1 = K.
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While the first theorem provides the probability of occurrence
of different distinct configurations at <th cell, the remaining
theorems establish the error correcting capability of «th cell for
different values of ni.

Thearem 7 For & number of patterns to be leamt, the prob-
ability of occurrence (HOHne1) of m distinet configurations at
the «th cell s given by
E.L“_f 4('1' ] 4'5'11'11 i

gy

ELiraie

P = (3)
where 4 = minik. 2%

Froaf- Out of total 2 configurations, in 4 configura-
tioms—{ U0, DUL, 100, 1017, state of the +th cell is “07 and in
other four configurations—{0010. 001 LI 1117, state is 1.7
So, xr number of distinet configurations with state of the ith bit
as “(F" can be obtained in *¢?, ways and rest {m 2} number of
distinet configurations with state *17 can be obtained in *¢7,,, _
possible ways, S0, total possible ways o obtan ye distingt
configurations is given by {4(,‘_,,, E it Tf wherne x varies from
1 to (e — 10 For & number of patterns oy can vary from 2 to
imin{ k. 2%, Hence, the probability of occurrence of w1 distinet
configurations al the ith position is givun b}'

Tn—L _]{ 5
E = 'rr|—. f’f}::l

-.r.r—I- -
b 305 S RFER &

where y = wminik, 5, ]
Thearem 8: 1f the number of distinet configurations of the

Pim) =

eth cell 15 equal to 1, the eror correcting capability of the Jth
cell is 100%.
Proaf: Proof follows from that of Theorem 1. ]
Theorem 9: 1f the number of distinet configurations e of the
ith cell of & number of patterns (to be learned) is 2, the error
correcting capability 1s 75%.

Proaf: If number of distinet configurations 1 is equal to
2, the ith cell of [ number of pattems behaves as a cell of “two
attractor basing.” Then, according to Theorem 35, the emor cor-
recting capability ( ECC(2)) of the sth cell is 75%. [ ]

Thearem 10: 1§ a5 = 2, the error correcting capability of the
dth cell is 60.67%.

Proaf: If number of distinet configurations r > 2, the ith
cell can accommodate noise of [ — 1ith and {7 — Lith positions,
but cannot recover that of sth position insingle time step as there
15 a collision between state *07 and 1.7 S0, in these cases, the
error correcting capability of the dth cell (ECCim > 200 i
(2 &7 B —that is, 66.67%. Hence, the result follows. ]

Thearem 11: The error correcting capability { ECC) of the «th
cell to recover single bit noise in single tme step s given by
ECC{L‘

Ur—L

i }* — 9y
FAH! =

1
Z POGm) - BOCTm) (7)

where £ is the number of patterns to be leamt, and 3 =
ningk, 275

Proof: For k number of patterns, there are total 2% possible
combinations of the ith columns. Out of 2* combinations, only
in two cases, the states of the ith cell of & pattems is same—that
is, incase of all zero and all one columns. So, the probability that
the state of the ith cell of & patterns is same is given by 7, .. =
| /2%~ 1; whille that of different is givenby Py (28 — 2724
The probability of occurrence of sre distinet configurations at

=

=
[
i

Emor Correctimg Capxbaility %)
S
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E (' 67
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Fig. 7. Ermrcormecting capability of GMAC A (theoretically).

the dith cell, as per Theorem 7. is equal to PO0m ) IF ECCHm)
denotes the error comrecting capability of the dith cell with s
distinet configurations, then the error correcting capability of
the dth cell for & number of patterns is given by

g
LCC=Poune ECC{1+Puig- Y PO ) TCClral (8)

=73

ECONLy g 2“* 2 "
ECC 22 Z DO ECCnd ()
where o = win'k, 3y, Hence, the result follows, ]

Evolution of Relation 9, as shown in Fig. 7 represents the
error comrecting capability of the #th cell (w0 mcover single bit
noise in single ume step) for “muluple attractor basins.” The
eraph in Fg. 7 shows that as the value of & (number of pat-
terns 1o be learned) increases the error correcting capability of
the +th cell decreases. Ulumately, it saturates to a eritical value
W R ST ft}r I = & Hence, the following theorem.

Thearem 12: For & = 8, the error comrecting capability of
the ith cell 1s constant.

Proof: According to Theorem 11, the error comecting ca-
pability of the sth cell of & number patterns (to be learned) is
given by

vepks '

ZPULm U] (10)

where iy minfk, 2%,

For & = 5, the term {1/2% ') reduces to zero and the term
(2% — 21727 tends to one. So, for & = &, the error correcting
capability of the vth cell is given by

Z PO - B

where 3 = A Equation (1 1} 15 independent of the value of &
(number of patterns o be keamt) and 1 equal o 67%. Hence,
the result follows. |

CA Rules: The most effective GMACA mles for “multiple
attractor basinsg™ are Rule 76, 1440, 196, 200, 204, 205, 206, 220,
236, as well as rules reported in Fig. 6 which are the effective
rules for “two attractor basins.” 50, in CA rule space, the set of
most effective rules of “multiple attractor basins™ is a subset of

B (11}
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Fig. 8. Example of cycle length reduction of a directed graph (Scheme 1),
“Lwo attractor basins.” This fact validates the Assumption (4) of
Section IV,

Characterization of rules in CA rule space shows that the col-
lision of state “0" and “1” of a configuration reduces the emor
correcting capability of the ith cell. If the single bit error of the
ith cell is recovered in more than one time step, it may reduce
the collision and increase the error comrecting capability of the
#th cell.

Design of a synthesis algorithm to ardve at such an effective
GMACA is a hard problem. So, we fall back on the SA frame-
work 1o solve this problem. The next secton miroduces the 5A
formulation.

V. SIMULATED ANNEALING PROGRAM
FOR GMACA EVOLUTION

The aim of SA-based evolutionary search is 1o identify the
GMACA that can recognize a given set of patterns without or
with specified noise.

SA is g generalization of a Monte Carlo method for exam-
ining the equations of state and frozen states of n-body sysiems
[12]. The concept is based on the mamner in which liquids freeze
or metals recrystallize through the process of annealing.

The GMACA synthesis scheme, as noted below, can be ele-
gantly mapped o this Monte Carlo approach.

1y current state of a thermodynamic system is analogous o

the current solution of the synthesis scheme;

2) energy equation for the thermodynamic system is analo-

zous o the “cost function;”

3) finally, the ground state is analogous to the desired

OGMACA rule space.

So, we map and appropriately lune S A process 1o generale ap-
propriate graphs out of which desired GMACA can be derived.

In SA an initial emperature [ Tewys, (600 18 set The wemper-
ature decreases exponentially dunng the process. At each dis-
crete temperature point [ Tewnp, ;4 1. & number of graphs are

randomly generated, where & is the number of patterns to be

learnt. From all these graphs we generate a stale tansition table
and caleulate cost function to ardve at the effective rules for dif-

ferent CA cells.

Cost Function: The following cost function is employed o
evaluate the quality of solution derdved through Phase 11T of
OGMACA synthesis algonthm.

iy )

C=1- (12}

e 4 T ]
where no and s are the number of occurence of state *07 and
“1,” respectively for a specific present state configuration of a
cell, If vy =~ g, then collision, as defined in Section 11LEB,
15 maximum. The value of cost function 4077 18 maximum and
close to 1 for this case; whereas if vy 5% 5 0r w1 <5 1, then
{ becomes zero and we get GMACA configurations with high
degree of precision.

Based on the value of cost function, new sets of graphs are
generated. The entire process—generation of graphs, and its
evaluation through cost function—that is, Phase I o [, con-
tinues Lill temperaure becomes zero. So, the emphasis is to ar-
rive at graphs with low value of cost function. This demands
low collision. Following two schemes are employed to reduce
the collision on modomly generated graphs with attractor cycle
length [ = £ .. in Phase I of synthesis scheme, where £,
denotes maximum permissible length of the attractor cycle.

Scheme 1 Reduction of Cyele Length of a Given Graph: In
this case, we reduce the attractor cyele length of a given graph.
Fig. 8 illustrates an example of this technique along with the
state transition table and next state function. For this example
when the cycle length of the graph is 4, there is a “collision™ be-
tween state “07 and *17 for “1117 configuration of the third cell;
whereas when the cyele length is reduced from four o three,
there is no “collision”™ for the same configuration.

Scheme 2: Increment of Cyvele Length of a Given Graph: In
this case, we increase the cycle length of a given graph. Fig. 9
illustrates an example of this echnigue. When eyele kength of
the given graph s 1, there 1s a “collision”™ between state 07 and
“1" for “1117 configuration of the second cell; whereas when
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Fig. 9. Example of cycle length increment of o directed graph (Scheme 2.
the cycle length is incremented from 1 1o 2, the “collision™ dis-
ApPears.

In Schemes I and 2, we change the state tmnsition ablke by
changing the cyele length of the given graphs. As a result, the
collision between state *“07 and “1” of a panticular configura-
tions of a cell is changed. Consequently, the cost function is also
changed.

The cost value 1s evaluated according to (12). There are two
solutions based on cost value—nbest soluton (BS) and current
solution (CS). BS is the solution which has achieved minimum
cost value during the lifetime of annealing, while CS is the so-
lution achieved at the present temperature point [ Terup . 1. A
new solution (NS) at the immediate next Tempy . compares
its cost value with that of current solution. 1f NS has kesser cost
value than C8, then NS becomes CS. The new solution (NS) 1s
also compared with BS and if NS is lesser, then NS becomes BS.
Even iff NS is not as good as CS, NS is accepted with a proba-
bality. This step 1s incorporated w avord any local minima.

We first derive o rule vector for & number of +i-bit pattems
(o be leamt) according w theoretical formulations reported in
Section IV; and store it as “theoretically derived rule”™ (TDR ).
Also, store its cost value as “theoretical cost value™ (TCWV).
MNext, we mitialize the best solution (BS) as TDR and the cost
value of BS as TCV. The evolutionary algorithm of simulated
annealing starts after this initialization process that leads to re-
duced search space of desired GMACA. The complete algo-
rithm 18 next presented.

Algorithm 1 GMACA Evolution
Irppaee: Pattern Size ), Attractor Set 27 = [ 04, .
Initial temperature { Temp
Output: Evolved GMACA.
hegin:
Step 1. Generate GMACA rule vector according to Section IV
Step 2. Store it as “theoretically derived rule” (TDR )
Step 3. Store its cost value as “theoretical cost value™ (TCV)
Step 4. Initialize C8 as zero rules and BS as TDR.

bk
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Step 5. Initialize cost value of CS as zero and cost value of
BS as TCV.

Step 6 'I'empm-lm — Tempyyial

Stepe ? while Tem Ppoint = 1

1
(i) if'l'emplm-lm =40 w Temp L
Randomly generate graph as guess solution.
else
Generate a graph by Scheme § or 2,
{ii} Map a pattern =; (to be learnt) on to the
eyelic node of a graph.
(iii) Also. map the noisy patterns 7, to the
other nodes of the same graph.
{iv) Repeat (i) to (iii) for & number of graphs,
where ' is the number of patterns learnt.
(v} Generate state transition table from all
the graphs.
ivi) Compute cost value [C') according to
{12},
{vii} Generate the GMACA rule.
(vili) MY = O AC A —Tnle
() Foe . =ttt vitlue{ N5 — cost valnel 050
(pif oo 2 0
i
CH = N8
if cost value{NS) < cost value(BS)
i
L& — IS
|
i
else
(15 = M8 with prob. o= et SERPa e
Reduce Temp, ;. exponentially.
{

The detailed experimental results and associated performance
analysis of next section validate the SA framework we have
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TABLE 1
COMPUTATION OF MINIMUM VALUE OF MAXIMUM PERMISSIBLE NOISE [, !
Training Perventage of Tlecognition T
MNaise Torn =10, k=2 Torvw =15, k=4
Tmez) |[T—=1 | *r= 2 | v —3 | T—1 | +—2 | r—23
1 BL3G | VATE | 4403 | B2OT | 6750 | 45.20
2 TE.50 | BR.2T | 4105 | BTAD | 6546 [ Th0E
3 ThAL [ G106 | 3820 | BLLE  TiAG | 1346
4 vEdd | OV.08 | FEA6 | YE13 0347 | 4114
B 6993 [ 54,11 [ 2617 © V451 BLUS | 3951
TrEiRIng | Peroentage of Tecoooilioun
Mo Tutn=20, k=~ Forn =33 F— &
Ermdf] =1 =2 =] = Faesi 2 e
1 BET TTE4ES | 4487 | BL8L | GRAT | o3
q BIGZ | BRHE | AL hh | vHTe  SdRE [TALGD
g BRAT | G170 [ 4Gl T 71 LEAT [ A0
4 TRl | BRL | SRl - TELGF O BEET | T8I
D THOT [ GTHZ T a7z TLm mder | LS
Tratninyg Perrentage of Resopniticn
Maize Tor =30,k =7 Torn —d5, k-0
\Pmazd | F— 1 | F= 2 7=8 r=[ v=%]vr=23
I E485 | B7.67  BUE0 T G| DIGH
2 M1A7 | 6L 450 ThaS 604l | 4631
3 §L.a7 | BLVO . D6 Tl B [ s
q THAE | B8 ATHE T 7115 GO | 448
B T1AE ] W 3841 Ghad BLES | diud

sel o arrive at the desired solution with feasible computation.
While the value of vy —maximum permissible noise at the
synthesis phase of GMACA and attractor cyele length of the
OGMACA give the measure of computation cost of SA evolution,
the quality of desired solution can be ganged from the basins of
attraction, recognition complexity, ete. of evolved GMACA.

V1. EXPERIMENTAL RESULTS

In this section, we perform extensive expenments based on
randomly generated data set for different values of » (number
of bits in a pattem) and & (number of pattems o be leamt) Lo
analyee convergence rate of evolutionary algorithm of SA, per-
formance of GMACA based pattem recognizer, and distribu-
ton of CA rules for the evolved GMACA. The experiment has
been done in Linux (version 2.2.6) environment having maching
configuration Pentium 11 (1686), 400 MHe, 512 KB cache, and
132 MB RAM.

A. Convergence Rate

The tme meguired o amive at the desired r-cell GMACA
increases with the value of », . —the maximum permissible
noise. The number of nodes noa graph imereases with vy,
(rmaximum permissible nose) and so search space for GMACA
evolution goes up. Our objectiveis toidentify the optimum valoe
of r,.. while reducing this search space.

1) Minimum Value of Maximuwm Permissible Noise: roa«
specilies the nose level at tmming/synthesis phase of GMACA,
To wdentily the minimuom value of ¥ e, We Carry oul exlensive
expeniments to evolve pattern recognizable n-cell GMACA for
different values of w. For each n, 15 different sets of patlems
to be tramned are selected randomly. The value of & (number of
pattemns to be leamed) 1s setin the mnge of 4 1o 10 for different
vitlues of .
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TABLE 11
Evorumnon Tive ror GMAC A SYNTHESLS
iz of Nuaf | Toilial’ Ewalutlicno
Datlern fved | TPallerns (k] . Temp (17 | ime (min)
T : F] L5 0.43
) L : A 1006
n ; 7 Th 5
A0 10 20 KET
L] [¥] 25 3458
G0 13 A 4.0
Tl 15 30 7.0
& 13 30 T.A%
W Al Al 021
Lon 23 A 1508

Table 1 demonstrate the percentage of convergence/mecogni-
tion for different noise levels as defined below. Convergence of
SA program leads w cormect recognition.

Definition 2: Percentage of convergence/recogmtion at a
particular noise of » bit is defined as follows. It is the mto of
number of noisy patterns correcly recognized and total number
of noisy patterns with noise of » bits.

Column 1 of Table I represents noise allowed in tmining
phase, whereas Column 11 represents the percentage of recog-
nition for different noise value of r bit in dentification/
recognition phase. The results of Table 1 cleardy establish
the following fact: in the taming (synthesis) phase if we
consider that the patterns are corrupted with only one bit noise,
the percentage of convergence at recognition phase 1s betler
irrespective of noise level 1.

So, the minimum value of v, 1s sel o | at synthesis phase
for which GMACA based associative memory performs betler
S0, (1) (Secuon HI-A) reduces Lo

n=11rm (13}

where v represents number of bits in the pattems to be learnt and
i denotes number of nodes in each graph generated in FPhase
1 of Section 11-A. This fact validates the Assumption (2) of
Sectuon IV, The loge behind this expenmental result/assump-
tion follows,

In traiming phase, if we train patiems with only one bit noise,
then total number of patterns in state transition table is &{ 1 —a7,
where & is the total number of patterns learnt. In that case the
collision of state 07 and *1.7 as explained m Section 111-B, is
likely wo be lesser. This leads to higher probability of genertion
of best it GMACA. On the other hand, iff we consider noise in
mord than one bit, then total numberentries in the state transition
table 15 higher. This keads o mome collisions. As a result the
evolutionary algorithm of Simulated Annealing fails to arrive at
the GMACA with desired pattem recognition capability.

2) Selection of Attractor Cvele Length: In the context of the
observation noted in Section VI-AL, we have analyeed the at-
tractor cycle length of evolved GMACA, We have observed that
the kength of the attractor eycle of evolved GMACA 15 equal 1o
one i majority of cases. These results valdate the Assumption
(1) of Section I'V. The result/assumptuon follows.

If the cyele length of an attractor 15 equal w0 one, same neigh-
borhood configuratons of the <th cell of an attractor map 1o
same next state more times; in effect collision of state “07 and
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TABLE Il
ErrOR CORRECTING CAPARBILITY {BECC) oF Evolven GMACA
Size of | RO | Number of
Pattern (n] @ (%) Tteration

Lo EEN 1.001

a0 5581 Lalz

Bl HaLid 14108

Al EEXIN 1415

B0 al.13 1.0

[i71] BE.LD L.0o2

it BTl 1011

&0 00,84 L.0jd0

[’ a1.13 L.[KIT

101 BT.0% 1.1

Size it ool LCC T Nomber of
Pattern {v! | Pattero (k) | (%]  Iteration

il 4 LY 1,201
H [ #4147 T1.071
RT1] 7 24,88 1,034
Al) 10 THE. 1.6
ol 12 THDE 1.0000
[£] 13 HLEA 1.2
Tl 14 Tr43 L.ol5
11 T8 THAL 1018
) 20 TRA4L Lol
1ipcy R Vh.44 L.004

“1" gets reduced. As aresult, the convergence rate of the evolu-
tionary algorithm of Simulated Annealing gets accelerated.

3) Evelution Time: Next, we report the evolution time o ar-
rive at the desired GMACA for different values of » (number
of hits) for & number of patterns to be learnt. Table 11 represents
the evolution time o evolve GMACA by SA program. Column [
and 11 of Table Il represent the different CA size (n) and number
of patterns to be learnt (], respectively; while Column 111 de-
picts the “initial temperature”™ required to find out the best pos-
sible GMACA configuration by SA. In Column 1V, we provide
the evolution time required w synthesize GMACA for different
values of v The results clearly establish the fact that evolution
tme of SA program grows within a feasible limit with the in-
crease of noand k.

B. Performance Analysis

This subsection deals with error correcting capability (ECC)
of GMACA based associative memory with single bit noise,
basins of attraction, and identification/recognition complexity.
Extensive expermental results reported here confinm  that
GMACA can be employed as an associative memory for
pattern recognition.

1) Ervor Corvecting Capability {ECC) of Evelved GMACA:
Error comrecting capability (ECC) of GMACA, as defined in
Section 1V, is the ratio of number of noisy patterns comectly
recognized and [3-F ). Whereas the number of iterations required
o recognize 8 noisy pattern is equal to the transient length of the
GMACA.

Table 111 represent the ermor correcting capability (ECC) of
single bit noise (v = 1 and the average number of iterations
iransient length of the GMACA) required to recognize 8 noisy
pattern corrupted with single bit noise for “two attmetor” and
“multiple attractor basins,” respectively. All the results reported
in Table 111 validate the Assumption (3) of Section 1V—that is,
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Fig. 1.  Example of hasins of attmetion.
the transient length of pattern corrupted with single bit noise is
equal 1o 1.

2) Basins of Attraction: The pattems stored in an associative
memory must act as attractors. ldeally, they will be the only
attractors and will act parsimoniously, so that a given inital state
will relax to the nearest attractor.

The radius of the basin of attraction of a patiem is defined
as the largest hamming distance within which almost all states
flow 1o the pattern. The average of the radii of attraction of each
of the stored pattems provides a measure of the patlern recog-
nition capability for a given trained network. The perfect/fideal
attractor has basin of attraction is equal to unity, which means
that it is possible to move away from any stored pattern, and
stay within its basin of attraction up to the point at which an-
other stored pattern becomes neaner.

In Fig. 10, the closest pattern in the training setto 4 is My,
at adistance 2r. Optimal performance occurs when all the vec-
tors within the hypersphere centered on £ and mdios », are
attemnpt o o IF all patterns stored in a network exhibit this
performance, its average basin of attraction is 1.

Figs. 11{a)—(c) and 12{a)-{c) represent the perdformance of
recognition/convergence at different noise values in terms of
number of bits. Figs. 11{a)—c) and 12{a)—(c) show the per-
centage of comect recognition/convergence in the event of noisy
patterns input to the GMACA based associative memory. Com-
putation shown is for a fised hamming distance (HD) between
the patterns stored. It 1s seen that the convergence mate drops
about linearly with the amount of noise of the stored patterns.

In Fig. 11iaj—(c). it 1s shown that, the comect convergence
rate also reduces as the number of stored patterns increases for
a fixed distortion value of patterms. With the increase in the value
of & (the number of patterns 1o be leamed), the performance, as
shown m Fg. 11, detenorates. Fig. 12(a)+c) represent that, for
a fixed value of &, as the number of input bits |+ ] increases, the
perfommance of recognizing noisy pattems improve. The recog-
nizer performs very well at v = 100, but accommodates noise
rather poorly atw = 3l for both & = 10and 13 [Fg. 12{a)-ic)].

3) Recognition Complexity: In identification process, when
a pattermn comes as an mput (without or with distortion due 1o
noise ), the GMACA is run with this patlem for a number of cy-
cles equal to the transient length of the CA and hinally setthes
down o the correct attractor of the incoming pattern. So, the
process of identification is independent of the number of pat-
terns learnt [ &} itdepends on the transient length of given input
pattern o the correct attractor.
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Fig. 13(a}c) represent the tme taken o recognize a
noisy pattem for different values of oo terms of the ran-
sient length/mumber of iterations. All the resulls reported in
Fig. 13(a)—(c) ensure that the tme aken 1o recognize a noisy
pattemn is independent of number of patterns learnt/stored [ £

et Faro = 100
3 Hm=T75
1 ‘.1 |eIme £n

=) o =
= = =

Fercantazn af Cnmceipenrs | s |
L
2 =

?

-
or

Ja T T T LR
rale Bl 1 T)

@ Tor k = 5

2

s

PFereentage of Convergenac [ B )

=

=]

Hekse Bils [ ]
bl Tor b = 10

fap = i
Min= s
ICLER

Purcuontayge of Convedgurce {4 ]
=
a

Hoise Bits [ 1)

&) Tar k = 15

Fig. 12. Graph showing percentage of convergence with noise bits.

Also, it does not depend on the size of the pattems keamt {n).
Omly, 1t depends on the transient length of the CA, which is
Cconstnl

Henee, the cost of computation for entire recognition/ident-
ficalion process s constant.
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O Distribution of CA Rule of Evolved GMACA

We have studied the rule space of evolved GMACA both for
“two attractor” and “multiple attractor basins™ in terms of prob-
ability of occurrence of different CA rules. The distribution of
different CA rules derdved from evolutionary algorthm of Simu-
lated Annealing for “two attractor basins” is shown in Fig. 140a),
while Fig. 14(b) shows the distribution for “multiple atractor
basins.” The distributions reported in Figs. 6 and 140a -(b) val-
idate the following fact: the rule space theoretically derived (in

Section 1), is a subset of CA rules ardved at through GMACA
evolution with SA program.
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Fig. 14.  Distribution of CA rules in evolved GMACA.

VII. HARDWARE ARCHITECTURE OF GMACA BaSED
PATTERN RECOGNIZER

The hardware architecture of proposed C A-based associative
memory model 15 shown in Fig. 150 The nonlinear CA used
for pattern recognition can be realized out of the universal
programmable CA (UPCA) structure of Fig. 16. While the
basic structure of programmable CA reported in [4] employs
only Linear/Addinve CA rules with XOR/XNOR logie, an
UPCA cell reported in [21] can be configured with any one of
the 256 CA mules—Linear/Additive/Non-Linear. 1l requires one
8:1 MUX. The three-neighborhood configuration of CA cell
acts as the control input of this 8:1 MUX.

The rule vector of CA realizing pallern recognizer are stored
i progriam memory as shown in Fige 150 The inpul patern
is stored in the input register. The control block configures
the UPCA with the rule vector and run for a cycle by taking
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the Input Register value. The output of UPCA is stored in the
outpul register. We have written the Verilog code for different
blocks and simulated wsing Cadence Verilog Simulator on
Sun Ultra-60 machine. The design has been implemented with
025 pm-CMOS 1echnology.

VI CoNCLUSION aND FUTURE WORES

This paper reports the error comecting capability of a
CA-based associative memory. Extensive experimental results
reported in this paper confirm that CA-based associative
memory provides an efficient model for pattem recognition.
The simple, regular and modular strocture of CA-based asso-
ciative memory can be employed for high speed onling pattern
recognilion.

Further, the CA-based patlem recognizer can be con-
veniently employed to address following two problems of
practical mportance.

1y The proposed CA-based associative memory model can
efficiently address the well known “parity™ problem.
While all the even parity patlems are in one sel of
attractor basins, another sel of attractor basins holds all
the odd parity patterns.

2) In word spelling correction problem, the proposed model
can be employed considering most commonly used words
as the attractors of different attractor basins. Inroducing
the errors to the extent the model can accommodate,
GMACA can be designed for automatic comrection of the

spelling.
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