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local systems which each consists of a convex combination of linear
systems, or Takagi-Sugeno (TS) fuzzy subsystems, respectively. For
given local energy functions a combination of local subsystems is to
find so that a synchronization of the dynamical behavior of the local
systemsis provided. The simulation results show a Pareto-optimal solu-
tion for every local system can be reached. One condition for existence
of such an optimum is that in every local system a stable combination
of subsystems and a common range of parameters exist. The approach
has been applied both for unrestricted communication between agents
{net structure, global price)and a restricted communication (ring struc-
ture, local prices). Simulation results show that this approach is suc-
cessful for combinations of linear subsystems and nonlinear TS fuzzy
subsystems, respectively. Future work will be directed to decentralized
control design of TS fuzzy systems in the framework of market-based
optimization and its enhancement with learning strategies.
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Design and Characterization of Cellular Auiomaia Based
Associative Memory for Pattern Recognition

Niloy Ganguly, Pradipta Maji, Biplab K. Sikdar, and P Pal Chaudhuri

Abstract—This paper reports a cellular automats (CA) based model of
associative memory, The model has been evolved around a special class
of CA referred to as peneralized multiple attractor cellular automata
(GMACA), The GMACA based sssociative memory is designed to address
the problem of pattern recognition. Its storage capacity is found to be
better than that of Hopfield network, The GMACA are configured with
nonlinear CA rules that are evolved through genetic alporithm (GA).
Successive penerations of GA sdect the rules at the edge of chaos [1],
[2]. The study confirms the potental of GMACA to perform complex
computations like pattern recognition at the edge of chaos,

Index Teras—Associative memory, CA, GA, GMACA.

. INTRODUCTION

This paper reports a cellular automata (CA) based model of asso-
ciative memory designed to recognize patterns. Characterization of the
model in respect of its pattern recognition capability along with other
associated parameters has been reported from extensive study of the
model. The storage capacity of the model has been found to be higher
than 0.2 for a pattern size of « bits.

Pattern recognition is the study as to how the machines can leam to
distinguish patterns of interest from their background. The Associative
Memary model provides an elegant solution to the problem of identi-
fying the closest match to the patterns learnt/stored [3]. The model,
as shown in Fig. 1, divides the entire state space into some pivotal
points (say) . &, o, The pivots (patterns) are assumed to be learnt by
the machine during its training phase. The states close to a pivot are
the noisy vectors (patterns) associated with that specific pivotal point.
The process of recognition of a pattern with or without noise, amounts
to traversing the transient path (Fig. 1} from the given pattern to the
closest pivotal point learnt. As a result, the time to recognize a pattern
is independent of the number of patterns stored.

Since early 1980°s the model of associative memory has attracted
considerable interest among the researchers [4], |5]. Both sparsely con-
nected machine (Cellular Automata) and densely connected network
{Meural Net) have been explored to design the associative memory
model for pattern recognition [4], [6], [7]. The Hopfield s neural net
[71-[9] models a “general content addressable memory,” where the
state space is categorized into a number of locally stable points referred
to as attractors (Fig. 1), An input to the network initiates flow to a par-
ticular stable point ( pivot). However, the complex structure of neural
net with nonlocal interconnections has partially restricted its applica-
tion for design of high speed low cost pattern recognition machine.

The associative memory model around the simple structure of cel-
lular automata has been explored by anumber of researchers [ 6], [10],
[11]. Most of the CA based designs concentrated avound uniform CA
[6], [10],[1 1] with same rule applied toeach of the CA cells. This struc-
ture has restricted the CA based model to evolve as a general purpose
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Fig. 1. Muodel of associative memary with three pivotal points,
pattern recognizer [6]. Further, estimation of memory capacity of the
CA in relation to its architectural parameters such as number of cells
(), rules of the CA cells, etc has not been explored [12].

In the above background, this paper proposes an efficient CA model
of associative memory for pattern recognition designed with nonlinear
rules for CA cells. This class of hybrid CA is referred to as generalized
midtiple attractor CA (GMACA) [13]. It is the generalization of mul-
tiple attractor cellular sutomata (MACA) that employs only additive
rules with XORXNOR logic | 14].

We make use of genetic algorithm (GA) to arrive at the desired
GMACA configurations. The nonlinear rule space of GMACA has been
investigated. Diverse parameters A, 2, entropy, G-density efc., pro-
posed by the researchers 1], [15]-[17] to study €A behavior, are com-
puted to characterize the GMACA evolved for pattern recognition. The
results derived from the study confirm the following facts:

i} the GMACA lies in between order and chaos defined as the edge
of chaos 1]

i} the complex computation like pattern recognition occurs only at
the edge of chaos,

iii} the memorizing capacity of GMACA is more than 20% of its

lattice size and is better than Hopfield network.

The design of GMACA based associative memory and its applica-
tion for pattern recognition are outlined in Section 1V preceded by the
design specification noted in Section UL The characterization of the
model in respect of different parameters is reported in Section V. A
brief introduction to Cellilar Awtomara follows.

II. CELLULAR AUTOMATA

Cellular automata (CA) are the simple model of spatially extended
decentralized systems made up of a number of cells [18]. Each cell
of a CA is in a specific state which changes over time depending on
the states of its neighbors. In this paper, we will concentrate on three-
neighborhood (left, self. and right) one dimensional CA, each CA cell
having two states—0 or 1. In a two state three-neighborhood CA, there
can be atotal of 27, ie, 256 distinct next state functions referred 1o as
the rule of CA cell [19]. If the same rule is applied to all the cells, then
the CA is a wniform CA, else it is a fivirid CA. The rule tables for two
such rules, W0 and 150, are illustrated as

Ne'lghtu’!l'h(m:l: TTT T00R T0T 100 021 0010 0o (i Févade
MextState: o1 o 1 1r & 1 0o 4
MextState: a0 [ R T

The first row lists the possible combinations of present states of the
neighbors (left, self and right) of the fth cell at time * referred to as
g.0f:. The next two rows list the next states of ith cell at (t + 1) and
denoted as 4. (¢ + 1), Decimal equivalent of the 8 next state values
(901500 is known as the rule of CA cell . A nonlinear CA employs all
possible 256 rules, while additive CA [14] employs only additive rules
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Fig. 2. State space of a four-cell MACA with attmetors—i, 18,9,

Fig. 3.

State space of afive cell GMACA {39, 32,57, 113,917,

with XORXNOR logic. The example additive CA of Fig. 2 with rule
vector § L0, 102 60, 150} is a multiple attractor CA {MACA).

The entire state space of an MACA are divided into disjoint trees
rooted at some attractor cycles. The length of an attractor cycle of the
example MACA of Fig. 2 is 1. An inverted tree is also called attractor
basin. States other than the cyelic state of an attractor are referred to
as transient states. A transient state when loaded as a seed for the CA
reaches the attractor cycle after some time steps. The maximum number
of time steps needed for any state to reach the attractor cycle is called
the depth or transient length of MACA.

This research work extends the concept of MACA to Genenalized
MACA (GMACA ) with the following characteristics.

1) It employs nonlinear rules.

2) Iis attractor cycle length may be = 1.

3) Its tree structure, unlike MACA, is not uniform.

State space of an example GMACA is shown in Fig. 3.

Based ondifferent dy namical behavior, Wolfram [ 19] reported a spe-
cific class (class IV) of CA displaying complex patterns of localized
structure (attractor) with long transients. Wolfram predicted that class
IV CA are capable of doing nontrivial computations.

Thetermedge of chaos is the critical point of asystem, where a small
change can push the system into chaotic state or lock the system into
a fixed behavior. The logical and complex computations are likely to
occur at edge of chaos [1]. Packard highlighted that the state transition
behavior of class IV CA exhibits the property of a system at edge of
chaos [15]. Further, Langton [1] defined the range of a parameter ()
to identify the CA rules that perform complex computations,

The above observations motivate us to explore GMACA based asso-
ciative memory model for pattern recognition. Design guidelines next
follows.,

. DESIGN SPECIFICATION OF GMACA MODEL FOR
PATTERN RECOGNITION

A pattern recognizer is trained to get familiarized with specific pat-
tern set {70, ..o PG} sothat it can recognize patterns with or
without noise. If a new pattern ¥, is input to the system, the pattern
recognizer identifies it as 7;, where P; is the closest match to P;. The
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hanmming distance between 'J'-:', and ¥ (11 I‘?_.__ %1} is the measure of
noise.

If a GMACA has to function as a pattern recognizer, it has to
learn/store the given pattern set 3 = [9.... . P .. P L. While
the GMACA is run for some time steps with % as an input, it returns
P;. Hence, P is a transient state close to ;. Therefore, the design
guidelines for GMACA can be specified as follows.

R1: Each attractor cycle of the GMACA should contain only one
pattern (7; & P} to be learnt.
R2: The Hamming Distance (H D7, 7, 1) between each state
£ = 2 hasinand T is lesserthanthe H f.J-j'.f"-_..'.i‘-_,. )owhere 7, C
okd g F

A CA which satisfies both R1 & R2 is the desired GMACA for pattern
recognition. The 5-cell GMACA of Fig. 3 can learn two patterns, 1% =
10000 and T = 00111, It maintains both {¢; and fa. A state P =
LLHL has the hamming distances 2 and 3 from Ty & % respectively.
If ¥ is to be recognized, the recognizer must return ™. The GMACA
of Fig. 3 if loaded with 7 = 110101, it returns the desired pattern
o= 1000 after two time steps.

The search to arrive at a rule vector of GMACA, satisfying R1 and
R2, from all possible combinations of hybrid CA rules is of exponential
complexity. So we fall back on genetic algorithm {GA) to arrive at the
desired GMACA with pattern recognition capability.

v = 1.2,

IV, EvOLUTION OF GMACA

The aim of this evolution scheme is to arrive at the GMACA (rule
vector) that can perform pattern recognition task. The rule vector of a
GMACA is viewed as the chromosome for the current GM formulation.
The following subsection reports some novel techniques of enhancing
the fitness of initial population for GA to ensure fast convergence of
evolution process.

AL Selection of Initial Popadation (18 )

Three elegant schemes for the selection of 1P are proposed next,

1P From Ao Region: In this scheme the 1P is constructed from the
study of CA rule configurations. The rules are popularly characterized
by Langton’s parameter & [1]. The number of 175 in arole is quantified
by A and defined as A — (number of 1's in the rule number)/%. For
example, A value of Rule 90 (01011 010) is 0.5 [Fig. #a)]. The present
research work explores hybrid CA for which we introduce a parameter
called Mgy, the average value of A for all the cells ina CA. The Ay, for
the hybrid €A of Fig. (b} is (.425,

It has been observed that the GMACA rules, acting as efficient pattern
recognizers, lie within a specific range of Aap value (Mg, region). The
IP from that region ensures fast convergence of GA. The following
hypothesis characterizes the A ..

Hypothesis 1@ Mg settles around 0.46 and (.54 that are roughly
equidistant from 0.5,

The analytical foundation of the hy pothesis is reported next followed
by experimental validation.

Analytical foundation: In a GMACA, the state }l:'.' while
traversing toward T assumes new state {1 at time step !, During
traversal, it is not always true that there is a continuous decrease in
hamming distances. In Fig. 3, 7:;#1 = w = 101111 is associated with
pivot of = (111 (Attraetar-2). The hamming distance between -+
and f is 1. After one time step, ;00 4 1) = = = |1 |11, where the
hamming distance I 202, d) — 2. During its movement toward J the
seed & exhibits an oscillation in terms of hanuming distance, e.g., 1,
2,3, 1. The CA rules having an equal balance of 0°s & 1's in its next
state function can ensure this phenomena. In otherwords, a CA having
Aay value around 0.5 is the better candidate for 1P,
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Fig. 5. Away movements for different values of «.

This fact is also validated through following experimentations done
on the set of evolved pattern recognizers (GMACA).

a) We randomly generate 100 seeds and observe the movements
of patterns toward a pivot P; in a GMACA. Let assume 4% —
HD{Pi#, 7. at time step “t" while & = HDiP.t +
100% 0 0 0 < o™ then it refers to as “away movement™ of
pattern from the pivot The away mevements of patterns for
different values of » (pattern size) are shown in Fig. 5. For each
1, we have taken 10 different GMACA and observed movements
of 100 patterns for each GMACA. Out of 100 = 10 runs foran .,
the number of cases (% ) in which we encounter away movement
is noted in Fig. 5.

It is observed that in 15% to 20% cases, the away movemient
occurs during the traversal of a pattern to the pivot. This validates
the analysis that the hamming distance of %, from %, undergoes
oscillations in its movement toward T, .

b} Let us assume that during the traversal from seed F; to F: the
away movement first occurs at time step 7 and continues till
{# + wn). The number of bits that flip away from the pivot 7,
during this away movement is therefore 19 = [§1 L0
it Byt — fED0F:63, P20, The maximum value of 3 for all
such durations (£, t + m ) (for traversal of ;) is the “Magnitude
of away movemenrt” for 7°,. Magnitude of “away movement™ for
a GMACA is computed as the average of away movements of a
large number of seeds. Fig. 6 depicts magnitude of away move-
ments for different values of .

It can be observed from Fig. 6 that the away movement is
limited to 20% of w—that is, for » = %k, as many as 5 b get
flipped during the traversal from a seed to the nearest pivot. This
fact demands—GMACA rules should have an equal balance of
s and Os.

¢} To identify the range of M., value (A, ), the experiment has been
conducted for w = 10k to 30, For each n, 15 different sets of
patterns, to be learnt, are selected randomly. The number of pat-
terns in a set is taken as 0.15% —the maximuom number of r-bit
patterns that a Hopfield network can recognize. The GA starts
with the 1P of 50 CA (chromosome) chosen at random and then
undergoes evolution till 100% fit rules (GMACA) are obtained.
Table 1 displays the mean and standard deviation of .. of the
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TABLE 1
MEAN AND STANDARD DEVIATIONS OF A, . WALUE OF GMACA
iTA Agy vwlun lmae than 0.5 Aaw vmlue granter than 0.8
uine fnd | dMess Bul. Devi™ Mean Sid. Dawi®
MDA | UEEGHTE | DBS0RE3 | 0015723
£2 | 0.454733 | 0.019912 | 0528801 | 0.019137
L5 046¥ETE | DLO26365 | O.A24074 | (0580
17 OATIEG | (022839 | (.529311 RN THS
20 A6 | DODDBRTE | D.5A0R3T | 0013532
#2 2464323 | 0031527 | 0542418 | 0007345
20 486250 | 0.005985 | 0517500 | (07500
ar ;48E2T5 | DD21346 | DLG24B41 | G024518
30 DASEON0 ¢ DLAMBAN | DLABE3TE | (004 564]

evolved GMACA rules for an . Coliemn 3 indicates the mean of
Ao values below 0.5 while for A, above 0.5, the mean is noted
in Cedumin 5. The results of Table [ report that the A, of de-
sired GMACA are clustered around in the areas that are roughly
equidistant (0.04) from 0.5 and, therefore, A, can be chosen as
046k or 054+,

TP From Graph Reselution Algerithm:  This scheme to construct JF
employs a reverse engineering technique. It constructs a set of GMACA
rules for the patterns Py Fo oo oL Fio to be learnt. The basic concept of
mismatch pair algorithm proposed by Myer [20] is employed to con-
struct the three-neighborhood GMACA considering patterns to be learnt
asthe members of different attractor cycles of a GMACA. The following
steps illustrate the scheme.

Step 1) Construct basin for each ;. pattern to be learnt, assuming
T as the attractor state (single cycle) and each reachable
state having “p"" number of predecessors. The set of states
Fi3 )y which follow R2 of Section 1l are taken randomly
as the predecessor nodes of Ti. Fig. 7 displays % arbi-
trary basins for the patterns ™, We. ..., Py 1o be learnt as-
suming p = 3. 'ﬁ;:.-: is the jth noisy pattern of 7, where
i=1.9 . bhand j = 1,2 ..

Cienerate state transition table from the basins [20] created
in&rep . Fig. % illustrates a set of representative patterns of
a complete state transition table.

Generate rule vector of GMACA from the state transition
table. The identification of rule for the ith cell of GMACA
is done on the basis of the (£ — 1 th, ithand ({4 L thcolumns
of state transition table. Let us consider the identification of
rule for the second cell of GMACA from Fig. 8. States for
the eight present state configurations of first, second, and
third columns of Fig. 8 are

Neiglllml'lu’u‘n:l: L I I O T A O
(i) MextState: 1 R | B 1 & o

Step 2)

Step 3)

- represents don’t care, Randomly replacing don’t cares by
/1, we arrive at the rule. Therefore, the rule for the 2nd cell

is 01001 000—that is, 72.
The collision inthe state transition table—thatis, both 0 and 1 appear
as the next state for a present state configuration, is resolved heuristi-
cally. In Fig. 8, we have shown collision for the fifth cell. The occur-

TR ]

Fig. 7. Empirical hasing created by grph resolution algorithm.
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Present Seae Next State
L A - f
Fig. 8. Example of state transition table.

rence of "0 in the next state of 011 is w, — 1 while number of occur-
rence of “17 is iy = 3. In resolving the collision
a) we randomly select either 0 or 1 if wep = nq
by if v S0 ong the next state is taken as O while for vy 5 owg itis 1
Forthe example designof Fig. 8, the next state for 011 is 1. Different
sets of CA rules are derived by constructing approximate state transi-
tion diagrams for the attractor set £ 145, ... e These rules are the
memmber of 1P,
TP From Mived Rules: The IP from mixed rules comprises of the
i} chromosomes from .. region:
it} chromosomes produced through graph resolution algorithm:
iii) randomly generated chromosomes;
iv) chromosomes that are produced from the concatenation of fit
CA of smaller sizes.
Thenext two subsections report the principles emploved for fast con-
vergence of the GA evolution.
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TABLE 11
COMPARISON OF MEAN FITNESS AND NUMBER OF GENERATION REQUIRED TO CONVERGE WITH RANDOM AND PRESELECTED RULES
A Wandrm (1) Aoy regian [11] Hraph taeclut ne(K11) Miwad rale [1%] | Lrecotion
vize | Mol My Skl B wl Moan  ; Sid Nao ul Moau P Sl Mool | Mown ETET T
aega™ Fikuema Limnri™ grna™ Fifncay ; Lrav™ Fana™ Flinsag H Lloui™ geta™ i Fliz=an Lo i™ ; [oewt
10 166 603.36 | V.09 141 6716 | 5.240 115 § T2.8%5 | 1863 124 T3.12 | 7518 ;. 1R1BS
T TR | 6TER || TR | eRTO U BITE [ T3 UTRNT U FAME | TH TN | YETE [ 194m
L% 156 62.2% | D.E1] 253 600 ¢ D463 148 | TLGY B.114 [ 21578
17 | 328 | 61.36 | 6.118 | 312 | 63.22 ; 6714 | 268 | TLM0 | W2 | Zio6]
20 3] 61.16 | G528 413 6178 © B2 364 TI. 56 Grde | EeT
WUTTEM | Rim | 4019 [ W3] 6T.08 | AL | 368 | T1.88 H462 | 47823
25 | 7 | 604 | 4045 | 6ol | 6195 5376 | T8 {7346 8087 | 3034
7 T G612 | 6.719 G5 6184  4.9% 412 4.0 T.158 [ 34.621
30 ahl a3 | 5712 718 6210 | 5138 455 T3 § B.1%6 [ 37.268
a2 * AMRR | H.118 | TlA Bray [ 434 | 486 THET 1 40 2 f.613 | 39916
] T BaCFs [Tl LR | G0GY T a007 | hE5 | ov.ua 14550 | T30 | v04d | vaed | d2.a92
37 | ¥ | 5067 | b.23 , B03 | G017 | 50N | Bar | 6146 Jr___:-.‘_,_ij_a_q 362 | T0.87 | r.114 | 43.207
LD 2 58.7TL | 5182 1 H2A begl | G628 %] 67.21 | 4.10% 414 Fiod IR | WA AR
g | T TREAT R TR Buar | WM TEWTTURTRZ ) 3977 | A28 | TUSB | 7197 | 53617
Af ¥ EREEEHEE D SO | RMAT | GE2 0 BATR 0 4008 435 TLLT | S.004 | 57.7TH2
B Fitnesy Funciion
The fitness F{C -1 of a particular chromosome £ (that is, CA rule) M
i a population is determined by the hamming distance between a state Gl o
. penerated by O and the desired attractor state 7,07 = 1,2, . k). E'
the learnt pattern. A chromosome O, is run with 300 randomly chosen g
initial seeds and the fitness of (. is determined by averaging the fitness £
computed for the seeds. 3
Letusassume that, the chromosome <™, is run for amaximum iteration % )
£ s With aseed andreachestoastate T%, . 1f'7, is not the member of any 5o
attractor cycle, then the fiess value of (7., is considered as zero. Onthe g
other hand, if T; £ anattractoreycle containing T, then the fimess of g
Coistn— |y =Py 1 e, where | Py — 7, | s the hamming distance LIS
between 77, & T, and v is the maximum possible hamming distance be- B4
tween aninputand the learnt pattern. Therefore, 517, canbe definedas M oogn o oae wE bEsow o &
. . L q G | P_;' _ }-_" | ) ) . M\_I,_:T-(_j.ﬁ Cell - -
Fica —Z —_— (1} Fig. 9  GA comvergence for different [P,

TR i
i

where ¢ is the number of random seeds,

. Selection, Crossover and Mutaltion

From in-depth study of GA evolutions, we have set the associated
parameters to derive next population (NP} out of present population
(PP, The population size at each generation is set to 50, Out of which
35 chromosomes of NP are formed from single point crossover of PP,
The five chromosomes of NP are formed from single-point mutation
of the best 10 clromosomes of PP, We follow the elitist model and
carry forward ten best solutions to the next generation. The detailed
experimental results of next subsection validate the GA framework we
have set to arrive at the desired solution.

D Experimental Resulis

This section reports the performance of proposed GMACA based
pattern recognition scheme in terms of cost and quality of the design.
While the convergence rate of GA evolution gives the measure of com-
putation cost, the quality of the design can be gauged from the memo-
rizing capacity of GMACA.

Convergence Rate: The performance of different [P selection
schemes in respect of GA convergence rate and the initial mean fitness
with standard deviation is noted in Table Il The experiment has
been done on Compaq server in Linux environment. The execution
times, reported in the last column of Table 11, clearly establish that the
execution time increases linearly with « (pattern size). The entries
"7 in Ceduwmn 2 of Table 1 signify that the GA with random [P does
not converge within 1000 generations. The convergence of GA with

random and preselected /7 is also shown in Fig. 9. It can be observed
that the rate of convergence for mixed rule is better than that with
other IP. The convergence rates of GA with different classes of 1P
vary for two reasons:
i} the initial fimess of the population are different for different £,
For preselected [P it is better than the random [
ii} the more subtle reason is that the preselected £ can identify the
right “schema.”
A schema corresponds to a chromosome. It is represented by a tem-
plate of ones, zeros and asterisks, the asterisks are the wild cards. An
example schema is {~ & + + 0101~ ~%. In the process of GA evolution at
any instant of time the chromosomes of present population (PF) differ
with their counter part in the next population (VA ). The objective of se-
lection process in (A is to gradually bias the schemas whose fitness is
above average. The preselected rules enhances the convergence of GA
because it includes schemas which help the genetic algorithm to climb
through the correct path. The following experiment has been conducted
to establish this fact.

For experimentation, we have started (A evolution for each [P se-
lection scheme from a fixed level of fitness F (in Fig. 10, it is marked
with dotted line). Subsequently, the number of generations needed to
converge is noted for each case. Fig. 10 depicts that the better perfor-
mance has been observed for the preselected [P, For example, shown
in Fig. 10, the number of generations required to converge from fit-
ness level I are 686, 531, 369, and 260 for the random, A, graph
resolution and mixed [P, respectively. For each [P selection scheme,
the 50 chromosomes (C7f: ) of a population that reached the fitness
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Fig. 11. Matching in different I[P selection schemes.

level F are taken. Each such chromosome is compared bit by bit with
10 best chromosomes (I, ) of final population to compute the Frac-
tign of match defined as the number of bits found same between a pair
(CRe, By divided by n, # is the size of a chromosome.

For mixed /P the fraction of match is as high as 0.7 and its average
value = 0.6 (Fig. 11). This validates higher convergence rate of GA.

Memorizing Capacity of GMACA: The experiments to evolve pat-
tern recognizable n-cell GMACA for different values of v are carried
out. For eachwn, 15 different sets of patterns to be trained are selected
randomly. The number of patterns to be learnt by the CA is progres-
sively increased. Table 111 demonstrates the pattern recognition capa-
bility of CA based design. Colwmn 2 of Table 111 depicts the max-
imum number of patterns that an w-cell CA can memorize—that is, the
number of patterns for which the GA has obtained 100% fit rules. The
results of conventional Hopfield Net on the same data set are provided
in Colurnint 3 for the sake of comparison. Hopfield net, as reported in 8],
memaorizes .15, pattern of «-bit. The experimental results clearly
establish that the GMACA have much higher capacity to learn pat-
terns in comparison to Hopfield Net.

The rule space covered by the GMACA, capable of performing pattern
recognition, has gone through extensive study. The diverse parameters
proposed over the vears to characterize the CA behavior are used to iden-
tify the class in which the GMACA belongs. The significance of the pa-
rameters and the results of the studies on GMACA are reported next.

V. GMACA CHARACTERIZATION

The GMACA hasbeen characterized in respect of the parameters pro-
posed in [ 1], [10], [16], [17], [19], [21] to study CA behavior Discus-
sion on each of the parameters follows.

TABLE 111
PERFORMANCE OF THE CA BASED PATTERN RECOGNIZER
o4 A Laued Cowvesbivwul
mima [n] | ¥nrtecr Hesagnicer HApfe.e el
] ] 2
12 4 2
15 4 2
T 1 Ty
Z0 5 , 3
FF] 5 : 3
. AR
27 § : 4
SR 7 5
32 ! T L3
35 ] &
5T [ &
40 ] &
dz ey .
W i 5 S
TABLE IV
SPACE TEMPORAL STUDY TO CATEGORIZE CA RULE SPACE
GMACA Euntropy Mutual
size (n} Yean Std. Devi® | Information
10 0840966 0.072078 3.568
2 0.332540 | 0.GBZ1B5 057
15 0820147 [LEEE[A 0.840
17 0.832854 0.671821 0.342
20 (XL D.OGTHSZ 0.978
T a3 | nediGT | 004371 0.907
20 (834563 DLOAA12G .52
27 520847 D.0385UG 0917
30 083000 L 0.070335 {.428
32 0832786 0.052841 0.943
35 38102 (071002 0.064
37 AR | (OMpDg 0.941
40 0.842010 0061020 0.953
T4 GETIETY | 0064201 0.945
45 0830116 | 00610821 0.833

AL Space Temporal Study

Dynamical behaviors of space-time patterns generated by the CA
provide a guideline to characterize the CA rule space [1], [10], [19].
The macroscopic measurements of CA dynamics like entropy,mictual
information are studied to classify the GMACA rules.

1} Entropy is the measure of randomness [22]. The maximum -
tropy (close to 1) [15] of a system signifies chaotic befravior,
whereas low entropy indicates ordered bebavior. In case of com-
plex system, mean extrepy is close to the critical value 0.84 with
high variance [1].

To measure the entropy, we select a moving window of 10
time steps (v = 10} The system has been run for 10000 time
steps from a random initial state. The mean entropy and the stan-
dard deviation from the mean have been computed | 17]. Foreach
GMACA the procedure is repeated for 15 times with different
random initial states. The values shown in the Codinns 2 and 3
of Table I'V are the mean and standard deviation of entropy, com-
puted for the patterns evolved through GMACA. The mean value
of entropy, shown in Table IV, for the GMACA clusters around
0.84 with high standard deviation. This fact points GMACA as
the complex system.

2} Mutual information measures the correlation between patterns
generated at a fixed time interval. If a pattern Py is the copy of
Py, then mutued information between & and o is 1. The st
information between two statistically independent patterns is 0.
Both the ordered and chaotic CA rules do notcreate spatial struc-
tures and in effect generate pattern set with low mufual informa-
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tignt, On the other hand, the complex CA rules create highly cor-
related structures producing maximum sl infomnation |15].
To measure the mutual information among the patterns gener-
ated from GMACA, we follow the method proposed in [15]. We
select patterns separated by a particular window of size 6. The
minitsiad information corresponding to the evolved GMACA rules,
noted in Cedn 4 of Table 1Y, are found to be close to 1.

B. X-Farameler

The CA rule space can be categorized by evaluating = parameter
[17]. The & parameter provides an alternative to track the CA behavior
very closely. It besides counting the fraction of 1's in the rule table
also takes account of the allocation of 175 in the rule table for different
categories of neighborhood relations. The details are reported in [21].
The Z parameter varies from 0 to 1. = value close to 1 indicates chaotic
behavior of the CA, while Z = ) means order. The intermediate value
of 2 identifies the complex CA rules |21].

The = parameters for the evolved GMACA rules of different size (1)
are reported in Table V. Coldumn 2 depicts the mean value of 2 while
Cerluirin 3 veports the standard deviation. The values, shown inthe table,
are in between O and 1.

C. Characterization of Aitracior Basin

The global parameters such as G- den sty Maximum in-degree, fn-de-
gree freguency histogram and Transient length, associated with the at-
tractor basin topology, can be used to characterize GMACA rule space.
These parameters point to the degree of convergence of dynamical flow
of attractor basin.

1} G-density defines the density of garden-of-eden states, the states
without pre-image (predecessor). For example, in Fig. 3, state
“a” is the garden-of-eden state and pre-image of state “h.”

2} Maximum in-degree is the maximum number of immediate pre-
images of a state. In Fig. 3, in-degree of the state “d™ is 3.

Very high €7-densiry (close to 2" band significant frequency of
high in-degree (close to 2™ ) of a CA imply short and dense trees,
which correspond to ordered rules. While the G-density close to
1 implies low convergence, the long sparse trees with branching
points having in-degree close to 1 implies chaos. The complex
rules fall in between these two extremes [21].

The codumins 2 and 3 of Table V1 report the G-density and the
Maxinmum in-degrees of the evolved GMACA. The proper bal-
ance between G-density and Maximum in-degree for a GMACA
indicates GMACA rules as comples.

In-degree frequency histogram of a basin of attraction can be
constructed as—horizontal axis representing the value of in-de-
gree and vertical axis as the frequency of in-degree. It gives ac-
curate measure of attractor basin topology and its convergence.
The shapes of histogram indicate different CA dynamics. For a
complex rule, the histogram follows power law distribution [17].

Fig. 12 displays a typical In-degree frequency histogram for

15-cell GMACA that recognizes four patterns. The histogram ex-
hibits power law distribution. The similar distribution is observed
for all the evolved GMACA.
Transient length is the time required to reach an attractor cycle.
In Fig. 3, rransient length for “a” is 4. At chaes, the transient
lengths of the patterns are close to 2%, where # is the number of
CA cells; whereas it is very short if order is maintained [21].The
figures in Calumin 4 of Table VI depict the fransient lengths of
the evolved GMACA rules. The observed transient lengths are
quite long but much shorter than 27,

The above observations confirm bevond doubt that GMACA
rules are complex and lies at the edge of chaos.

Lak
=

4

——

TABLE V
WALUES OF & PARAMETERS OF GMACA
GWACA F parameter
slze [n) [ Mean | 5td. Dievi®
i 0.618 0.033
¥ 0536 0.021
15 0.642 0.037
17 0617 0.031
20 0.621 B2 T
22 0641 E
15 0.622 IR0
27 0.639 0012
a0 0.610 0,029
3z 634 0615
a5 0.627 0022
aF 0.642 0016
440 0.633 [FXIYES
42 (G 0.004
45 0.639 0.033
TABLE V1
PARAMETERS OF ATTRACTOR BAsiN TOPOLOGY
GAMACA [ Maximum | Trangient
gize (n) | Demsi In-degree | Leugth
1} ﬂﬂ 16 213
12 73.887 2] o8
15 TB. 223 a5 916
17 TB.B73 102 1274
20 B0.564 174 1568
22 #1.642 P E] 2036
25 83.281 483 366D
27 23.011 512 47128
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Fig. 12, In-degree frequency histogram for 15-cell CA.

W1, CONCLUSION

This paper presents a comprehensive overview of the potential of
cellular automata (CA ) to act as an associative memory model. The po-
tential has been explored by using genetic algorithm (GA) to evolve
the desired model of CA referred to as GMACA. Prudent selection of
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initial population ensures fast convergence of GA. The GMACA has
been found to bear the properties of class IV CA that can perform com-
plex computations. The memorizing capacity of GMACA is found to
be higher than that of Hopfield Network.
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An lterative Solution to Dynamic Qutput Siabilization
and Comments on “Dynamic Ouipui Feedback Controller
Design for Fuzzy Systems™

Min-Long Lin and Ji-Chang Lo

Abstract—In this note, we will show that the output feedback con-
troller gains K in the paper [1] is only an approximated solution
K = QP~'C, withthe dagger denoting Moore—Penrose inverse of the
matrix €. Consequently 5 # A% and therefore it may not satisfy the
linear matrix inequality (LMI) constraints in the aforementioned paper.
Instead, an iterative LMI approach is suggested to solve the dynamic
vutput stabilization problem for the furey systems,

Index Terms—Iterative linear matrix inequality (TLMI), lnear matrix
ineguality (LMI), Takagi—Sugeno fuzey model.

I. MaIN RESULT

In the formulation of the main results we admit the fuzzy system
formulation and adopt the same matrix notations as those in [1].

For brevity, the closed-loop system with dynamic output feedback
controller incorporated is

Fall = AL (1)
wiby =i (2)
where
wao=[at at "
R e A — Sl 0
Aslpl = [ 0 {]]
B+ 4B U TCh
i
+[ 0 I] Y 1]
L. O
h =
' [Bﬁ a]
and
FLES =A 0087 (u (3)
EuER »ABiAB 1), i4)

We emphasize that there are many papers dealing with quadratic uncer-
tainty bounds. Interested readers could refer to Riccati-based methods
[2|-[8], linear matrix inequality { LMI}-based methods [9]-[16], itera-
tive linear matrix inequality (ILMI)-based methods [17]-[19] and ref-
erences therein for details.

Giiven the setup, the paper | 1| proceeds to solve the fuzzy stabiliza-
tion problem by defining a new variable ¢} = K5 such that the
. if it exists, can be obtained via an LMI feasibility problem. The in-
consistency arises when one tries to solve for K given ¢2. What was
obtained in the paper for the controller gains was actually A% and usu-
ally & # K+ unless (' is invertible. This inconsistency implies that
the gain obtained, K — P~y — P~ CY W0 1T may not
satisfy the LMI constraint and therefore, no conclusion is drawn for
the fuzzy stabilization problem via dynamic output feedback. To see
this, let ()} = W 1¢% 1 Since X # K, to stabilize the fuzzy sys-
tems, it requires that the time derivative of a Lyapunov function must
be {4067 1 =0 [ Unfortunately, this is not guaranteed. In fact, the set-
ting of a dynamic output feedback stabilization in the paper isa general -
ized static output feed back stabilization problem, which is a nonconvex
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