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Feature Selection Using f-Information
Measures in Fuzzy Approximation Spaces
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Abstract—The selection of nonredundant and relevant features of real-valued data sets is a highly challenging problem. A nowvel
feature selection method is presented hene based on fuzzy-rough sets by maximizing the relevance and minimizing the redundancy of
the selected features. By introducing the fuzzy equivalence parition matrix, a novel representation of Shannon's entropy for fuzzy
approximation spaces is proposed to measure the relevance and redundancy of features suitable for real-valued data sets. The fuzzy
equivalence partition matrix also offers an efficient way to calkculate many more information measures, termed as f-informaticn
measumes. Several f-information measures are shown to be effective for selecting nonredundant and relevant features of real-valued
data sets. This paper compares the performance of different f-information measunes for feature selection in fuzzy approximation
spaces. Some quantitative indexes are introduced based on fuzzy-rough sets for evaluating the performance of proposed method. The
effectiveness of the proposed method, along with a comparison with other methods, is demonstrated on a set of real-life data sets.

Index Terms—~Pattern recognition, data mining, feature selection, fuzzy-rough sets, f-information measures.

1 INTRODUCTION

EATURE selection or dimensionality reduction of a data set

is an essential preprocessing step used for pattern
recognition, data mining, machine learning, etc, [1], [2]. It
is an important prublem related to mining large data sets,
both in dimension and size. Prior to analysis of the data set,
preprocessing the data to obtain a smaller set of representa-
tive features and retaining the optimal salient characteristics
of the data not only decrease the processing time, but also
lead to more compactness of the models learned and better
generalization. Hence, the general criterion for reducing the
dimension is to preserve most relevant information of the
original data according to some optimality criteria [1], [2].

Conventional methods of feature selection involve
evaluating different feature subsets using some index and
selecting the best among them. An optimal feature subset s
always relative to a certain criterion. In general, different
criteria may lead to different optimal feature subset.
However, every criterion tries to measure the discriminat-
ing ability of a feature or a subset of features to distinguish
the different class labels. While the distance measure s a
very traditional discrimination or divergence measure, the
dependence or correlation measure is mainly utilized to
find the correlation between two features or a feature and a
class [3]. As these two measures depend on the actual
values of the training data, they are very much sensitive to
the noise or outlier of the data set. On the other hand, the
information measures, such as the entropy and mutual
information [4], compute the amount of information or the
uncertainty of a feature for classification. As the information
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measure depends only on the probability distribution of a
random variable rather than on its actual values, it has been
widely used in feature selection [4], [5].

Information measures are defined as the measures of the
distance between a joint probability distribution and the
product of the marginal distributions [6]. They constitute a
subdass of the divergence measures, which are measures of
the distance between two arbitrary distributions. A spedfic
class of information (divergence) measures, of which mutual
information is a member, is formed by the f-information
{f-divergence) measures [6], [7] Several f-information
measures have been succe&sfull}r used in medical image
registration [7] and gene selection [8] problems, and shown to
yield sig;nificantl}r more accurate results than mutual
information.

Rough set theory [9] is a new paradigm to deal with
uncertainty, vagueness, and incompleteness. It has been
applied to f‘uzzv rule extraction, reasoning with uncertainty,
fuzzy m{u:lehng,. classification, feature selection, etc., [9],
[10]. However, there are usually real-valued data and [‘uzz'l.-r
information in real-world applications. Combining [‘uzz].-r
and rm.lgh sets provides an important direction in reason-
ing with uncertainty for real-valued data sets [10], [11], [12].
Both fuzzy and rough sets provide a mathematical frame-
work to capture uncertainties associated with the data [12].
They are complementary in some aspects. The generalized
theories of rough-fuzzy and fuzzy-rough sets have been
applied successfully to feature selection of real-valued data
[10], fuzzy decision rule extraction, rough-fuzzy clustering
[11], [13], etc.

In [10], Jensen and Shen introduced the fuzzy-rough
quick reduct algorithm for feature selection of real-valued
data sets. In [14], Hu et al. have used the concept of fuzzy
equivalence relation matrix to compute entropy and
mutual information in fuzzy approximation spaces, which
can be uwsed for feature selection of real-valued data sets.
However, many useful information measures such as
several f-information measures cannot be computed from
the fuzzy equivalence relation matrix introduced in [14] as
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it does not provide a way to compute margina] and joint
distributions directly. Alsn, the fuzzv—mugh—ﬁet—basa:l
feature selection methods proposed in [10], [14] select the
relevant features of a data set without considering the
redundancy among them.

In this paper, a novel feature selection method is
proposed, which employs fuzzy-rough sets to provide a
means by which discrete- or realvalued noisy data (or a
mixture of both) can be effectively reduced without the need
for user-specified information. Moreover, the proposed
method can be applied to data with continuous or nominal
decision attributes, and can be applied to regression as well
as classification data sets. The proposed method selects a
subset of features from the whole feature set by maximizing
the relevance and minimizing the redundancy of the selected
features. The relevance and redundancy of the features are
calculated using the f-information measures in fuzzy
approximation spaces. Using the concept of fuzzy equiva-
lence partition matrix, the f-information measures are
calculated for both condition and decision attributes. Hence,
the only information required in the proposed feature
selection method is in the form of fuzzy partitions for each
attribute, which can be automatically derived from the given
data set. Several quantitative measures are introduced based
on fuzzy-rough sets to evaluate the performance of the
proposed feature selection method. The effectiveness of the
proposed method, along with a comparison with other
methods, is demonstrated on a set of real-life data.

The structure of the rest of this paper is as follows:
Section 2 briefly introduces the necessary notions of rough
sets and fuzzy-rough sets. In Section 3, the formulas of
Shannon's entropy are introduced for fuzzy approximation
spaces with a fuzzy equivalence partition matrix. The
f-information measures for fuzzy approximation spaces
are presented next in Section 4. The proposed feature
selection method based on f-information measures for fuzzy
approximation spaces is described in Sechon 5. Several
quantitative measures are presented in Section 6 to evaluate
the performance of the proposed method. A few case studies
and a comparison with other methods are presented in
Section 7. Concluding remarks are given in Section 8.

2 RoucH SETs aND Fuzzy-RouGH SETS

In this section, the basic notions in the theories of rough sets
and fuzzy-rough sets are reported.

2.1 Rough Sets

The theory of rough sets begins with the notion of an
approximation space, which is a pair <7, &>, where 1T be a
nonempty set (the universe of discourse), W ={x....,
Ti,...,Tot, and A is a family of attributes, also called
kmlwledge in the universe. V is the value domain of A and f
is an information funchion _iF = & — V. An approxima-
tion space is also called an information system [9].

Any subset P of knowledge & defines an equivalence
{also called indiscernibility) relation ITND{P) on 1

= flzj,a)}.

If (x;,2;) € IND{P), then x; and x; are indiscernible by
attributes from . The partition of 1T generated by INI(IP)
is denoted as

IND(P) = {(x;,x;) € U x U|¥a € P, f(x;,a)

855
W/IND(P) = {[x]p : ; € W}, (1)

where [ri]p is the equivalence class containing 7. The
elements in [n]p are indiscernible or equivalent with
respect to knowledge . Equivalence classes, also termed
as information granules, are used to characterize arbitrary
subsets of 1. The equivalence classes of INID{P) and the
empty set §§ are the elementary sets in the approximation
space < U, &>

Given an arbitrary set X C T, in general, it may not be
possible to describe X precisely in <W, A>. One may
characterize X by a pair of lower and upper approximations
defined as follows [9]:

B(X) =
P(X)=

U{ [ri]pl[z:]p € X} and
(N zilell]e 0 X # 0}

That is, the lower approximation (X)) is the union of all
elementary sets which are subsets of X, and the upper
approximation P(X) is the union of all elementary sets
which have a nonempty intersection with X. The tuple
<P{X),P(X)> is the representation of an ordinary set X in
the approximation space <1, &2 or simply called the rough
set of X. The lower (respectively, upper) approximation
P(X) (respectively, (X)) is interpreted as the collection of
those elements of T that definitely (respectively, possibly)

(2)

bel{mg to X. The lower approximation is also called positive
region sometimes, denoted as POSE(X). A set X is said to be
definable in <17, A= iff P(X) =P X). Otherwise, X is
indefinable and termed as a rough set. BNp(X) = P(X),
P(X) is called a boundary set.

An information system <1, &> is called a decision table
if the attribute set & = €U I, where © is the condition
attribute set and I is the decision attribute set. The
dependency between € and I can be defined as

[POSg(D)|

'}"H:":]III.:I . |-|D]-|

(3)
where POSg(ID) = UCX,, X; is the ith equivalence class
induced by II, and | - | denotes the cardinality of a set.

2.2 Fuzzy-Rough Sets
A crisp equivalence relation induces a crisp partition of the
universe and generates a f&lTI.il}-’ of crisp equivalence classes.
Correspondingly, a f'uzz],r equivalence relation generates a
fuzzy partiion of the universe and a series of fuzzy
equivalence classes, which are also called fuzzy knowledge
granules. This means that the decision and condition
attributes may all be fuzzy [10], [12].
Let <1 &> represents a [‘uzzv approximation space and
X is a fuzzy subset of 1. The fuzzy P-lower and P-upper
appmxlmahnm are then defined as follows [12]:

pex( ) = inf {max{(1 — pr (z)), px(x)}} Vi, (4)

ppx(F) = sup, {min{us (), e (x)}} Vi,  (5)
where F; represents a fuzzy equivalence class belonging to
/P (the partition of T generated by P) and py(x)
represents the membership of r in X. Note that although
the universe of discourse in feature selection is finite, this is
not the case, in general, hence the use of sup and inf. These
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definitions diverge a little from the crisp upper and lower
approximations, as the memberships of individual objects to
the approximations are not explicitly available. As a result
of this, the fuzzy lower and upper approximations can be
defined as [10]

ppx(x) = supp g pmin{jg(z), ppx (F)}, (6)

Hipy(r) = supg g pmin{pg (), ppy (F)} (7

The tuple <PX.PX> is called a fuzzy-rough set. This
definition degenerates to traditional rough sets when all
equivalence classes are crisp. The membership of an object
x £ W, belonging to the fuzzy positive region is

ftrosem(E) = supyew;m ptax(x), (8)

where & = C'U DD, Using the definition of fuzzy positive
region, the dependency function can be defined as
follows [10]:

ltrosmylz)| 1

= 2 Mrosemy(x).  (9)
L IWI_,.ZE[;- i

Y (1) =

3 INFORMATION MEASURE ON Fuzzy
APPROXIMATION SPACES

In this section, the Shannon's information measure [15] is
introduced to compute the knowledge quantity of a fuzzy
attribute set or a fuzzy partition of . Shannon's informa-
tion entropy [15] just works in the case where a crisp
equivalence relation or a crisp partition is defined. That is, it
is suitable for Pawlak's approximation space [9]. In this
section, a novel formula to compute Shannon's entropy
with a fuzzy equivalence partition matrix is presented,
which will be used to measure the information on fuzzy
approximation spaces.

Given a finite set W, & is a fuzzy attribute set in 1T,
which generates a fuzzy equivalence partiion on . If ¢
denotes the number of fuzzy equivalence classes generated
by the fuzzy equivalence relation and » is the number of
objects in T, then e-partitions of 17 are the sets of () values
{m;+} that can be conveniently arrayed as a (c x n) matrix
By = [m ;-'_';-‘]. The matrix My is termed as fuzzy equivalence
partition matrix and is denoted by

M A M
i i m':E M n

My, — | ™ Mz - mi, (10)
m® i md

el forl e

subject to 3, m;} = 1%}, and for any value of i, if
Bt . A . Ty A
k = arg mjjx {?rll._l. }.then |11:|_1x {ml._l. } max {"'”m} =1,

where "'”?? £ [0, 1] represents the membership of object =, in
the ith fuzzy equivalence partition or class F,. The above
axioms should hold for every fuzzy equivalence partition,
which correspond to the requirement that an equivalence
class is nonempty. Obviously, this definition degenerates to
the normal definiion of equivalence classes when the
equivalence relation is nonfuzzy.

Using the concept of fuzzy equivalence partition matrix,
the dependency between condition attribute set © and
decision atiribute set I can be redefined as follows:

(11)

where CUID = & and

by = SUp; {:-;up,-{mhl{mﬁ.'. infi {max{1 — '.Irlﬁ,mﬂ“}} Ht
(12)

Acxn ['uzz}r equivalence partition matrix My repre-
sents the c-fuzzy equivalence partitions of the universe
generated by a fuzzy equivalence relation. Each row of the
matrix By is a fuzzy equivalence partition or class. The
ith fuzzy equivalence partition is, therefore, given by

F={m2%r +m/r+ - +m e, L (13)

As to a fuzzy partition induced by a fuzzy equivalence
relation, the equivalence class is a fuzzy set. The sign “+"
means the operator of union in this case. The cardinality of
the fuzzy set F; can be calculated with

n

|Fy| = Zm;.?,

i=1

(14)

which appears to be a natural generalization of the crisp set.
The information quantity of a fuzzy attribute set & or fuzzy
equivalence partition is then defined as

HI:.&:I = i)ﬂ;ﬂ. iﬂg )l.;.:,, |::'_|_E.J

where Ap, = ]%I, called a fuzzy relative frequency, and « is
the number of fuzzy equivalence partitions or classes. The
measure H{ M) has the same form as the Shannon's entropy
[15]. The information quantity or the entropy value
increases monotonously with the discernibility power of
the fuzzy attributes.

Given =T, &>, P and @@ are two subsets of fuzzy
attribute set &. The information quantity corresponding to
P and @@ is given by

i
H(P) = -3 Aploghp, (16)
i=1

q
H(Q) = -3 Ag log Ao, (17)
i=1

where prand g are the number of fuzzy equivalence partitions
or classes generated by the fuzzy attribute sets P and @@,
respectively, and F, and €); represent the corresponding ith
and jth fuzzy equivalence partitions. The joint entropy of P
and @} can be defined as follows:

H(PQ) =~ Ap logAg,, (18)
k=1

where = is the number of resultant fuzzy equivalence
partitions, 1. is the corresponding i:th equivalence partition,
and A g, is the joint frequency of P, and €);, which is given by
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|P,- n Lr:.]'_l'l :

)"Iﬁ, — )"I'L{J. = i

where k=i —1)g+j7. (19)

That is, the joint frequency Ap, can be calculated from the
r % n fuzzy equivalence partition matrix Mpg, where

Mpgy = MpE N3y and my P — *.In:.lf n m}?. 1209

Similarly, the conditional entropy of P conditioned to @
is defined as

HP|Q) = (21)

I*-?JI}

IP’H-’JJI Zlm |+.:h}

That is, the conditional entropy of I conditioned to €@ is

- [P ’“—?; |Pr na,l
Z Z & Qi

= i{lp nail, |P."|'f3J| IPn @il
" "

i=1l =1

{Z’le NQil,

i=1 j

r 4
H(PIQ) = -3 Mg loghg, + 3 Ag boghg, (22)
k=1 =1

where

Z?Z'M‘}J ZI*-“J:J-I md xq, =19,

i=1 j=

Thus,

H{P|@Q) = H(PQ) — H(Q).
Hence, the mutual information between two fuzzy
attribute sets P and @ is given by

HrQ) =

(23)

H(P)- HP|Q)= H(P) + HQ) - H{PQ).

(24)
The mutual information I{P@Q) between two fuzzy
attribute sets P and @) quantifies the information shared
by both of them. If P* and @} do not share much information,
the value of I{I*Q) between them is small. While two highly
nonlinearly correlated attribute sets will demonstrate a high
mutual information value. The attribute sets can be both the
condition attributes and the decision attributes in this study.
The necessity for a fuzzy condition attribute to be an
independent and informative feature can, therefore, be
determined by the shared information between this attri-
bute and the rest as well as the shared information between
this attribute and the decision attribute.

4 f-INFORMATION MEASURES AND Fuzzy
APPROXIMATION SPACES

The extent to which two probability distributions differ can
be expressed by a so-called measure of divergence. Such a
measure will reach a minimum value when two probability
distributions are identical and the value increases with
increasing disparity between two distributions. A specific
class of divergence measures is the setof f-divergence [6]. For

two discrete probability distributions P = {m|i = 1...., n}
and Q= {gli=1,..., n}, the f-divergence is defined as

f(PIQ) = quf(%)-

A special case of f-divergence measures is the
f-information measures. These are defined similarly to
f-divergence measures, but apply only to specific prob-
ability distributions, namely, the joint probability of two
variables and their marginal probabilities’ product. Thus,
f-information is a measure of dependence: it measures the
distance between a given joint probability and joint
probability when variables are independent [6], [7].

In this section, several frequently used f-information
is reported for fuzzy approximation spaces based on the
concept of fuzzy relative frequency. The f-information
measures in fuzzy approxmation spaces calculate the
distance between a given joint frequency Mg (= Apg,)
and the joint frequency when the variables are inde-
pendent (Ap Ao ). In the following analysis, it is assumed
that all frequency distributions are complete, that is,
A= 2g, = Y Ang = 1.

4.1 V-Information

On fuzzy approximation spaces, one of the simplest
measures of dependence can be obtained using the function

V = |z — 1|, which results in the V-information
VIRIP x Q)= [Ar — Ar g, (26)
ik
where P = {Apli = 12,...,p},.@ = {Ag|i=1.2,....q}.and

B={Aglk=12.. 7] represent two marginal frequency
distributions and their joint frequency distribution, respec-
tively. That is, the V-information calculates the absolute
distance between joint frequency of two fuzzy variables and
their marginal frequendes” product.

4.2 [ -nformation
The I,.-information can be defined as follows:

- 1)_ (27)

for n# 0.0 # 1. The class of I,-information includes
mutual information, which equals [, for the lmit o« — 1,
that is,

| 1 = w)"
In{R.lP = £)) afa —1) (g I[)U{.«"Q,J”_I

i
L(R|P x Q) = %; A, log (A ;{J ) (28)
4.3 AL -Information
The M, -information is defined [6], [7] as follows:
Muyz)=|z*—1F, 0<a=<l (29)

When applying this function in the definition of an
f-information measure on fuzzy approximation spaces,
the resulting AL, -information measures are

Ma(R|IP % Q)= [(Ar)" — (Ardg,)",

gk

(30)
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for 0 < a <1 These constitute a generalized version of
V-information. That is, the M, -information & identical to
V-information for o = 1.

4.4 “-Information
The class of y“-information measures, proposed by Liese
[&], [7]. is as follows:
meon ) |1— J,'”'l'l'_-, for ) = o < 1,
T L 31
i) {ll—J"l for o > 1. (31)
For 0 <« < 1, this function equals to the A, function. The
¥* and M, -information measures are, therefore, also
identical for 0 < o < 1. For a > 1, y"-information can be
written as

o |)"I|' £S )"J"f-)"l:"illlwl
X(R|PxQ)=) ———=

32
1 (AeAg)" I 99

4.5 Renyi Distance
The Renyi distance, a measure of information of order « [6],
[7], can be defined as

Q)"

1
Ral(Bl|Px Q)= —— log —.
S (Apdg )"

a—1 (33)
for o # 0, # 1. It reaches its minimum value when Ay, and
{Ap Ag ) areidentical, inwhichcase the summationreduces to
¥ Am. As we assume complete frequency distributions, the
sum is 1 and the minimum value of the measure is, therefore,
equal to zero. The limit of Renyi's measure for capproaching
1 equals I,( R||P x (}), which is the mutual information.

5 PRroproseD FEATURE SELEcTION METHOD

In real-data analysis, the data set may contain a number of
redundant features with low relevance to the classes. The
presence of such redundant and nonrelevant features leads
to a reduction in the useful information. Ideally, the selected
features should have high relevance with the classes, while
the redundancy among them would be as low as possible.
The features with high relevance are expected to be able to
predict the classes of the samples. However, the prediction
capability is reduced if many redundant features are
selected. In contrast, a data set that contains features not
only with high relevance with respect to the classes, but with
low mutual redundancy is more effective in its prediction
capability. Hence, to assess the effectiveness of the features,
both relevance and redundancy need to be measured
quantitatively. An information-measure-based criterion is
chosen here to address this problem.

5.1 Feature Selection Using f-Information

Let © = {@,..., C,...., C...., C'pn} denotes the set of
condition attributes or features of a given data set and § be
the set of selected features. Define f(, ID) as the relevance
of the fuzzy condition attribute ©; with respect to the fuzzy
decision attribute I, while f(©;, C;) as the redundancy
between two fuzzy condition attributes ©; and ©';. The total
relevance of all selected features is, therefore, given by

Tty =Y. FIC, N, (34)
e
while total redundancy among the selected features is
(35)

T i = Z f{f.. EJ'_:I.
L ]

g e P

Therefore, the problem of selecting a set § of nonredun-
dant and relevant features from the whole set of condition
features © is equivalent to maximize 7., and minimize
T widun, that is, to maximize the objective function 7, where

I = Trnlev — BT rethin = Z j—.{{"n ]II'_:' e Z j':f,. EJ'_:I.
i £

(36)

where [ is a weight parameter. To solve the above prnblem,
the greedy algorithm of Battiti [4] is used that follows next.

1. Initialize © — {C1,....C......Cy.....Cp}. % — 0.

2. Generate fuzzy equivalence partition matrix for each
condition and decision atiribute.

3. Calculate the relevance value F(;. 1) of each
feature C; & .

4. Select feature ©; as the first feature that has the
highest relevance f{C:, D). In effect, € €% and
=

5. Generate resultant equivalence partition matrix
between selected features and each of remaining
features of .

6. Calculate the redundancy between selected features
of § and each of remaining features of €.

7. From the remaining features of €, select feature C;
that maximizes

f(€;. D) - 5= 3 (€. ).
15| =
As a result of that, €, e S and © = O, .

8. Repeat the above three steps until the desired

number of features is selected.

The relevance of a fuzzy condition attribute withrespectto
the fuzzy decisionattribute and the redundancy between two
fuzzy condition attributes can be calculated using any one of
f-information measures on fuzzy approximation spaces.

5.2 Computational Complexity

The f-information-measure-based proposed feature selec-
tion method has low computational complexity with respect
to both number of features and number of samples or objects
of the original data set. Prior to computing the relevance or
redundancy of a fuzzy condition attribute, the fuzzy
equivalence partition matrix for each condition and decision
attribute is to be generated first. The computational complex-
ity to generate a (¢ = n) fuzzy equivalence partition matrix is
O en), where ¢ represents the number of fuzzy equivalence
partitions and = is the total number of objects in the data set.
However, two fuzzy equivalence partition matrices with size
(p = n) and {r = n) have to be generated to compute the
relevance of a fuzzy condition attribute with respect to the
fuzzy dedsion attribute, where pand r represent the number
of fuzzy equivalence partitions of fuzzy condition attribute
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and fuzzy decision attribute, respectively. Hence, the total
time complexity to calculate the relevance of a fuzzy
condition attribute using any one of the f-information
measures is (O{pn) + Ofrn) + Qiprn)) = O prre). Similarly,
the complexity to calculate the redundancy between two
fuzzy condition attributes with p and g number of fuzzy
equivalence partitions using any one of the f-information
measures is O{pgn). Hence, the overall time complexity to
calculate both relevance and redundancy of a fuzzy condi-
tion attribute is (O{pra) + O{pgn)) = O(n) as p,q.r << n In
effect, the selection of a set of d nonredundant and relevant
features from the whole set of D features using the proposed
first order incremental search method has an overall
computational complexity of Q(ndD).

5.3 Fuzzy Equivalence Classes

The family of normal fuzzy sets produced by a fuzzy
partitioning of the universe of discourse can play the role
of fuzzy equivalence dasses [12]. In the proposed feature
selection method, the = function in the one-dimensional
form is used to assign membership values to different
fuzzy equivalence classes for the input features. A fuzzy
set with membership function «(z: & ) [16] represents a set
of points clustered around & where

for < lz—¢|| = &,

L, for0< |z -4 = (37)

[

IR atherwise,

where o = (] is the radius of the 7 function with © as the
central point and || - || denotes the euclidean norm. When
the pattern = lies at the central point 7 of a class, then ||z —
&l =0 and its membership value is maximum, that is,
7(& &, ) = 1. The membership value of a point decreases as
its distance from the central point 7 that is, ||z — &
increases. When ||z — &|| = (5), the membership value of r
is (1.5 and this is called a crossover point [16].

Each real-valued feature in quantitative form can be
assigned to different fuzzy equivalence classes in terms of
membership values using the 7 fuzzy set with appropriate ¢
and . The centers and radii of the 7 functions along each
feature axis can be determined automatically from the
distribution of training patterns or objects.

5.3.1 Choice of Parameters of = Function

The parameters & and o of each 7 fuzzy set are computed
according to the procedure reported in [16]. Let ; be the
mean of the objects == {x,,....x;...,z,} along the
ith feature ;. Then, /n;, and i, are defined as the means
(along the ith feature) of the objects having coordinate
values in the range [; _.;) and (m;, ©; ], respectively,
where ©; _ and ©';  denote the upper and lower bounds
of the dynamic range of feature ©; for the training set. For
three fuzzy sets low, medium, and high, the centers and
corresponding radii are as follows [16]:

aclu'l:c!l'J = ?nl'l-:Elllt\tlillllll:{:l'_:l = Tr_ll'l-ﬁh.igh.l:c!l'_:l = ?nl'_ll . {38_:'

859

Hkm":,{:f_:l - 2I:F:1|:|-:'«:|.i||.||.||:€3|'::| ¢ Ekm":ﬂl':”-

0|I.i$.:|l.|::€:!f_:| = gl:al.iﬂ_h.l:ﬂl'_:l — Eul-:!cliu.u.ll:cl'_”~ {;;ﬂ_:l

A
meslinm {-I az P
T eslinm L T ) a;xB
where

A= {‘7I-:m'|:c|'_:”:c!|':,m ) r-'u.uliu.u.l':ﬂl'_:l_:l +
‘7I|.ig_ll.|::cl'_:| I::'r:u.l-:'«:lill.ll.l {{-“l_:l = El’;.g.. _:l]"- B= {El':.m - ﬂl'u::. } 3

where 7 s a multiplicative parameter controlling the extent
of the overlapping. The distribution of the patterns or
objects along each feature axis is taken into account, while
computing the corresponding centers and radii of the three
fuzzy sets. Also, the amount of overlap between three fuzzy
sets can be different along the different axis, depending on
the distribution of the objects or patterns.

5.3.2 Fuzzy Equivalence Partition Matrix

The ec=xn f'uzz],r equivalence partition matrix 3y,
corresponding to the dth feature €, can be calculated
from the cfuzzy equivalence classes of the objects x =
{x1..0 2.0, ), where

o, TiTiEs o)
s wlxs )

Corresponding to three fuzzy sets low, medium, and
high (¢ = 3}, the following relations hold:

i {40y

0 = 'ﬁluw{ﬂf}:ﬁ;’ = EII:K'I:l.iILItll:EI'_:II-F:"i = Eh.iﬁh.l: El'_:l-
m = ‘7I-:m'|:{:|'_:|'-‘7';' = ‘7||.|-:~c|.i||.||.||:,€-"-||'_:|'-‘7-'1 — ‘7I|.i:.'.:ll.|:ﬂ|'::|-

In effect, each position mf_;-’ of the fuzzy equivalence
partition matrix Bl must satisfy the following conditions:
mf_;-' e [0.1]; mej’ = 1,%¥j and for any value of k, if
k=1

§ = AT mAX {'.qu_;.’}. then max {'.qu_;:'} = max;{mf:’} =0.
J i

6 QUANTITATIVE MEASURES

In this section, two new quantitative indexes are presented,
along with some existing indexes, to evaluate the perfor-
mance of proposed method. The proposed two indexes are
based on the concept of fuzzy-rough sets.

6.1 Fuzzy-Rough-Set-Based Quantitative Indexes

Using the definition of fuzzy positive region, two new
indexes are introduced next.

6.1.1 RELEW Index
The RELEY index is defined as

1
RELEW = — Y, (), (41)
cp

where < (ID) represents the degree of dependency of
decision attribute I on the condition attribute ©;, which
can be calulated using (11). That is, RELEW index is the
average relevance of all selected features. A good feature
selection algorithm should make all selected features as
relevant as possible. The RELEW index increases with the
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increase in relevance of each selected feature. Therefore, fora
given data set and number of selected features, the higher the
relevance of each selected feature, the higher would be the
RELEY index.

6.1.2 REDUM /ndex
It can be defined as

REDUN — W Z{ e, (C) + e, (€0} (42)

where ¢, () represents the degree of dependency of the
condition attribute ©; on another condition attribute €.
The REDX index calculates the amount of redundancy
among the selected features. A good feature selection
algorithm should make the redundancy among all selected
features as low as possible. The REDTX index minimizes
the redundancy between selected features.

6.2 Existing Feature Evaluation Indexes

Some existing indexes are described next that are used for
evaluating the effectiveness of the selected features.

6.2.1 Class Separability
Class separability § of a data set is defined as [2]

S = trace(S;'S.)., (43)
where S, and 5, represent the within class and between
class scatter matrix, respectively, and defined as follows:

c _ o
S = Z PE{(X — p;)(X - .“_I'IJJl luy} = Z piLi, (44
=1

3=l

& (o
Sy = Z{jr_,- — My — My)': where My = Zp_,-p,_,-. 145)
=1 1=l

where ' is the number of classes, p; is a priori probability
that a pattern belongs to class w;, X is a feature vector, M,
is the sample mean vector for the entire data points, u; is
the sample mean vector of class w;, E; is the sample
covariance matrix of class w,, and E{-} is the expectation
operator. A lower value of § ensures that the classes are
well separated by their scatter means.

6.2.2 C4.5 Classification Error

The C4.5 [5] is a popular decision-tree-based classification
algorithm. It is used for evaluating the effectiveness of
reduced feature set for dassification. The selected feature set
is fed to the C4.5 for building dassificationmodels. The C4.5 s
used here because it performs feature selection in the process
of training and the classification models it builds are
represented in the form of decision trees, which can be
further examined.

6.2.3 K-NN Classification Error

The K-nearest neighbor (K-NN) rule [1] is used for
evaluating the effectiveness of the reduced feature set for
classification. It classifies samples based on the cdosest
training samples in the feature ig‘ace A sample is classified
by a majority vote of its K-neighbors, with the sample being
assigned to the class most common among its K-nearest
neighbors. The value of K, chosen for the K-NN, is the
square root of number of samples in training set.

6.2.4 Entropy
Let the distance between two data points = and x; be

1
27}

Z e
ML — TR :

where r; denotes feature value for x; along kth direction,
and meare and ming are the maximum and minimum values
computed over all the samples along kth axis, and d is the
number of selected features. Similarity, between x; and r;
are given by sim{i,j) = ™", where a is a positive
constant. A possible value of n is =24, D is the average
distance between data points computed over the entire data

set. Entropy is then defined as [17]:

(46)

" "

Z Z{xm]l{a 7)) = logisim(i, 7))

i=1 j=

+ {1 —simii, j)) = log(1 — sim(i, j)).

(47)

If the data are uniformly distributed in the feature space,
entropy is maximum. When the data have well-formed
clusters, uncertainty is low and so is entropy.

6.2.5 Representation Entropy
Let the eigenvalues of the d x d covariance matrix of a
feature set of size d be A;,j=1,..., d. Let

: M
fi= (48)

J o 1
b2 =1 A
where i has the similar pruperl‘ies like probability, namely,

0< A <1land E"_l \; = 1. Hence, an entropy function can
be deﬁned as [2]

o
Hp=— Z Alogh) (49)
1=l
The function Hy attains a minimum value (zero) when all
the eigenvalues except one are zero or, in other words, when
all the information is present along a single coordinate
direction. If all the eigenvalues are equal, that is, information
isequally distributed among all the features, H is maximum
and so is the uncertainty involved in feature reduction. The
above measure is known as representation entropy. Since the
proposed method takes into account the redundancy among
the selected features, it is expected that the reduced feature
set attains a high value of representation entropy.

7 ExXPERIMENTAL RESULTS

The performance of the proposed method based on
f-information measures is extensively studied. Based on
the argumentation given in Section 4, following information
measures are chosen to indude in the study.

ML mutual information; ¥ ¥-information;
fo0 forn #0000+ L A for il e
v for o = 1; R fore LU, o fl;
: fu??}r; | X CTIER.
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TABLE 1
Classification Error of C4.5 for Mutual-lnformation-Based Feature Selection on Different Data Sets
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These measures are applied to calculate both relevance
and redundancy of the features. The values of o investi-
gated are 0.2, 0.5, 0.8, 1.5, 2.0, 30, 4.0, and 5.0. The values
close to 1.0 are exduded, either because the measures
resemble mutual information for such values (I, R,) or
because they resemble another measure (M) and y L equal
VI). The perfﬂrmaﬂce of the proposed method is ako
compared with that of quick reduct algorithm, both in fuzz].-r
(fuzzy-rough quick reduct) [10] and aisp (rough quick
reduct) [18] approximation spaces.

To analyze the perfﬂrmance of proposed method, the
experimentation is done on Iris, E-Coli, Wine, Letter, lono-
sphere, Satimage, and Isolet data sets that are downloaded
from http:/ /www ics.uci.edu/~mlearn. The major metrics
for evaluating the performance of different algorithms are
the proposed indexes, as well as some existing measures
reported in Section 6. To compute the classification error of
both K-INM rule and C4.5, the leave-one-out cross validation
is perfﬂrmed on E-Coli, Wine, and lonosphere data, while the
training-testing is done on Letter and Satimage data.

7.1 Result on Iris Data
The parameters generated in the proposed feature selection
method and the relevance of each feature are reported next for

Iris data, as an example. The values of input parameters used
are also presented here. The mutual information is chosen to

calculate the relevance and redundancy of the features.

Number of samples {objects}, n — Ll
Sumber of dimensions {(features), T = 4
Value of weight parameter 7 — (L5

Value of multiplicalive parameler v — 1.5
Teature 1

Clom = 0295 Crecium = LA2ET; Thign = 1.6G333

Tleyar = l]Jh.:Pf‘f-l,. Trupetinm = ﬂﬁ.?ﬂ |; "-'r||i,?.' = U—I-U':-.:"{
Teature 2

Blow = 02138 Trodinm = A302; Fhign = 05015
T — 208 Tt — 113167 ai (131007
Fealure 3

Pl = 192 Tt = AGTE; Frier, = 06811
Mo — WVHGT; Tt — 18005 a0 — 1,464
Feature 4

Pl — O LLAE; i = TLAETE S, — (LGAGE
Tl — LOBGL Ty — ULBT20; apje — 1,457

Relevance of each feature;
Fealure 1: 0.266%; Fealure 2: 01438
beature 30 (L37Y3; Fesature d: (13734
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TABLE 2
Performance on Satimage and |solet Databases for Different Values of Weight Parameter @ Considering n = 1.5
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selecting Feature 3, the redundancy and objective function Class separability, S 0.0000  0.9343
of each feature are calculated that follow next. Cntropy, & DEUNL (LT3
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Value of objective function:
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Based on the value of objective function, Feature 4 will
be selected next as the second feature. The values of
different quantitative indexes for these two features
(Features 3 and 4) are reported next, along with that for
whole feature sets.

The results reported above establish the fact that the
proposed method selects most significant features from the
whole feature sets by maximizing the relevance and
minimizing the redundancy of selected features.

7.2 Effectiveness of the Proposed Method
To better understand the effectiveness of the proposed
method, extensive experimental results are reported in
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Perfarmance on Satimage and Isolet Databases for Different Values of Multiplicative Parameter « Considering @ = 0.5
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Table 1. Subsequent discussions analyze the results with
respect to the dassification error of C4.5.

Table 1 reports the classification error of C4.5 for mutual-
information-based feature selection method both in fuzzy
and crisp approximation spaces. Results are presented for
different values of the number of selected features d, weight
parameter [, and multiplicative parameter . All the results
reported here confirm that mutual-information-based fea-
ture selection method is more effective in fuzzy approxima-
tion spaces than in crisp approximation spaces with smaller
number of features. The proposed feature selection method
in I‘UZZj.-r approximation spaces improves the classification
accuracy of C4.5 :-.iijg';niﬁq:antlj.-r over its crisp counterpart,
espedally at smaller number of features. As the number of
selected features d increases, the difference between fuzzy
and crisp approximation spaces decreases. For a given data
set with n samples and D features, the classification error of

C4.5 remains unchanged for any combination of 7 and #
when the number of selected features d approaches to D. In
case of E-Coli and Letter data sets, the error becomes almost
same for d = fi and 15 as the values of corresponding D = 7
and 16, respectively. Similarly, for Satimage data set, the
classification error remains almost same at d = 35 as the
corresponding T = 36. However, for feature selecton, small
feature setis of practical importance. Also, for a given data set
and fixed d and # values, the classification error would be
lower for nonzero [ values. In other words, if the red undancy
between the selected feature sets is taken into consideration,
the performance of the proposed method would be better
both in fUZZj.-r and crisp approximation spaces.

7.3 Optimum Value of Weight Parameter

The parameter [ regulates the relative importance of the
redundancy between the candidate feature and the already
selected features with respect to the relevance with the
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TABLE 4
Comparative Performance Analysis of Different f-Information Measures on Letter Database for « =
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TABLE 5

Comparative Performance Analysis of Different f-Information Measures on Satimage Database for « = 10
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output class. If 4 is zero, only the relevance with the output
class is considered for each feature. If 7 increases, this
measure is discounted |J]..' a quantity proportional to the
total redundancy with respect to the already selected
features. The value of 3 larger than zero is crucial in order
to obtain good results. If the redundancy between features
is not taken into account, selecting the features with the
highest relevance with respect to the output class tends to
produce a set of redundant features that may leave out
useful complementary information.

Table 2 presents the perfﬂrmance of proposed method
using both V' and mutual information for different values
of 4. The results and subsequent discussions are presented
in this table with respect to various proposed and existing
quantitative indexes for both fuzz].-r and crisp approxima-
tion spaces. In Table 2, it is seen that as the value of 4
increases, the values of RELEW index and representative
entropy Hpy increase, whereas the classification error of
4.5, the values of REDTUN index, class separability S,
and entropy E decrease. The V' and mutual information
achieve their best perfﬂmmnce for 0.5 < 7 = 1 with respect
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TABLE 6
Comparative Performance Analysis of Different Methods Using Proposed and Existing Feature Evaluation Indexes

BE5

Dtin Ielethund / E. MM Lrruc Z4.5 Crrour Separithility LI Inedew Cotropy & Cotropy Iy | EETUH LIlex |
St Muisune [ Fieey | arsp | fusey crsp [ fueey [ onsp [ fiwer T oonsp [ fuesy frieey [ wrisp | fusey | orsp
M 73 k] 7H 7y UTED | ILTHY 1443 | 1433 | 1h73a WS 0S| 0413 | s
LER 41 28 h.7 Ty [0 L 3 R O 2 S 2 S e OSEE | OsEE | 0400 | LD
Al Jdn £V 38 ] 25 45 008 | 0134 | 05 | 0434 | DR Qeeg | 0897 0417 | Bl
!0 ay R 24 4.5 LI L O I S I 2 S B 3 LR T B R e B ) R I HE e
Hin 4.1 3.8 0.7 7Y U138 | 1LTEY 1442 | 43 | 1750 ARG | OSEE | 0300 | D
A a4 7. 2.5 gl LR | LTSS | R | 4dd | R OS] O | 0417
[&1] L&D 228 232 287 1315 | 16R2 | 0LI3F | IL11E | (LHS2 G072 R00R | 02w
fnsd o TH 1h2 163 191 LRI I 1.231 IL2TS | (LHAT 331R | 3Z6d | 0207
Litter Wl wr 17.2 1753 215 T3 | L1184 | dl2dn | D213 | UkFd D3 | G408 | GO8F | (0093
L 11l 1.2 I1E 152 Tz | Lot [ 0LA0 | led | Gse D11 | 32N | G020 0247
CR Zl8 | 205 el T | BB ) Q67 ) 02BS | 0271 | UE%l DA0e | 3514 | A001 0 03K
[&1] 16 4.9 2h EX] 1R | 3283 | L343 e ILFRR | 32U | 3293 | 0.374
sl s ar LX) 4.0 4H I I e T 1) L6 ILFGS | 29 | S295 | 0.891
lonsph W1 LG 4. 4.4 2.4 Lowml | Gamd [ 40 [ R [ B O =l B O W R W P
Tl iz 18 1.6 48 2297 | AIEI | AN s LFRE | 3298 | 3293 | 0.39]
18 £.7 9.2 KA 11.7 RATF | WERT L2R2 LG B | s I et (N el R W3 B
MI 173 188 17.3 151 | Rasa | 0467 | 02427 0824 0832 | 3368 | 3263 | 05
Ty 136 160 T 154 | 33 | 0472 | 0437 Cadl o 0827 | 345 [ 32dE | 0336
Mos IA.h 151 74 151 A6 | LT [LHOF ILE30 | 3284 | 3217 | 040A
atimg Wi 1h.n 1H.1 74 151 L3665 | 1IL4RT ILHOZ LRG0 | 34210 ) 3217 ) 0419
K Lia 1a.1 T 154 | D360 | 0475 (757 0.82% | 3455 | 3254 | 0359
Ran 136 16.1 1.4 154 | D335 | D47S 7% 0831 | 3478 | 3354 | 0335 | 035
QR 4.2 24.H 216 245 [LHYZ | LS LG TR 1 I Y s L O WO () )
MI 1 e L SO I W PO Y 2" (2% 0313 | 4629 | 4407 | 0425 | 1450
Fai 8 2.9 8.3 L2 | Doss | 0333 275 0303 | 4437 | 4417 | 0412 | 0455
RS i 9.2 9.5 L I e 0276 0303 [ 481 | A5 DAZ6 | RAE3
laalel vl A .z 54 1.4 Nz | .30 2% AR | 4647 ) AA4h | D2 ARl
K 1 g LA I B v T e G227 0308 | dede | 440 0413 | Dd3e
Rai =8 a9 8.2 131 [ I 1 02AFS  0.32% | 4842 | 4227 | 0413 | 0497
OR 9.0 1n.2 128 15,2 13652 | 1044 275 0511 1517 | 4211 ) 007 | L3
TABLE 7
Comparative Execution Time (in Millisecond) Analysis of Different Methods
Wethod 7 Wine (il = 4 letter (i =13 lonosphere (= 10 | Satimage (7= 100 lznler |& = 23]
Measure | Towey | crizp | heey | crisp | Iwesy Crispr Tuziy Ll Iy Crisp
MI A 7 2755 295 1a3 L 28 2273 143407 L1575
Lo ¥ 7 2687 2640 16k 117 2407 223 LA34al 142157
M § b 270 2770 168 1R3 239k G2 T4 141596
¥l 4 7 2644 . el 1a2 L4z 2353 224 140458 L2015
3 § b 2684 2r¥h 167 144 e 1248 143478 141550
Hon ) & 2641 2795 167 15 2358 2267 143501 L41769
Ll P K 21508 | 1T 243 N7 AT 3712 FUATIZIE | Al

to all these quantitative indexes. In other words, the best
performance of V and mutual information is achieved
when the relevance of each feature is discounted by at least
50 percent of total redundancy with respect to already
selected features.

7.4 Optimum Value of Multiplicative Parameter 5
The # is a multiplicative parameter controlling the extent of
overlapping between the I"uzz:.-r sets low and medium or
medium and high. Keeping the values of m,, and gy
fixed, the amount of overlapping among the three =
functions can be altered varying duedivm. As 7 is decreased,
the radius oy, decreases around &, Such that
ultimately, there is h'lsigrlificant overlapping between the
7 functions low and medium or medium and high. On the
other hand, as # is indeased, the radius o0, INreases
around &, 50 that the amount of overlapping between ©
functions increases.

Table 3 represents the perfﬂrmance of the proposed
method in terms of various quantitative indexes for
different values of 7. Results are presented for different
data sets considering the information measure as both

mutual information and V information. It is seen that in
case of both mutual information and V-information, the
proposed method achieves consistently better perfﬂrmance
for 1.1 < o= 1.7. In fact, very large or very small amounts
of overlapping among the three fuzzy sets of the input
feature are found to be undesirable.

7.5 Performance of Different f-Information
Furthermore, extensive experiments are done to evaluate
the performance of different f information measures, both
in ['uzz].-r and crisp approximation spaces. Tables 4 and 5
report the results for different values of o considering 7 =
0.5 and n = 1.5. For each data set, the value of d (number
of selected features) is chosen through extensive experi-
mentation in such a way that the classification error of
both C4.5 and K-NN becomes almost equal to that of
original feature set.

From the results reported in Tables 4 and 5, it is seen that
most of the f-information measures achieve consistently
better performance than mutual information (= [y~ or
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R, g-information) for different values of o, both in fuzzy and
crisp approximation spaces. Some f-information measures
are shown to perform poorly on all aspects for certain values
of «. The majority of measures produces results similar to
those of mutual information. An important finding, how-
ever, is that several measures, although slightly more
difficult to optimize, can potentially yield significantly
better results than mutual information. For Satimage data,
V-or My, I,- and R, -information for 0.8 < a < 4.0, and
y“-information for o« = 2.0 and 3.0 perform better than
mutual information in fuzzy approximation spaces, while
for Letter data, Iy 5-, My s~ and V-information yield the best
result with respect to most of the indexes and other
measures are comparable to mutual information. However,
the lowest value of REDNMTX index for Satimage data is
achieved using y*"- and y*-information.

7.6 Performance of Different Algorithms

Table 6 compares the best performance of different
f-information that is used in the proposed feature selection
method. The results are presented based on the minimum
classification error of both C4.5 and K-NN. The values of 7
and # are considered as 0.5 and 1.5, respectively. The best
performance of quick reduct (QR) algorithm, both in fuzzy
[10] and crisp [18] approximation spaces, is also provided
for the sake of comparison. It is seen that the f-information
in fuzzy approximation spaces is more effective than that in
crisp approximation spaces. The f-information-measure-
based proposed feature selection method selects a set of
features having the lowest classification error of both C4.5
and K-MNN, class separabilit}r, entropy, and REDTTH index
values and the highest representation entropy and
BELEW index wvalues for all the cases. Also, several
f-information measures, although slightly more difficult to
optimize, can potentially yield significantly better results
than mutual information, both in fuzzy and oaisp approx-
imation spaces. Moreover, the f-information-based pro-
posed method outperforms quick reduct algorithm, both in
fuzz].-r and crisp approximation spaces. However, quick
reduct algorithm achieves the best RELEW index value
for all data sets as it selects only relevant features of a data
set without considering the redundancy among them. The
better performance of the proposed method using
f-information is achieved due to the fact that the fuzzy
equivalence partition matrix provides an efficient way ko
calculate different f-information measures on fuzzy ap-
proximation spaces. In effect, a reduced set of features
having maximum relevance and minimum redundancy is
being obtained using the proposed method. Finally, Table7
reports the execution time of different algorithms. The
significantly lesser time of the proposed algorithm is
achieved due to its low computational complexity.

8 CoONCLUSION

The problem of feature selection is highly important,
particularly given the explosive growth of available
information. In this paper, a novel feature selection
method is presented based on fuzzy-rough sets. Using
the concept of f-information measures on fuzzy approx-
imation spaces, an efficient algorithm is introduced for

finding nonredundant and relevant features of real-valued
data sets. This formulation is geared toward maximizing
the utility of rough sets, fuzzy sets, and information
measures with respect to knowledge discovery tasks.
Several quantitative indexes are defined based on fuzzy-
rough sets to evaluate the performance of the proposed
feature selection method on fuzzy approximation spaces
for real-life data sets. Finally, the effectiveness of the
proposed method is presented, along with a comparison
with other related algorithms, on a set of real-life data.
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