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SUMMARY. Attention is roatrioted to two-dimansional random vootors. Tho undorlying

riate random can be i i d by means of istics based on the linearizad
sampls ol ta; the linoar ds are ized by the angle that tho compounding nait
veator makes with the poaitive firet di axia. The collaotion of statistics forms a stach

procoes, cortain functionals of which will be relevant statistics for the problem in ita original
bivariato sotting. In this paper we focus on an npplmauon to the nonplnmurln bivariate re.
gression problem, whioh is very similar to the union-i mothod employsd in Roy (1053)
and Roy and Boso (1953) in a parametric setting. In tho prosent case the statistics are simpls
linear rank statistics based on the ranks of the linearized eample olemonts. The asymptotic dis.
tribution theory is developed under the null hypothesis snd ia to a large extent almost immadiate

from resulte in Héjok and Sidak (1067).

INTRODUOTION
For each N ¢ 72 we aro given indepondont two-dimensional random voctors
Xy = X\n = (Esn, v}y Xo = Xon = tEaw, 9a8), ..o Xv = Xnw = (Eww, ovnd
with bivariato distribution functions (1.f.'#} F\ = F\n, Fy=F,,..., Fy = Fyn.
All random elements to be mentioned in this paper are supposed to bo defined
on one single provability space (Q, A, P). The o-field A is assumed to be
complete with respoct to the moasuro P. For each Lef0, m) lot e, e X bo
the unit vector making tho angle ¢ with the positive E-axis (¢, = (1,0) and
e1n = (0,1)). Given olements a, be 722, tho inner product is denoted by
< a,b> and the norm by |iall.
Tor ench £ € [0, ) lot us introduce the N independont (univariato) random
variables (r.v.’s)
Xp=<X,e> n=12.,N (L)
It is the purpose of the present paper to illustrato tho possibility of Divestigat-
ing the bivariate random structure by means of suitably chosen univariate
statistica Sy(2), say, based on what will be called the linearized sample eloments
in{L.1). Those statistics form na stochastio process
Sw = {8n(t), te[0,m)}, e (13)
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cortain funotionals of which can bo used to reach docisions concorning the
originat bivariate ssmple. This approach, leading to the so ocalled union-
intersection prinoiple for tests of multivariate hypotheses, has been exploited
in Roy (1953) and Roy and Bose (1953). Virtually the samo idea is used in
ordinary principal componont analysis, where Sy{¢) is the samplo varianco
of tho projections corresponding to {. A certain linearization is e.g. also
considered in Pyke (1975, Section 4) for tho study of bivariate empirical pro-
cossos. Horo wo have chosen (0,0) as the centro of our bundle of lines.
For certain applications it is possiblo that a centro different from (0, 0), may

bo evon a random centre liko e.g. X = N-! ).. X, is appropriate.

The 8pocial problom that we havo in mind is that of testing the bivariato
hypothesis of randomness

Fi=F,=..=Fy=F ¥Nen, e (L3)

where F is a continuous bivariate d.f. that will occasionslly also have to
satisfy some further technical conditions (see Sections 3 and 4). Various
(asymptotically) distribution froe tests for this hypothesis can bo found in
Puri and Sen (1971); in addition to the extensive list of references in this
monograph we may draw attention to the more recent papers by Mardis
(1969, 1970), Bhattacharyya and Johnson (1970), and Friedman and Rafsky
(1979). To tho knowledgo of tho authors, howevor, nono of the tests to bo
found in tho litorsturo is basod on a process of tho type (1.2). In fact the
procoss approach leads to a olass of statistics containing some of the statistics
in Puri and Sen (1971) as a spocial caso. For a further discusaion cee
Section 3.

In order to procood with a procise deseription of the process (1.2) to o
used for the present problem wo need to introduce some more notation and
assumptions. The rank R, ; of X, among the r.v.’s in (1.1) is defined in
the usual way by

Ryo=%m: Xm < X, 4} e (1.4)

Lot J:(0,1)—> 7 be square intograble with respoct to Lebesgue measure
and suppose that the scores ay(n) (n = 1,2, ..., N) satisfy

1
il; (an(1 4 [uN)—J(u))?du — 0, as N - co, oo (1.5)



54 J. M. BUHRMAN AND F. H. RUYMGAART

where (for a6 72) [a] denotes the greatest integer not exceeding a. Without
loas of generality we shall assume that

| Juddu = 0, | Jiude = o €10, 00). . (16)
0 [

The regression constants ¢, = c,n (n = 1, 2, ..., N) satisfy

N N
Te, =0, X ct=1, and max c2—>0,a8 N> 0. )]
nw=1 n=1 n=18..-N

For each ¢ ¢[U, 7) we define Sy (t) to be the rank statistic
N
Sy(t) = 21 ¢,an(Rp,t), e (L8)
=

which is well known for testing against regression in univariate samples.

To describo the sample paths of the process Sy, let us draw a line through
(0,0) perpendicular to the vector Xp— X, for cach pair of indices (m, n) with

m < n, Each of these lines, (;V) in number, makes an angle in [0, ) with

the positive E-axis. Let us denote the ordered angles by

O=7 S THS Ty . K7 <, M = (‘:) o (19)
The sample paths of Sy are obviously step functions that are constant on
the intervals [0, 7.1)), (T(1), T(a))s «++» (T(a1y, 7). Suppose that the pair of indices
(m(i), n(f)) corresponds to the angle 7,. This entails that KXoyt and X,
are tied for t = 7. We also have |Rmnt— R, el = 1 for ¢ approaching
7¢) from below as well as from above. When ¢ pasces 7y, the only change
in the vector of ranks is the transposition of Rm): #nd R,¢¢ Which in
general will result in a jump of Sy at ¢ = 7,. The value of Sy at this parti-
cular point is irrelevant. It will be convenient to replace Sn(ryy) by the right
hand limit Sn(t4;+), so that the sample paths become continuous from the right.

Let x be a bounded measure on [0,7) (0 < x([0,7)) < o). Then we
can Write g = u,+p, where u, is absolutely continuous and u, singular
with respeot to Lebesguo measuve. We shall assume that the singular part
t8 a discrele measure concentrating ils lotnl mass on a couniable subsel
{1 by, ..} C [0, ). Wo obtain important special cases when we take for
# the Lebesgue measure on [0, 7) or & discrete wmeasure concentrating its total
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mass on the finite numbor of points ¢, <& < ... < by in [0, 7) such that
s =1, 4=1,2,...,m The latter mensure will be callod the counting
measure on {ly, fy, ..., Im). Lot Ly([0, m, u) be the separable Hilbert space of
Borgl-measurablo functions that are square intograblo with respect to the
measure s The innor product of @,y e Ly({0, n), p) is defined in the usual
way by

<g¥>, =wj)¢ll)¢r(l)d/lll), ... (L.10)

and the derived norm by [Ig]l,. If z is the counting moasure on {4, &, ..., tm}
each ¢ € Ly([0, m), u) enn of course bo identified with the vector

VB U, .., Pllm)) & O,

It is clear that we may considor the process Sy as a random olemont
in Ly([0, 7), ). This has the advantage that weak convergenco is rolatively
easy to establish Lut a drawback is that the cluss of continuous functionuls
is rather restricted; in particular the supremum cannot be considered. For
weak convergence of the Sy sen Reetion 2. Dne to the continuity of [FH
we ean consider the statistics

ISnIE = § Stindun, o (L
0.7)

which seam rather natural for testing the hy pothesis (1.3) that is to be rojected
It turns out, however, that the statistics in (1.11) rro not

for largo values.
This doficiency can bo remedied if

cven asymptotically distripution free.
wo take ss our statistic the square of tho norm of u suituble rendom traus-
formation of the process Sy. For details and cortain invarinnco pruperties
of the statistics wo refor to Section 3. The asymplolic theory is restricled lo

the nnll hypothesis.

The random transformation slluded to in the preceding paragraph is
derived from o consistent cstimator of & certain covariance function. In
Section 4 wo prove the existence of such consistent ostimators. Section §
is devoted to a discussion of & possible extension to tho case of contiguous
alternatives. Also a variution of tho results, rolated to the study of the
processes in the complete separable metric space D([0, #1)) (of bounded right
continuous functions having only discontinuities of the first kind) ondowed
with tho Skorokhod etrie is briefly considered.
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2. WEAK CONVERGENOR OF THE PROOESSES
Under the null hypothesis the r.v.’s X,; have a common continuous
univariate df. that will bo denoted by Fy. Lot us observo that becauss of
(1.6) wo have

E(JIFUX ) =0 ¥ ([0, m, e (20)
THe O) = oVl JIFUX ), JIFUX 1)
= B(J(FUX o)) JFi( X 1)) ¥ 8, L (0, m). o (22)

These quantities sre indecd well defined duo to the square integrability of
J and independent of . The mean value funotion in {2.1) is apparently
indepondont of F; the covarianco function in (2.2) does in general depend on
F, although its *‘diagonal elements” Xr(f,t) are again independont of F.
The function g is i and bounded by o® on [0, 7).

The covariance function Lp will be identified with the covariance operator
on Ly([0, n), p), denoted by the same symbol and defined in tho usual way by

Tr(g) = (af-) Te(, Hptidp(t), ¢ € Ly((0, m), ). - (29)

Tho operator is symmetrio, semi-definite positivo and nuclear. It follows
that tho cigonvaluos cen bo written a8 & soquence

Ara D Apa > . L O, with .,i Apx = treco ()
-l
= wI , Lelt, dpult) = o*u((0, m) 6 (0, o), . (2.4)

s00 (1.6). By convention the number of limes an eigenvalue is repealed in 1his
sequence s equal lo ils multiplicity whick is finile for each non zero eigenvalue.
By @pa, p,e, .., wo donoto o corfesponding comploto orthonormal soquenco
of oigonfunctions. Lot Z, Z;, ... bo iid. standerd normal r.v.s. By Gp
wo shell understend the Grussian random cloment in Ly([0, 1), ) dofined by

Gp = ):layfz,qxp,.. .. (2.8)
Pt

This Geussian procoss has mean valuo function 0 and coveriance function -
For the meterinl in this paragraph sco o.g. Grenander (1063, Chapter 6).
Tho law of a random element will bo donoted by o£(-) and weak convergence

by —.
»



NONPARAMETRIO MULTIVARIATE ANALYSIS 57

In the special case where x is the counting measure on {t, 4, ..., tm}
tho operator $ip in (2.3) can bo obvioualy idontified with the m x m-matrix
{£rti,1y)}. In this case £f(@p) virtually reduces to an m-variate normal
distribution with 0 mean value veotor and covariance matrix {$p(ti, &4)}-

Theorem 2.1 : Let (1.3) and (1.5)-(1.7) be satisfied. Then we have
LIS 3 L(GF), as N —co, on Ly[0, m), p), ... (2.8)

where Sy s given by (1.2) and (1.8), and Gp is the Gaussian random element

in (2.5).

Proof :  Throughout this proof we shall liberally borrow from H4jek
aud Sidak (1967, Sections V.1.1-V.1.6). Let us write

Sn(t) = Su(®)+pnlt), Le[0,m) o (27)

where

N ~
Snlt) = T 6, JIFUX ), pnlt) = Swit)—Sult). o (28)
n=1

It is clear that the process Sy is slso a random element in Ly[0, 7), ). The
assortion (2.8) is immediate from

,L"(S'},,);; LGp), as N>, . (2.9)
Ejpl) >0,  as N>co. . (210

To prove (2.9) we shall first show that, for arbirtary ¢ & (0, m), p),

LU< Sp >4) 3 LI< G >4), 88 N > oo (2.11)

Lot us note that
<Fwg>u= So Yo wih¥, = o JEAE D0l
A=l .

It is immediate that the Y, are iid. and, from (1.8) and Fubini’s theorem,
that
E(Y,) =0, var(Y,) = < $slg) ¢ >4
Al-8
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Sinve tho ¢, satisfy the Noother-condition (see (1.7)) it follows that < EN, ¢>,
converges in distribution to a normal law with mean 0 and variance

N
(Z6) <5018 >0 = <55l0). 6>

Because < Gp,¢ >, har the same normal distribution, assortion (2.11)
follows.

It is a matter of straightforward computation to see that for any
@, ¥ € Ly([0, m), p), wo have

cov (< Sw g > < S ¥ >0 = B(< Sy, b >0 < 8w >)
= < E£p($) ¥ >0

with £, as in {2.2). Using the complote orthonormal sequonce ¢, gy, ...
defined below (2.4) we have

EQE < S pou >o $pal?) = Edra | 0, a8 ko, o (212)
becauso of (2.4). This settles the tightness of the soquence (g,,,), seo Gronander
(1963, Section 6.2). Combining (2.11) snd (2.12) we arrive ut (2.9).

For the proof of (2.10) lot us observe that
E(p}(t)) = ey, independent of L [0, m), and ey— 0, 28 N 500, ... (2.13)
It follows at once {rom (2.13) and Fubini’s theorem that
Bllpyl?) = [0, m))ey— 0, as N >0,
whioh proves (2.10).
3. WEAK OONVRBGENOE OF THE STATISTICS

As an immediate corollary to Theorem 2.1 we obtain the limiting distribu-
tion of the statistics in (1.11).

Theorem 3.1 :  Under the ussumptions of Theorem 2.1 we have

Uil £ ( £ Ars 7). m N> oo e 3D
w k=1
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Proof : Theorem 2.1 entails that
LASHIE)Z L UG

= -0( " t;En ,\}Jf,zb ¢p_k":) = £( ;, /\p.gZZ), as N =00,

k=1

by the orthonormality of the ¢p i

We see that the limiting distribution of [|Syl|? depends on the eigen-
values Ap,;, Ap,,, ... that in turn dopend on ¥, 8o that the statistics are not
oven asymptotically distribution frec. By estimating a reasonable number
of oigonvalues we csn get an insight into this limiting distribution. Lot us
note in particular that

lim B(ISNIE = B Apx = %[0, m), . (39
Now k=1

which is independent of the underlying d.f. F, see (2.4). Further examina-
tion can be patterned on invostigations of the wWmiting d.f.’s of Cramér-von
Mises type statistics, which are similar to the one appearing on the right in
(3.1); for a survey see e.g. Durbin (1971).

If we also estimate some eigenfunctions of fp wo may arrive at a sequonce
of statistics, basod on random transforms of Sy, that is asymptoticany dis-
tribution freo. In order to facilitate the discussion we shall impose the
tochnical condition on F that

the eigenvalues of $ip salisfy Ap.y > Ap,, > ... > Ap,e > 0,
for some re 7, implying that the mulliplicilies of these
eigenvalues equal 1, .. (3.3)

according to the convention below (2.4). Lst us also assume that there exists

a soquence of random covariance functions {fn) on [0, m)® such that
P({ im g |Eaie0—gels 0 fdutmdu =0 )} =1 .. @)
N e (0,m)2

Lot A, > v > ... | Obo the eigenvalues of £, N6 7. Conditions (3.3)
and (3.4) entail that

P ({y“_'?., v s—Aps| = o}) =Li=012.,r .. (36
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and that for each N a completo sequonce of orthonormal eigenfunations
JN‘,.JM,. ... of Ly can be selocted in such » way that

P({,im- Bua-drat,=0}) licvan L oae
By x} wo denote the chi-aquared distribution with r degrees of froedom.

Theorem 3.2 : Let condition {3.3) and (3.4) he satisfied in addition to the

assumplions of Theorem 2.1 Then we have

r
.c( EX}{,(Sn.$N.\f)_*ﬁ. as N oy Lo (a7
E=1 w

Proof : Tt follows from (3.5) and (3.6) that for N sullicientiy hrge

Sor r
|: A < Svdva 5:—;]*‘;.': < Sw.gre >}
1 -

2

AN

r
DR P I PN Y S -
k-
. 1
2L Ao Svedn x>t o Swdra ™t
k=1

,
< iz RALERSEN

v
2 E idwa—gral,] - 0p(l). an X o @3
ka1
bocauso SN2 = Op(1). ax N oo
Furthermore wo have by Theorem 2.1 (ax N — c0)
r T 9
2 (5 0 < Swgra>) s 25 25 < Or.gra >?)
k=) w k=1
(3.9)

=& (élz:) =

The theorem follows at once from (3.8} and (3.9).
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By way of an example let us first considor the special case where . i8
the counting measuring on ¢ <y < ... < lm. Condition (3.4) is now
equivalent to

P({im $otet) =St }) =1 ¥ideli 2 um), .. 310
Fow
and the assertion of Theorem 3.2 reduces to
r m 2
(2 %[ T swudrat)]’) 5 pas N oo . (31))
k-1 =l w

The statistics are invariant under all trenslations but not in general undor
rotations. If the ¢ are equidistant (in the semse, that f,—1, =ty—t, = ...
= lm—tm_y = m—Im+{), however, the tests are invariant under tho finite
group of rotations over anglos that aro multiples of z/m. In the presont
bivariate case some of the tests in Puri and Sen (1971) are based on statistics
a3 in (3.11) with ¢, = 0 and £, = .

Let us noxt choose . to bo oqual to Lebesgue measeure on [0, 7). Then
condition (3.4) becomes

"R .
i 2 - —
P({ Jim - FF L fale )= giels, ]2 dsd = 0 }=1 . e
The assertion of the theorem can now be written as

.e( k"z_‘.‘ A [ ;} Sn(t)dn,x(t)dl ]2) ;.;(3. as N>, .. (3.13)

These statistics are invariant under translations as well as rotations; see,
howoever, Section 5.

4. ESTIMATION OF THE COVARIANOE FUNOTION

For each {€[0,7) let Fy, bo the univariate empirical d.£. of the X,

in (1.1), and for each s,¢¢(0, 7) lot Fy,q be the bivariste empirical d.f. of
the (Xp.s, X ). The bivariate ompirical d.f. of tho original random vectors

X, is denoted by Fy. Throughout this section we let

_ N N .
Ons, 1) = ;g.}f J(N—-H FNuru)) J ( ¥ FN.!’”)) AF g anls, v),

(4.1)
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for (s, 1) [0, m)®. Observe that fy,m (1, v) 6 equal to the fraction of vectors
X, in the closed convex sot bounded by the line through =e, perpendicular
to e, and the line through ve, perpendicular to ;.

Under the assumption that the underlying d.f.
F has a density with respect to Lebesgue measure on 722, e (42)

and that the score function
J 18 condinuous on (0, 1), with | J(8)| < c[s(Y—s)]2,

8¢(0, 1), for some c €(0, c0) and @ €0, §), o (43)

it fouows from Groeneboom, LePage and Ruymgaart (1976) that in the
present notation

p({ im0y, = Lele,1) }) =1 % eneome o (44)

This result is the starting point for the construction of a sequence of estimators

Lp that satisfy (3.4).

For this construction let k(N)e 7t be such that %(N) T oo, as ¥ 50,
and let Py = {0 =ty vy .o Ny = 1), Eng <IN,y Dbe partitions of
[0, m) with Py C Py, and ) Py = Pdense in [0, 7). It is convenient to
write

R(N, 1, 5) = [tvg, b ) X (B g, b g )
We shall define

- kN1 k(Ny—y
Luls,t) = E‘ ’21 Lrow 148, 8wty g, by, 9),  for (s, 1) e[0, m2

(4.5)
Theorem 4.1 : Let conditions (4.2) and (4.3) be satisfied. Then the i‘..v
in (4.5) have the property
p({ lim ﬁN=tPon[o,n)v}) =1 o 148
N9 o

they satisfy, moreover, condition (3.4).
Proof : Let us first introduco the sets
Qu¢ = {the samples {X,,) and (X} are both wnited
for all N, and $x(s, 0 — £isla, 1), as N - co}.
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Then we have

P(Qy) = 1, where Qg = () Qup .o (37)
3l

in particular because of (4.4) and the countability of .
To prove (4.6) we shall first compare f:,- with
kNy-y k-1
Try(s, )= % ‘2 1R 418, 1) Bpltn tag), Jor (6,0 60, m2 ... (4.8)
iml -1
Because ir is continuous and bounded on [0, 7)? it is uniformiy continuous,

so that

sup | Xp w8 8)— Lp(s,t)| >0, as N> 0. e (4.0)
3,46(0, )

Hence it suffices to prove that
Jim | o 0= L 5o, 0] = 0% (5,0 e[0, m2, ... (410)
N

and for any w6 Qp,

in viow of (4.7). This is, } , i diate b of the properties of
the sot Q, and since (4.10) nced only be satisfied for s, ¢ ¢ #, due to the way
in which %p, y has been defined.

To prove that (3.4) is satisfied let us note that by the Schwarz inequality

sup | $xla, )] = sup | fwisd)]
8,te(0,m) 8t 0

N N
< sup | XM, 8)| = N-' I PBj(N+1)on Q. ... (411)
sep =l

It is in fact only in the last equality that the restriction to Qy plays & role;
the equality holds becauso f;u (s, 8) is independent of s ¢ # for such w64,

1t follows that on (2, all the functions |§x| sre bounded by s finite constant
(J is square integrablo, see (4.3)), and (3.4) follows from (4.6) and an applica-
tion of the Lebesgue dominated convergenco theorem.
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5. Disoussion
Throughout the firat part of this section let us foous on the choice x = A,
where A denotes Lebesgue measure on [0,7). Let us also rostrict oursolves
to a disoussion of the statistics ||Sx|f.

Although we have seen in Section 3 that these statistics have certain
invariance properties, they are casily seen to be not invariant under unequal
scale changos of the coordinates. Moreover, if a largo value of S is assumed
on an interval (7_y, 7)) of relatively short length, such large values may
not have much effect on the statistics |Sn[|f. This phenomenon might reduce
the power of the derived tests under cortain alternatives.

These deficiencies can be remedied if we consider the processes 7'y, defined
by
Ty(8) = Sy o pyuts), se[0,m), .. (8D

where ¢n i [0,7) - [0, 7) is the random time change, given by
onl(8) = Ty for se[(i—1)n/M, /M), o (6.2)

and £=1,2,..., M. These processos are easily seen to be also invariant
under unoqusl scale changes of the coordinates, and the various values aro
assumed on intervals of equal longth. Hence in some cases more poworful
tests could be probably derived from the statistics

Tl = or Ti(o)ds, . (6)
and some of its modifications.

Although it is very likely that the ¢n will converge in the supromum
norm to a continuous funotion ¢p (directly relatod to the inverse of the d.f.
of the random variablo }m+arctan (—7y)/(,—E,)), this is not sufficiont
to derive woak convergence of 7' on L,([0,n), A} from that of Sw (seo
Billingsloy (1968, Section 17). The resson is that the topology in Ly([0, ), A)
i8 too coarso.

Due to the properties of Sy (see also the convention below (1.9)) we may
83 well consider Sy as & random olement in the complete sepnmble momo
space D([0, 7)) of bounded right conti funoti having d i




NONPARAMBTRIO MULTIVARIATE ANALYSIS 68

of the first kind only, endowed with the Skorokhod metric. We conjecture
that weak convergenoce of Sy in D{[0, n)) wouid entail that of Twin Di([0, ).
Woak convergonce of the finite dimensional distributions is contained in
(2.11) by choosing for z the appropriate counting measure. The tightness,
however, constitutes a problem since the usual condition on the moments of
| Sn(s)— Snft)] does not seem to work. An indioation that tightness may
not even be satisfied con be found in the ciroumstance that the number of
jumps of the sample paths is of order N*, whereas the height of these jumps
is in general of the usual order N-4.

It is not the purpose of this paper to go into any efficiency considerations.
Nevertheless, the feeling seems to be justified that by taking into account
a largor number of directions (and not only o.g. 0 and }) the power will be
improved for a rather considerable class of alternatives. Asymptotic ner-
mality of [SylZ for arbitrary F, (including fized as woll as local altematives)
follows, under more stringent conditions on J, from results in Ruymgasrt
and van Zuijlen (1978) in the case where  is an arbitrary counting measure.
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