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Mutual Information-Based Supervised Attribute
Clustering for Microarray Sample Classification
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Abstract—Microarray technology is one of the important bictechnological means that allows to record the expression levels of
thousands of genes simultaneously within a number of different samples. An important application of microaray gene expression data
in functional genomics is to classify samples according to their gene expression profiles. Among the large amount of genes presented
in gene expression data, only a small fraction of them is effective for performing a certain diagnostic test. Hence, one of the major tasks
with the: gene expression data is to find groups of coregulated genes whose collective expression is strongly associated with the
sample categories or response vanables. In this regard, a new supervised attribute clustering algorthm is proposed to find such groups
of genes. It directly incorporates the information of sample categornes into the attribute clustering process. A new guantitative measure,
based on mutual information, is introduced that incoporates the information of sample categories to measure the similarity between
attributes. The proposed supernvised attribute clustering algorthm is based on measuring the similarity between attibutes using the
new quantitative measure, whenby redundancy among the attributes is removed. The clusters ame then refined incrementally based on
sample categories. The performance of the proposed algorithm is compared with that of existing supervised and unsupervised gene
clustering and gene selection algorthms based on the class separability index and the predictive accuracy of naive bayes classifier, K-
nearest neighbor rule, and support vector machine on three cancer and two arthritis microarray data sets. The biological significance of
the generated clusters is interpreted using the gene ontology. An important finding is that the proposed supervised attribute clustering

algorithm is shown to be effective for identifying biologically significant gene clusters with excellent predictive capability.

Index Terms—DMicroarray analysis, attibute clusterng, gene selection, mutual information, classification.

1 INTRODUCTION

ECENT advancement and wide use of high-throughput
technology are producing an explosion in using gene
expression phenotype for identification and classification in
a variety of diagnostic areas. An important application of
gene expression data in functional genomics is to cla:i:-:if}r
samples according to their gene expression profiles [1], [2].
A microarray gene expression data set can be represented
by an expression table, where each row corresponds to one
particular gene, each column to a sample, and each entry of
the matrix is the measured expression level of a particular
gene in a sample, respectively [1], [2]. However, for most
gene expression data, the number of training samples is still
very small compared to the large number of genes involved
in the experiments. When the number of genes is signifi-
cantly greater than the number of samples, it is possible to
find biologically relevant correlations of gene behavior with
the sample categories or response variables [3].

However, among the large amount of genes, only a small
fraction is effective for performing a certain task. Also, a
small subset of genes is desirable in developing gene
expre.*-:si{m—based diagnostic tools for delivering precise,
reliable, and interpretable results [4]. With the gene
selection results, the cost of biological experiment and
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decision can be greatly reduced by analyzing only the
marker genes. Hence, identifying a reduced set of most
relevant genes is the goal of gene selection. The small
number of training samples and a large number of genes
make gene selection a more relevant and challenging
problem in gene expression-based dassification. As this is
a feature selection problem [5], [6], [7], the clustering
method can be used, which partitions the given gene set
into subgroups, each of which should be as homogeneous
as possible [8], [9], [10], [11], [12].

When applied to gene expression data analysis, the
conventional clustering methods such as bayesian cluster-
ing [13], [14], hierarchical clustering [15], [16], k-means
algorithm [17], self-organizing map [16], [18], and principal
component analysis [19], [20] group a subset of genes that
are interdependent or correlated with each other. In other
words, genes or attributes in a cluster are more correlated
with each other, whereas genes in different clusters are less
correlated [10], [11], [12]. The attribute clustering is able to
reduce the search dimension of a classification algorithm
and constructs the model using a tightly correlated subset
of genes rather than using the entire gene space. After
clustering genes, a reduced set of genes can be selected for
further analysis [10], [11], [12].

However, all these algorithms group genes according to
unsupervised similarity measures computed from the gene
expressions, without using any information about the
sample categories or response variables. The information
of response variables should be incorporated in attribute
clustering to find groups of coregulated genes with strong
association to the sample categories [21]. In this back-
ground, some supervised attribute clustering algorithms
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such as supervised gene clustering [21], gene shaving [22],
tree harvesting [23], and partial least square procedure [24]
have been proposed to reveal groups of coregulated genes
with strong association to the sample categories. The
supervised attribute clustering is defined as the grouping
of genes or attributes, controlled by the information of
sample categories or response variables.

In general, the quality of generated clusters is always
relative to a certain criterion. Different criteria may lead to
different clustering results. However, every criterion tries to
measure the similarity among the subset of genes presented
in a cluster. While tree harvesting [23] uses an unsupervised
similarity measure to group a set of coregulated genes,
other supervised algorithms such as supervised gene
clustering [21], gene shaving [22], and partial least square
procedure [24] do not use any similarity measure to cluster
genes; rather use different predictive scores such as
Wilcoxon test [21] and Cox model score test [22] to measure
gene<lass relevance. Moreover, all these measures depend
on the actual values of the training data. Hence, they may
be sensitive to noise or outlier of the data set [10], [17], [25],
[26]. On the other hand, as mutual information [25], [26],
[27], [28] depends only on the probability distribution of a
random variable, it has been widely used for computing
both gene-class relevance and gene-gene redundancy or
similarity [11], [25], [26], [27], [28], [29], [30].

In this regard, a new supervised attribute clustering
algorithm is proposed to find coregulated dusters of genes
whose collective expression i strongly associated with the
sample categories or class labels. A new quantitative
measure, based on mutual information, is introduced to
compute the similarity between attributes. The proposed
measure incorporates the information of sample categories
while measuring the similarity between attributes. In effect,
it helps to identify functional groups of genes that are of
special interest in sample classification. The proposed
supervised attribute clustering method uses this measure
to reduce the redundancy among genes. [t involves
partitioning of the original gene set into some distinct
subsets or clusters so that the genes within a cluster are
highly coregulated with strong association to the sample
categories while those in different clusters are as dissimilar
as possible. A single gene from each cluster having the
highest gene-class relevance value is first selected as the
initial representative of that duster. The representative of
each custer is then modified by averaging the initial
representative with other genes of that cluster whose
collective expression is strongly associated with the sample
categories. Finally, the modified representative of each
cluster is selected to constitute the resulting reduced feature
set. In effect, the proposed supervised attribute clustering
algorithm yields biologically significant gene clusters,
whose coherent average expression levels allow perfect
discrimination of sample categories. Also, the proposed
algorithm avoids the noise sensitivity problem of existing
supervised gene dustering algorithms. The performance of
the proposed algorithm, along with a comparison with
existing algorithms is studied both qualitatively and
quantitatively on three cancer and two arthritis data sets
using the class separability index and the predictive
accuracy of naive bayes (NB) classifier, K-nearest neighbor
rule (K-NN), and support vector machine.
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The structure of the rest of this paper is as follows:
Section 2 briefly introduces existing supervised and un-
supervised gene clustering algorithms, along with different
existing criteria used for computing the relevance and
redundancy. The proposed supervised attribute clustering
algorithm is presented in Section 3. A few case studiesand a
comparison with existing algorithms are presented in
Section 4. Concluding remarks are given in Section 5.

2 CLusTERING OF GENE ExXPRESSION DaTa

In this secion, some existing supervised and unsupervised
gene clustering algorithms are reported, along with
different widely used criteria for computing gene-class
relevance and gene-gene redundancy.

2.1 Gene Clustering

Clustering s one of the major tasks in gene expression data
analysis. To find groups of coregulated genes from
microarray data, different unsupervised clustering techni-
ques such as hierarchical clustering [15], [16], k-means
algorithm [17], self-organizing map [16], [18], and principal
component analysis [19], [20] have been widely used. The
hierarchical clustering identifies sets of correlated genes
with similar behavior across the samples, but yields
thousands of clusters in a tree-like struchure, which makes
the identification of functional groups very difficult [15],
[16]. In contrast, self-organizing map [16], [18] and &means
algorithm [17] require a prespecified number and an initial
spatial structure of clusters, but this may be hard to come
up with in real problems. However, these algorithms
usually fail to reveal functional groups of genes that are
of special interest in sample classification as the genes are
clustered by similarity only, without using any information
about the sample categories or class labels [21].

To reveal groups of coregulated genes with strong
association to the sample categories, different supervised
attribute clustering algorithms have been proposed recently
[21], [22], [23], [24]. One notable work in this field
encompasses tree harvesting [23], a two step method which
consists first of generating numerous candidate groups by
unsupervised hierarchical clustering. Then, the average
expression pmfile of each cluster is considered as a
potential input variable for a response model and the few
gene groups that contain the most useful information for
tissue discrimination are identified. Only this second step
makes the dustering supervised, as the selection process
relies on external information about the tissue types.
Another supervised dustering method, called gene shaving,
identifies subsets of genes with coherent expression
patterns and large variation across the conditions [22].
The technique can be unsupervised, where the genes and
samples are treated as unlabeled, or partially or fully
supervised by using known properties of the genes or
samples to assist in finding meaningful groupings.

An interesting supervised clustering appmach that
directly incorporates the response variables in the grouping
process is the partial least squares procedure [24], which in
a supervised manner constructs weighted linear combina-
tions of genes that have maximal covariance with the
outcome. However, it has the drawback that the fitted
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components involve all (usually thousands of) genes, which
makes them very difficult to interpret. Moreover, partial
least squares for every component yields a linear combina-
tion of gene expressions which completely lacks the
biological interpretation of having a cluster of genes acting
similarly in the same pathway.

A direct approach to combine gene selection, clustering
and supervision in one single step is reported in [21]. A
similar single step approach is also pursued by Jornsten and
Yu [31]. The supervised attribute clustering algorithm
proposed in [21] is a combination of gene selection for
cluster membership and formation of a new predictor by
possible sign flipping and averaging the gene expressions
within a duster. The cluster membership is determined
with a forward and backward searching technique that
optimizes the Wilcoxon test-based predictive score and
margin criteria defined in [21], which both involve the
supervised response variables from the data. However, as
both predictive score and margin criteria depend on the
actual gene expression values, they are very much sensitive
to noise or outlier of the data set.

2.2 Criteria for Gene Selection and Clustering

The t-test, F-test [25], [32], information gain, mutual
information [25], [26], normalized mutual information [29],
and fdnformation [33] are typically used to measure the
relevance of a gene with respect to the class labels or sample
categories and the same or a different metric such as mutual
information, the [, distance, euclidean distance, and
Pearson's correlation coefficient [10], [25], [26] is employed
to calculate the similarity or redundancy between genes.

To measure the relevance of a gene, the t-test is widely
used, assuming that there are two classes of sa mples in a gene
expression data set. When there are multiple classes of
samples, the i-test is typically computed for one class versus
all theother classes. Formultiple classes of samples, an F-test
between a geneand the class label can be used to calculate the
relevance score of that gene. The F-test reduces to the t-test
for two class problem with the relation F =¢*. In [21], the
Wilcoxon's test statistic is used to compute the relevance of a
gene assuming two classes of samples in microarray data set.

On the other hand, the euclidean distance measures the
difference in the individual magnitudes of each gene.
However, the genes regarded as similar by the euclidean
distance may be very dissimilar in terms of their shapes.
Similarly, the euclidean distance between two genes having
an identical shape may be large if they differ from each
other by a large scaling factor. But, the overall shapes of
genes are of the primary interest for gene expression data
[10]. Hence, the euclidean distance may not be able to yield
a good proximity measurement of genes [10]. The Pearson's
correlation coefficient considers each gene as a random
variable and measures the similarity between two genes by
calculating the linear relationship between distributions of
two corresponding random variables. An empirical study
has shown that Pearson's correlation coefficient is not
robust to outliers and it may assign high similarity score to
a pair of dissimilar genes [17].

However, as the t-test, F-test, Wilcoxon's test, euclidean
distance, and Pearson’s correlation depend on the actual
gene expression values of microarray data, they are very
much sensitive to noise or outlier of the data set. On the

other hand, as the information theoretic measure such as
entropy, mutual information, and f-information depends
only on the probability distribution of a random variable
rather than on its actual values, it is more effective to
evaluate the geneclass relevance as well as gene-gene
redundancy [25], [26], [33].

In prindple, the mutual information is used to quantify
the information shared by two objects. If two independent
objects do not share much information, the mutual
information value between them is small. While two highly
correlated objects will demonstrate a high mutual informa-
tion value [34]. The objects can be the class label and the
genes. The necessity for a gene to be an independent and
informative can, therefore, be determined by the shared
information between the gene and the rest as well as the
shared information between the gene and class label [25],
[26]. 1f a gene has expression values randomly or uniformly
distributed in different classes, its mutual information with
these classes is zero. If a gene is strongly differentially
expressed for different classes, it should have large mutual
information. Thus, the mutual information can be used as a
measure of relevance of genes. Similarly, the mutual
information may be used to measure the level of similarity
or redundancy between two genes.

3 ProprPoseD CLUSTERING ALGORITHM

In this section, a new supervised attribute clustering
algorithm is presented for grouping coregulated genes with
strong association to the class labels. It is based on a
supervised similarity measure that follows next.

3.1 Supervised Similarity Measure

In real data analysis, one of the important issues is
computing both relevance and redundancy of attributes
by discovering dependencies among them. Intuitively, a set
of attributes () depends totally on a set of attributes 1P, if all
attribute values from @@ are uniquely determined by values
of attributes from IP. If there exists a functional dependency
between values of @) and P, then @)} depends totally on IP.

Let W= {x,....%,....7,} i5 the set of n samples
and & ={4,...., o P iz A.l denotes the set of
m attributes of a given data set T ={wgli=1...., m,j=
n}, where w; € ® i the measured value of the
attribute .4, in the sample =, Let ID = {Dy...., 1, D.}
represents the set of class labels or sample categories of
n samples. Define Ry (ID) as the relevance of the attribute
A; with respect to the class label ID while 5(.4;..4,) as the
redundancy or similarity between two attributes .4, and
A;. The mutual information can be used to calculate both
relevance and redundancy among attributes.

The relevance Ry (ID) of the attribute .4; with respect to
the class label ID using mutual information can be
calculated as follows:

R (D) = I{4,.ID), (1)

where (.4, D) represents the mutual information between
attribute .4; and class label ID that is given by

Here, H(.4;) and H{4;|ID) represent the entropy of
attribute .4; and the conditional entropy of 4, given class



130 IEEE THANSACTIONS ON KNOWLEDGE AMD DATA ENGINEERING, WOL. 24, NO. 1,

label I, respectively. The entropy H(.4;) is known to be a
measure of the amount of uncertainty about the attribute 4;
while H{.4,|ID) is the amount of uncertainty left in .4; when
knowing ID. Hence, the quantity [{.4;,1D) is the reduction in
the uncertainty of the attribute .4; by the knowledge of dass
label ID. In other words, it represents the amount of
information that the class label ID contains about the
attribute A;.

Definition 1. For continuous random variables such as gene
expression values, the entropy, conditional entropy, and
mutual information can be defined as follows:

H(Y) = - [ ply) log ply)dy, (3)

HY12) = - [ plo.2) ogplulz)dye: (4)
py.z)

Iy, 2 2 2 5

(V.2)= [[w[u z)1 o8 (s dydz (5)

where ply) & the true probability density function of the
attribute o variable ¥, while ply|z) and ply, z) represent the
conditional probability density function of ¥ given the variable
Z and the joint probability density function of ¥ and Z,
respectively, Usually, the Gaussian function s used to
approximate the true density function [35],

The redundancy or similarly between two attributes 4;
and .4; in terms of mutual information, can also be
calculated as follows:

S(A:, "d‘_IJ — I':Ah 'AJJ x (6G)

However, the term 504, .4;) does not incorporate the
information of sample categories or class labels ID while
measuring the similarity and it is considered as unsuper-
vised similarity measure. Hence, a new quantitative
measure, called supervised similarity measure is defined
here based on mutual information for measuring the
similarity between two random variables. It incorporates
the information of sample categories or class labels while
measuring the similarity between attributes.

Definition 2. The significance of an attribute A, with respect to
another attribute A; can be defined as follows:

A (Aj) = Ryq 43 (D) — Ry (D). (7)

That is, the significance of an attribute 4; is the change in
dependency when the attribute .4, is removed from the set
{A:. A/}, The higher the change in dependency, the more
significant the attribute 4; is. If the significance is 0, then
the attribute .4; is dispensable.

Based on the concept of significance of an attribute, the
supervised similarity measure between two attributes is
defined next.

Definition 3. The supervised similarity between two attributes
A and A; s defined as follows:

1

+ w2’

V(AL A) = (8)
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(9)

3 5 {”A.-':AJ'J T4, (AJ}
where & = .,

a2

that is, k = Ryq 4} (D) — {H'“*-":]DJ - H"*-':]DJ}_ (10)

2

Hence, the supervised similarity measure (4.4,
directly takes into account the information of sample
categories or class labels ID while computing the similarity
between two attributes 4; and A;. If attributes 4; and 4;
are completely correlated with respect to class labels 1D,
then & =0 and so ¥(.4:,.4;) is 1. If .4; and .4; are totally
uncorrelated, ¥(.4;..4;) — (. Hence, ¥(.A4;,.4;) can be used
as a measure of supervised similarity between two
attributes .4; and .4 ;. The following properties can be stated
about the measure:

. 0= ¥4 4)<1
2. ¥(A:.A4;) = 1if and only if A; and .4; are completely

correlated.

3. %A A) —0if and only if 4 and A; are totally
uncorrelated.

4. ¥A. A = (AL A (symmetric).

The supervised similarity between two attributes 4; and
A, in terms of entropy is given by

1
‘I-"I:,A,,A_,J = [1 + [H{AIAJ“DJ - E{H{AllAJJ

291
(11)
Combining (6} and (11), the term ¥(A4,..4;) can be

expressed as follows:
V(AL A) = [1 + [H(A.-.AJ-J + H{AA|D)

1 . i
& {H{A) + H(A)) + HA|ID) + H{AJ-UD;}] ] )
(12)

Hence, the supervised similarity measure ¥(.4;..4;) not
only considers the information of sample categories or class
labels ID, it also takes into account the unsupervised
similarity between two attributes 5(.4;, A;).

3.2 Supervised Attribute Clustering Algorithm

The proposed supervised attribute custering algorithm
relies on mainly two factors, namely, determining the
relevance of each attribute and growing the duster around
each relevant attribute incrementally by ad ding one attribute
after the other. One of the important property of the
proposed clustering approach is that the cluster is augmen-
ted by the attributes those satisfy following two conditions:

1. Suit best into the current cluster in terms of a
supervised similarity measure defined above.

2. Improve the differential expression of the current
cluster most, according to the relevance of the cluster
represfmtative or prototype.
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Coarse Cluster 'V

= Finer Cluster V

&: represents radius of cluster

Fig. 1. Representation of a supervised attribute cluster.

The growth of a cluster is repeated until the cluster
stabilizes, and then the proposed clustering algorithm starts
to generate a new duster.

Let Ry (ID) represents the relevance of attribute 4; € &
with respect toclass label ID. The relevance uses information
about the class labels and is thus a criterion for supervised
clustering. The proposed algorithm starts with a single
attribute .4; that has the highest relevance value with respect
to class labels. Aninitial cluster W; is formed by selecting the
set of attributes {.4;} from the whole set & considering the
attribute .4, as the representative of cluster W, where

V= {'A_I'l‘l'”:"dl""d_l'.:l b 5""4‘_]' F A € }E} (13)

Hence, the cluster W represents the set of attributes of &
those have the supervised similarity values with the
attribute .4; greater than a predefined threshold value &
The cluster W, is the coarse cluster corresponding to the
attribute A;, while the threshold & is termed as the radius of
cluster W; (Fig. 1).

After forming the initial coarse cluster W, the cluster
representative is refined incrementally. By sean:hing among
the attributes of cluster W;, the current cluster representa-
tive is merged and averaged with one single attribute such
that the augmented cluster representative A increases the
relevance value. The merging process is repeated until the
relevance value can no longer be improved. Instead of
averaging all attributes of W, the augmented attribute A is
computed by considering a subset of attributes W, C V;
those increase the relevance value of duster representative
A:. The set of attributes W, represents the finer cluster of the
attribute .4; (Fig. 1). While the generation of coarse cluster
reduces the redundancy among attributes of the set &, that
of finer duster increases the relevance with respect to dass
labels. After generating the augmented cluster representa-
tive A; from the finer cluster W, the process is repeated to
find more clusters and augmented cluster representatives
by discarding the set of attributes W; from the whole set 4.

To compute the set W; corresponding to the attribute 4;,
one may consider the conventional unsupervised similarity
measure 5(.4;, .4;) as defined in (6). However, as it does not
take into account the information of sample categories or
class labels, the attributes are clustered by similarity only,
without using any information about the sample categories.
In effect, it fails to reveal functional groups of attributes that
are of spedal interest in classification. On the other hand, as
the supervised similarity measure ¥(.4;, 4;) defined in (8)

incorporates the class information directly while computing
the similarity between two attributes 4; and .4, it can
identify functional groups present in the attribute set.

The main steps of the proposed supervised attribute
clustering a]gurithm are reported next.

» Let  represents the set of attributes of the original
data set, while % and % are the set of actual and
augmented attributes, respectively, selected by the
proposed attribute clustering algorithm.

o Let W, is the coarse duster assodated with the
attribute .4; and WV, the finer cluster of .4 (Fig. 1),
represents the set of attributes of W, those are
merged and averaged with the attribute 4, to
generate the augmented cluster representative ,d_.,-.

1. Initialize © — & = {4, ..., B V. PR Al
5 o— ﬂ, and E T ‘l‘]..

2. Calculate the relevance value R (D) of each
attribute A, £ €.

3. Repeat the following nine steps (steps 4 to 12) until
" = {) or desired number of atiributes are selected.

4. Select attribute A; from @ as the representative of
cluster W; that has highest relevance value. In effect,
"EII' € 5, v’dl' EW, AieW,and © =T lI'- A

5. Generate coarse cluster W; from the set of existing
attributes of €' satisfying the following condition:

Wi = {A WA, A) = 6.4 # A €T}

6. Initialize A; — A,.

7. Repeat following four steps (steps 8 to 11) for each
attribute 4; € W

8. Compute two augmented cluster representatives 1:|r3.-r
averaging .4; and its complement with the attributes
of W, as follows:

s 1
i s : ; 14
WL+ 1 _.h.:\"_"qi-'-"q-l (14)
— 1

Avs =TT o A A (19)

AeW,

9. The augmented cluster representative j,-ﬂ- after
averaging .A; or its complement with W; is as follows:

A,
'F{f+_|' it { &

A otherwise.

if R (D) > R (D),
AL S (16)

10. The augmented cluster representative A of cluster
Wi is Ay if Ry (ID) =R (D), otherwise A,
remains unchanged.

11. Select attribute .4; or its complement as a member of
the finer cluster W, of attribute 4; if Ry (D)=
Ri(D).

12. Ineffect, 4; e S and © =T W,
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13. Sort th_e set of augmented cluster representatives
% = {4} according to their relevance value R g (ID)
with respect to the class labels ID.
14. Stop.
3.3 Fundamental Property

From the above discussions, the following properties
corresponding ko each cluster W, can be derived:

A, A =&VA e W
R, (ID) = Ry (D):¥A; e W,
Ry, (D) >Ry (D): VA, € Wi
Ry {]DJ{HAI[IDJ A € W, |\ W
W "‘I"i." =0.¥i# k

The property 1 says that if an attribute A; € W =
¥(A:, A;) = & Thatis, the supervised similarity between the
al'l'ri]:rule A; of coarse cluster W; and the initial cluster
representative .4; is greater than a predefined threshold
value & The property 2 establishes the fact that if A, €
Wi = R (ID) = Ry, (ID), that is, the relevance of the cluster
representative 4, is the maximum among that of all
attributes of the cluster W,. The properties 3 and 4 are of
great importance in increasing the relevance of augmented
cluster representative with respect to the class labels and
reducing the redundancy among the attribute set. The
property 3 says that if 4, e W, = R; (D) =R (D). It
means an attribute A bel{mg*i to the finer cluster W if and
only if it increases the relevance value of the augmented
cluster representative A.. On the other hand, property 4
says that the attributes those belong to only coarse cluster
Wi, not to finer cluster "ﬁ-’.-, are not re.*-:p{m:-:ible to increase
the relevance of augmented cluster representative. Hence,
the set of attributes W, increases the relevance value of the
attribute .4; as well as reduces the redundancy of the whole
set, while the set of attributes ¥, |, W, is only responsible for
reducing the redundancy. Finally, property 5 says that if an
attribute 4; € W; = A, & W, Wk # i, that is, the attribute 4,
is contained in W; only. Hence, the proposed algorithm
generates nonoverlapping attribute clusters.

'-..h-h'-udl-'l'—'

3.4 Computational Complexity

The computation of the relevance of m attributes is carried
out in step 2 of the proposed algorithm, which has
O(m) time complexity. The duster generation steps, that
is steps 4 to 12 are executed ¢ times to generate ¢ clusters
and corresponding augmented cluster representatives.
There are three loops in the cluster generation steps, which
are executed m, m, and m; times, respectively, where m; <
m represents the cardinality of the cluster W;. Each iteration
of the loops takes only a constant amount of time. Hence,
the complexity to generate ¢ clusters using steps 4 to 12 is
Olefm +m;)). The computing time of O(c{m +m;)) be-
comes {cm) for any value of m;. Finally, step 13 performs
the sorting of ¢ augmented cluster representatives accord-
ing to their relevance values, which has a computational
complexity of O(c*). Hence, the overall time complexity of
the proposed supervised clustering algorithm is O(m +
cm + c?), that is, O(om + ). However, as the number of
desired clusters ¢ is constant and sufficientl}r small
compared to the total number of attributes m, the proposed
clustering algorithm has an overall O(m) time complexity.
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4 EXPERIMENTAL RESULTS

The performance of the proposed supervised attribute
clustering algorithm is extensively compared with that of
some existing supervised and unsupervised gene ch.lstering
and gene selection algorithms, namely, ACA {attribute
clustering algorithm) [11], MBBC (model-based bayesian
clustering) [14], SGCA (supervised gene clustering algo-
rithm) [21], G5 (gene shaving) [22], mRMR (minimum
redundancy-maximum relevance framework) [25], and the
method proposed by Golub et al [1]. To analyze the
performance of different algorithms, the experimentation is
done on five microarray gene expression data sets. The
major metrics for evaluating the performance of different
algorithms are the class separability index [5] and classifica-
tion accuracy of naive bayes classifier [9], K-nearest
neighbor rule [9], and support vector machine [36]. To
compute the classification accuracy, the leave-one-out cross-
validation is perfurmed on each gene expression data set.
The proposed algorithm is implemented in C language
and run in LINUX environment having machine configura-
tion Pentium IV, 3.2 GHz, 1 MB cache, and 1 GB RAM. The
kernel-based method is used to approximate probability
density functions by combining basis functions [35]. It
consists in superposing a Gaussian function to each point of
the feature. The final probability density function approx-
imation is obtained by taking the envelope of all the basis
functions superposed at each point. The gnu sdentific
library is used to implement the kernel-based approach.

4.1 Gene Expression Data Sets

In this paper, publicly available three cancer and two
arthritis data sets are used. Since binary classification is a
typical and fundamental issue in diagnostic and prognostic
prediction of cancer and arthritis, different methods are
compared using the following five binary-class data sets.

1. Breast Cancer. The breast cancer data set contains
expression levels of 7,129 genes in 49 breast tumor
samples [37]. The samples are classified according to
their estrogen receptor (ER) status: 25 samples are ER
positive while the other 24 samples are ER negative.

2. Leukemin. Itis an affymetrix high-density oligonucleo-
tide array that contains 7,070 genes and 72 samples
from two classes of leukemia [1]: 47 acute lympho-
blastic leukemia and 25 acute myeloid leukemia.

1. Colom Cancer. The colon cancer data set contains
expression levels of 2,000 genes and 62 samples from
two classes[38]: 40 tumor and 22 normal colon tissues.

4. Rheumatoid Arthritis versus Osteoarthritis. The RAQA

data set consists of gene expression profiles of thirty

patients: 21 with RA and 9 with OA [39]. The Cy5-
labeled experimental cDNA and the Cy3 labeled
common reference sample were pooled and hybri-
dized to the lymphochips containing ~18, 000 cDNA
spots representing genes of relevance in immunol-

ogy [39].

Rhewmatoid Arthritis versus Healthy Controls, The

RAHC data set consists of gene expression profil-

ing of peripheral blood cells from 32 patients with

RA, 3 patients with probable RA, and 15 age and

LA
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Fig. 2. Variation of class separability index for different values of threshold £. (a) Colon. (b) RAHC. (c) RAOA.

sex matched healthy controls performed on micro-
arrays with a complexity of ~26 K unique genes
43 K elements) [40].

4.2 Class Prediction Methods

Following three classifiers are used to evaluate the
performance of different methods with respect to five
microarray data sets.

4.2.1 Support Vector Machine

The support vector machine (SVM) [36] is a relatively new
and promising classification method. Itis a margin classifier
that draws an optimal hyperplane in the feature vector
space; this defines a boundary that maximizes the margin
between data samples in different classes, therefore leading
to good generalization properties. A key factor in the SVM
is to use kernels to construct nonlinear decision buunda.r}r.
In the present work, linear kernels are used. The source
code of the 5VM is downloaded from http:/ /www.csie.ntu.
edutw/ ~cjlin/libsvm.

4.2.2 K-Nearest Neighbor Rule

The K-nearest neighbor rule [9] is used for evaluating the
effectiveness of the reduced feature set for classification. It
classifies samples based on closest training samples in the
feature space. A sample is classified by a majority vote of its
K-neighbors, with the sample being assigned to the cass
most common among its K-nearest neighbors. The value of
K, chosen for the K-NN, is the square root of number of
samples in fraining set.

4.2.3 Naive Bayes Classifier

The naive bayes classifier [9] is one of the oldest classifiers. It
is obtained by using the Bayes rule and assuming features or
variables are independent of each other given its class. For
the jth sample =; with m gene expression levels {u;....,
Wigy xmus ;| for the m genes, the posterior probability that

x; belongs to dass ¢ is

m

plelz;) o [T plusle), (17)
i=1

where p{uy;|e) are conditional tables or conditional density
estimated from training examples.

4.3 Optimum Value of Threshold

The threshold ¢ in (13) plays an important role to form the
initial coarse cluster. It controls the degree of similarity
among the attributes of a cluster. In effect, it has a direct
influence on the performance of the proposed supervised
attribute clustering algorithm. If # increases, the number of
attributes in a cluster decreases, but the similarity among
them with respect to sample categories increases. On the
other hand, the similarity among the attributes of a cluster
decreases with the decrease in the value of &

To find out the optimum value of & the class separability
index [5] is used. The dass separability index & of a data set
is defined as & = trace{ Vi'Viy), where Vi is the within
class scatter matrix and Vg is the between dass scatter
matrix, defined as follows:

L5 [

Wiy = Z o E{(X — ) (X - jj._l-_]j.l;_“_l-]- = Z L,

=1

1=l
o

Z it

=1

P
Vo= (pj—i)(pi—ji) . and i=E{X}=

=1

where ' is the number of classes, 7; is a priori probability
that a pattern belongs to class ¢;, X is a feature vector, [ is
the sample mean vector for the entire data points, j¢; and E;
represent the sample mean and covariance matrix of class
cj, respectively, and FE{-} is the expectation operator. A
lower value of & ensures that classes are well separated by
their scatter means.

For five microarray data sets, the value of & is varied from
0.80 to 1.0 and the class separability index is computed only
for best cluster (¢ = 1). Fig. 2 represents the variation of class
separability index with respect to different values of thresh-
old & on colon cancer, RAHC, and RAOA data sets. From the
results reported in Fig,. 2, it is seen that as the threshold &
increases, the class separability index decreases and attains
its minimum value at a particular value of £ After that the
class separability index increases with the increase in the
value of & Hence, the optimum wvalue of & for each
microarray data set is obtained using the following relation:

&Ipl i = ACE |1]IU1{'IS} . {18_]
fal

The optimum values of & obtained using (18) are 0.97,
0.96, 0.93, 0.98, and 0.96 for breast, leukemia, colon, RAHC,
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TABLE 1
Perfarmance of Proposed Algorithm an Three Cancer Microarray Data Sets for Different Values of Threshold 4

Dhata Walue | Measure Dhilterent Values of Threshold 4
Sets of o OFF [OR [0 [0 [0 [0 09T [0S [0 [0 T 055 (09 [ 057 [ 095 [ 099
SVM [ 919 | 595 | UI& | 878 | ULE | B37 | 91K | 939 [ U0 | 857 | U188 | 959 | 100 | 939 | &7.A
1 K-m | @R | 959 [ 100 | Y59 | G980 | Y55 | 9RO | U39 | SH0 | 9RO | 980 | 959 | 100 | 959 | 914
M LA T I T o0 e T e G e U VA (A A T A L A (e I - X R
SVM [ 918 | LE [ URT | 598 | OLE | 918 [ 930 | 100 [ 980 | 9RO | B0 | 980 | 100 | 939 | 578
Greast 2 R-NN | 959 | 959 [ 039 [ 950 | 100 | 959 | 959 | 100 | 980 | 959 | 980 | 100 | 100 | 959 | R9.8
ME B T U (T (A A e U ATV e UV o I €T A VR (E R - X T
Vo T [ 918 [ 918 | 918 [ 918 [ 918 [ 9539 [ 100 [ 980 | 100 | 100 [ 100 | 100 [ 959 | 939
3 K- Tl | 939 | 939 | 9509 | 539 [ 935 | 959 [ 100 | 100 | 100 | 100 [ 100 | 1) | 959 | 939
NB | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 980 | 918
A 931 | 9L7 | 944 | 92 | 972 | 958 | 944 | 855 | 972 | 958 | 972 | 986 | 972 | 986 | 903
1 BN 956 | 956 | 950 | 9F2 | 9B | 938 | 958 | S50 | 100 | 100 | SFZ [ 100 | 98a [ 980 | 931
ME L T I o v 1 e o T T I (0 B
SV AR MA [ ¥e [ SEa [ OF2 [ 908 [ IO0 [ 986 | 980 | %66 [ 100 | I0O0 [ 1000 | 944
Leukernia 2 BN 972 | BF2 | 980 | 9B | 9Be | 9F2 | 958 | 100 | 100 | 986 | 984 [ 100 | 100 [ 100 | 944
ME T [0 |10 | 100 | iod [ 100 | ) [ 100 | 100 ) 100 | 100 | 100 | 10D | 100 | 986
VA WI 2191 [%e [ %5a [ IOF | IO | IO0 [ TO0 | 950 [ IOF | T00 [ I00 | 100 | #3.1
3 k- 972 [ F2 | 100 | B85 | 9Re | 986 | 100 | 100 | 985 | 984 [ 100 | 100 | 100 | 100 [ 944
ME 100 | 100 | 100 | 100 | S&5& [ 100 | 100 [ 100 | 100 0 I0D | 100 | 100 | 100 | 100 | 986
SVA | 9RH [ GRS | 10 | I00 | IO0 | YR | 9H4 | SRS | 10 | 9H4 -l T TRV T N TR
1 E-WNA | o8 | osd [ 100 | 100 | SR8 | 968 | 9B4 | S84 | 100 984 | 952 | 100 | 96 | 968 | 903
MG 10| 100 | 100 | 100 | 00 | 100 | 100 | 100 [ 100 100 | 100 | 100 | 100 | 984 | 919
SVM | 9Rd | 983 | 100 | 100 | 984 | Y52 | 9R4 | 100 | 10U | 10 | 953 | 100 | 983 | 983 | 903
Calon 2 E-NN | 954 | 954 | 984 | 9n4 | 100 [ 952 [ 984 | 100 | 100 | 100 | TOR | 100 | 9e8 | 984 | 903
MG 1) | o100 | o100 | A | 100 [ 100 | 100 | 1000 ) 100 0 100 | 100 | 100 | %54 | 954 | 956
SV T [ 100 | 100 | 100 | 100 | 100 | 984 | To0 | 100 | 100 | 100 | 100 | 968 | 968 | Bar
3 E-NN [ do0 | oo [ 100 | 100 | o100 | 100 | 984 | 100 | 100 100 | 100 | 100 | Ses | 954 | 919
B 100 | 1 | 100 ) 100 ) 100 | 100 | 100 | 100 ) 100 0 dod | 10 [ 100 | %68 | 9eE | 918

TABLE 2
Performance of Proposed Algarithm on Two Arthritis Microarray Data Sets for Different Values of Threshald &

- Data | Value | Measure " Different Values of Threshold &
Sels of & U85 [ 86 [ O87 | D85 [ 050 [ 050 [ 007 [ 092 [ 093 [ 05 [ 095 [ 09 [ 097 | 098 [ 059
SVAT EI0 | FAA | B0 | BT | 7O | FAA | B0 | BZ0T | 9000 [ 820 | J00 | &40 | §e0 | 100 | 940
1 K- 96,0 | 940 [ 920 | 980 [ 940 | 920 | 960 [ %60 | 940 [ 2.0 | 900 [ 950 | 980 | 100 | 940
ME 100 | 100 | 100 | 100 | 100 | 100 [ 100 | 100 | 100 | 100 | 100 | 100 | 100 [ 100 | 94.0
SVA FHOOT a0 [ 7RO | 780 [ 7RO [ 980 | 7RO [ 950 [ 100 | 850 | 530 [ WL [ 100 | T | 9510
RAHC 2 K-BM | 960 | S0 | 940 | L0 | 9D | SR | 920 [ SE0 | 100 | Sl | 920 | 980 | 100 | 100 | 4EQ
ME 100 | 100 | 100 | 100 | 100 | 100 [ 100 | 100 | 100 | 100 | 100 | 100 | 100 [ 100 | 960
SVA SEO [ BEd [ 980 [ 980 [ TO0 [ 9840 [ 980 [ S50 [ 100 [ I00 7 &0 [ 100 [ 100 | I | 950
3 K-MM | 9a0 | BE0 | 9H0 | YA [ 90 | SAd | 1000 | S84 T | 100 920 | 100 | o0 | g | 1
ME 100 | 100 | 100 | 100 [ 100 | 100 [ 100 | 100 | 100 | 00 | 100 | 100 | 100 [ 100 | 960
SV 733 | 733 | 733 | 767 | BOD | SO0 | 7B | BLO | 767 | vA | 967 | 100 | 700 | 100 | 933
1 o i o7 | 967 | 100 | 933 [ 933 | 10O | 957 [ 900 | 957 | L0O | 967 | 10D | 833 | 100 | 97
ME 100 | 100 | 100 | 1t | 100 | 100 [ 100 ] 100 | 100 | 100 100 | 100 | 100 [ 100 | 967
SVA TiF | TAT | TAA | FeF | B0 | EO | FRF | B0 | SO0 | B0 9AT | A00 | 9eF [ 100 | URE
BEACA 2 K- 967 | 967 [ 933 | 935 | 933 | 900 | 100 | &7 | 900 10D | 100 [ IOD | 100 | 10D | 933
ME 100 | 100 | 100 | 100 | 100 | 100 [ 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 967
SUAT FILO | 7T | &R | 733 | 7h7 | 7h7 | Ba3 | B33 | GO0 | 733 | 967 | 10 | 967 | 1 | 967
3 KA Q0.7 | 967 | 933 | 904 [ 933 | 500 | 900 [ S0 100 | %33 ) 100 | 10D | 100 [ I | 435
ME 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 [ 100 | 90.0

and RAOA data sets, respectively. Finally, Tables 1 and 2
present the performance of the proposed clustering algo-
rithm for different values of & The results and subsequent
discussions are presented with respect to the classification
accuracy of the SVM, K-NN rule, and NB dassifier. The
results are reported for three best clusters (¢ = 3) obtained
using the proposed attribute dustering method. From the
results reported in Tables 1 and 2, it is also seen that the
proposed supervised attribute clustering algorithm achieves
its best performance at &= f,pimum. irrespective of the
classifiers used. However, the performance of the proposed
method at & = (.98 is same as that at &0, for RAOA data
set with respect to the classification accuracy of three
classifiers.

4.4 Qualitative Analysis of Supervised Clusters

For three cancer and two arthritis data sets, the best clusters
generated by the proposed algorithm are analyzed using the
Eisen plot. In Eisen plot [41], the expression value of a gene in
a particular sample is represented by coloring the corre-
sponding cell of the data matrix with a color similar to the
original color of its spot on the microarray. The shades of red
color represent higher expression level, the shades of green
color represent lower expression level and the colors toward
black represent absence of differential expression values.

In Figs. 3a, 3b, 3c and Figs. 4a, 4b, 4c, the results of best
cluster obtained using the proposed dustering algorithm are
reported for colon cancer and RAHC datasets considering the
values of §as0.93 and 0.98, respectively. Figs. 3a and 4a show
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Fig. 3. Results obtained using proposed algorithm for colon cancer data set considering & = (.43, (a) Initial expression value. (b) Eisen plot.

(c) Augmented expression value.

the expression values of the actual genes or attributes of the
bestcluster over the samples for two data sets. Figs. 3b and 4b
represent the Eisen plot of corresponding finer cluster with
actual gene expression values, while Figs. 3c and 4c show the
expression values ofthe augmented cluster representatives of
the best cluster for two data sets. In Fig. 5, the expression
values of the actual and augmented cluster representatives of
the best cluster are presented for breast, leukemia, and RAOA
data sets considering & as0.97,0.96, and (.96, respectively. All
the results reported in Figs. 3, 4, and 5 establish the fact that
the proposed supervised attribute clustering algurithm can
idenl‘if}r groups of coregulated genes with strong association
to the sample categories or class labels.

4.5 Importance of Supervised Similarity Measure
The supervised similarity measure based on mutual
information, defined in (8), takes into account the informa-
tion of sample categories or class labels while computing
the similarity between two genes, It also incorporates the
unsupervised similarity measure among genes. On the
other hand, mutual information-based conventional simi-
larity measure of (6) does not consider the class labels or
sample categories.

In order to establish the importance of supervised
similarity measure over existing conventional unsupervised
similarity measure, the extensive experimentation is carried
out on three cancer and two arthritis data sets. Finally, the

T T
. ey oz
1y Eo§
it i
I| ] L]
] I
Iu._-h_. AoKggles.] S
e L e AR ._\. ;
h Hh i
[ gy
1 sl |
g A i
a [ 0y
I |
- | | |
& |
4 |
|
4 L NI
. 1
Sanplaz
Y

bl

best results obtained using unsupervised similarity mea-
sure are compared with that of proposed supervised
measure in Table 3 with respect to the class separability
index and dassification accuracy of the SVM, K-NN rule,
and NB classifier. From all the results reported in Table 3, it
is seen that the performance of the proposed supervised
similarity measure is better compared to that of the
unsupervised measure for all microarray data sets. That
is, the proposed supervised similarity measure can i:u:lefnl'if].-r
functional groups of genes present in the microarray, while
the unsupervised similarity fails to reveal that. However,
the unsupervised similarity measure I:lerf{:-rn'u-: better than
supervised similarity with respect to the class :ieparabilit],r
index for ¢ = 2 in case of leukemia and RAHC data, and for
¢ =3 in case of leukemia, RAHC, and RAOA data.

4.6 Importance of Augmented Genes

Each coarse cluster represents the set of genes or attributes
those have the supervised similarity values with the initial
cluster representative greater than a predeﬁned threshold
value & In fact, the relevance of the initial cluster representa-
tive is greater than that of other genes of that duster. After
f{}rming the initial coarse cluster, the cduster representative is
refined incrementally in the proposed algorithm. By search-
ing among the genes of coarse cluster, the current cluster
representative is merged and averaged with one single gene
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Fig. 4. Results obtained using proposed algorithm for RAHC data set considering & = (.94, (a) Initial expression value. (b) Eisen plot. (c) Augmented

expression value.
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Fig. 5. Results obtained for breast cancer, leukemia, and RAQA data considering & = 0.597, 0.96, and 0.96, respectively. (a) Initial representative of
breast. (b) Initial representative of leukemia. (c) Initial representative of RADA. (d) Augmented representative of breast. (@) Augmented

representative of leukemia. (f) Augmented representative of RAOA.

such that the augmented cluster representative increases the
relevance value. The merging process is repeated until the
relevance value can no longer be improved.

In order to establish the importance of augmented cluster
representative over initial cluster representative, that is,
actual gene, extensive experiments are carried out on five
microarray data sets. Table 4 reports the comparative
performance of actual and augmented genes of different
clusters. Results are reported for c= 3 considering super-
vised similarity measure. The perf{}rrna.ru:e of actual and
augmented genes s compared with respect to the dass
separability index and classification accuracy of the SVM,

K-MNN rule, and NB classifier. All the results reported in
Table 4 establish the fact that the proposed supervised
attribute dustering algorithm performs significantly better
in case of augmented gene than the actual gene. Only in
case of leukemia data for ¢ = 2 and 3, and RAOA data for
e =3, the actual gene performs better than augmented one
with respect to the class separability index.

4.7 Comparison between Coarse and Finer Clusters
In the proposed attribute clustering algorithm, the aug-
mented cluster representative is computed by averaging the
genes of finer cluster, rather than all genes of corresponding
coarse cluster. That is, instead of averaging all genes of

TABLE 3
Comparative Performance Analysis of Supervised and Unsupervised Similarity Measures for Different Data Sets
Walue | Meazure Breasl Leukemia Colon RAHC RACA

of o proposcd | enisting [ propesed | ewisting [ proposed | easting | proposed | edsting | proposed T exdsting

SVM (i GEE] L 0,3 100 5.7 11 XN 1 0.7

1 K-NN 1o B7.8 1an axl 100 871 100 100 1 6.7

NB 100 L] Ul ELX 10 887 10 1 1 10

5 [L53 108 {149 1.0 (.52 1.33 (.70 0.72 (.70 1.14

1EVMT 1D F 100 R 1 R 0T ~1nd 1 953

2 K-MMN T H3.7 101 94.4 10x1 855 10x1 10x1 10Xl 9313

NB T4 HU S 1o UG 101 K87 101 10X 10X 1)

C5 .50 Lea .95 0.77 084 L56 0.87 0.6 0.ag L.og

SVM [HK aLE 1o 93.1 10K 871 10¢]1 8.0 11X 933

3 E-NN e EIE: 100 244 100 &7 100 S8.0 100 6.7

NE 1 239 100 LK 10 887 10 9B.0 1 6.7

s L] 151 1.12 {180 0497 1.54 (L8 076 1.96 107
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TABLE 4
Comparative Performance Analysis of Augmented and Actual Genes for Different Data Sets

Value | Measure Breast Leukemia Colon RAHC EAQA
of o sugmented | actual [ augmented  actual | avemented T acdwal T augmented | actual | augmented | actual
SV Lo B3.7 L a3 Lo R 100 R0 Lo 93.3
1 K- [HIK R 1 31 10 R 100 B0 100 S0
T T4 B 181 3.4 14 ek 1061 il 10 933
5 53 L.1la 044 L0 (82 153 0,70 4.38 (.71 0,57
SV T [ RIH] 94.4 T R 101 720 D EEY
2 E-NN Lo %15 100 244 Lo 539 100 84.0 Lo &n.7
NE a0 B35 10 LY Lo BT 100 R0 100 807
C5 (251 1.50 058 0.77 .54 1.80 (.57 Fan (.59 1.07
SV oo B7A 1 931 Lo AN 100 4.0 Lo 935
A K-MM 1 LR %1 924 1y B5.5 10 B LY SO0
“H 10 Y14 10x1 ELT 1o GER] 104 24.0 14 &3.3
C5 RaL 187 Li2 080 57 231 Q.58 403 186 127

coarse cluster, the augmented gene is computed b}r
considering a subset of genes of coarse cluster, which is
termed as the finer cluster, those increase the relevance
value of initial cluster representative.

Table 5 presents the comparative performance of means
computed from coarse cluster and that from finer cluster.
The comparison is reported for c = 3 with respect to the class
separability index and classification accuracy of the VM, K-
NN rule, and NB dassifier. The results reported in Table 5
establish the fact that the augmented cluster representative
obtained from finer cluster performs significantly better
than that of coarse cluster, irrespective of the data sets and
quantitative indices used. The attributes those present in the
coarse cluster, but not in the corresponding finer cluster, are
not responsible to increase the relevance value with respect
to the class labels or response variables. Also, they degrade
the quality of solution. Hence, the augmented cluster
representatives should be computed by considering only
genes of finer clusters, not all genes of coarse clusters.

4.8 Comparative Performance Analysis

Finally, Table 6 compares the best performance of the
proposed algorithm with that of some existing algorithms
such as ACA [11], MBBC [14], SGCA [21], GS [22], and
mRMR [25]. The results are presented based on the best
classification accuracy of the SVM, K-NN rule, and NB
classifier for five microarray data sets. The values of & are
considered as 097, 0.96, 093, 098, and 0.96 for breast
cancer, leukemia, colon cancer, FAHC, and RAOA data

sets, respectively. From the results reported in Table 6, it is
seen that the proposed supervised gene dustering algo-
rithm generates a set of clusters having highest classifica-
tion accuracy of the SVM, K-INN rule, and NB classifier, and
lowest class :-.w:fi:lara1:|nilit].-r index values for all the cases. The
better performance of the proposed clustering algorithm is
achieved due to the fact that it can identify functional
groups of genes present in the microarray data sets more
accurately than the existing algorithms. However, with
respect to the class separability index, mRMR [25] for e = 3
and G5 [22] for ¢ =1 perform better than the proposed
method in case of leukemia data and for RAQA data at
c=23, both ACA [11] and SGCA [21] attain lower class
separability index values than the proposed algorithm. In
this regard, it should be noted that the method proposed by
Golub et. al [1] achieves maximum accuracy of 98.0, 98.6,
919, 980, and 96.7 percent for breast, leukemia, colon,
RAHC, and RAOA data sets, respectively.

4.9 Biological Significance

To interpret the biological significance of the generated
clusters, the Gene Ontology (GO} Term Finder is used [42].
It finds the most significantly enriched GO terms associated
with the genes belonging to a cluster. The GO project aims
to build tree structures, controlled vocabularies, also called
ontologies, that describe gene products in terms of their
associated biulugica] processes (BIY), molecular functions
(MF), or cellular components (CC). The GO Term Finder
determines whether any GO term annotates a :-:pa:iﬁed list

TABLE 5
Comparative Performance Analysis of Means of Coarse and Finer Clusters for Different Data Sets
Value | Measuce Breast Lok Colon BEAHC FAOA
of fimer | coarse | Aner | coarse  Aner [ coarse | Aner | coarse | Fner | coarse
SV i 630 a6 .7 o i S o0 1o i
1 K-S 100 [ 100 a7 1o [ 1) 4.4 100 65,7
MG a0 633 10 Tin o 1.3 B[] [uR1] 1o GTORY!
s .53 538 049 754 .82 58,47 0,70 11.14 070 | 11953
SN 100 SR 100 722 N ed.h 100 7 10 0.4
2 K- a0 851 a0 Gl o0 1.3 1 5a.0 10 Ge.7
ME 100 el 10 £ 1 i /1.3 100 féa, 11 Tim HiL
5 (.50 TA3 (.95 1 .94 Fe2 (.57 1274 09g | 11523
SV 100 a2 a0 Tin 1o 4.5 1 B2.0 1o 00
3 K= ™ 100 | 100 7.3 Y 713 Tl 4z 1M} 66,7
ME 100 674 100 a0 100 6l.3 100 62.0 100 80.0
L] MR e X lEd 1.12 el (.7 T2.45 (1LHs 12.62 1.5 138,51
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TABLE 6

Comparative Performance Analysis of Different Methods for Five Microarray Data Sels

Data Methods [/ =] [ n=1 r=
Sets Algorithms [ WM [ E-RN T NB 7 C5 T 5VM [ EENN | NE [ SVM [ K-NN | NB [
Proposed Tac loc mo T os3 oL 100 | 050 100 10 1o | el
ACA 1.6 1. fln | 207 BlLG B3.7 Bln [ 292 b 837 837 [ 103
Breasl MBBC 7HG THG ga.7 | 14 .6 816 80,7 | LLI# 1.6 1.6 4958 | 0494
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of genes at a frequency greater than that would be expected
by chance, calculating the assodated p-value by using the
hypergeometric distribution and the Bonferroni multiple-
hypothesis correction [42]. The closer the p-value is to zero,
the more significant the particular GO term associated with
the group of genes is, that is, the less likely the observed
annotation of the particular GO term to a group of genes
occurs by chance. On the other hand, the False Discovery
Rate (FDR) is a multiple-hypothesis testing error measure
indicating the expected proportion of false positives among
the set of significant results. The FDR is particularly useful
in the analysis of high-throughput data such as microarray
gene expression.

Hence, the GO Term Finder is used to determine the
statistical significance of the association of a particular GO

term with the genes of best cluster produced by the
proposed algorithm. The GO Term Finder is used to
compute both p-value and FDR (percent) for all the GO
terms from the BP, MF, and CC ontology and the most
significant term, that is, the one with the lowest p-value, is
chosen to represent the set of genes of best cluster. Table 7
presents the significant shared GO terms for the BP, along
with the p-values and FDR for the BP, MF, and CC on
different data sets. The results corresponding to the best
clusters of some existing algorithms such as G5 [22] and
SGCA [21] are also provided on same data sets for the sake
of comparison. The "+ in Table 7 represents that no
significant shared term is found considering p-value cutoft
as 0.05. From the results reported in Table 7, it is seen that
the best cluster generated by the proposed algorithm can be

TABLE 7
Significant Shared GO Terms for Genes in Best Clusters Obtained by Different Methods
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Proposed Paositive regulation of bialogical process 3.7E-027 0 &, 9E-024 1 2, 1E-020 0
Broast GE . 5 : LFE-03 4 o b
SGC‘_}'\ Ly L Ll L L L L
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SGECA i " N 4.8E-03 0 ® B
Froposed Cellular process LAE-MZ 0 S0E-0T6H 1] ZOE-IY 0
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assigned to the GO biological processes with high reliability
in terms of p-value and FDR. That is, the proposed
algorithm describes accurately the known classification,
the one given by the GO, and thus reliable for extracting
new biological insights.

5 CONCLUSION

The main contribution of this paper is threefold, namely,

1. Defining a new quantitative measure, based on

mutual information, to calculate the similarity

between two genes, which incorporates the informa-
tion of sample categories or class labels.

Development of a new supervised attribute cluster-

ing algorithm to find coregulated clusters of genes

whose collective expression is strongly associated
with the sample categories.

3. Comparing the performance of the proposed meth-
od and some existing methods using the class
separability index and predictive accuracy of sup-
port vector machine, K-nearest neighbor rule, and
naive bayes classifier.

]

For five microarray data, significantly better results are
found for the proposed method compared to existing
methods, irrespective of the classifiers used. All the results
reported in this paper demonstrate the feasibility and
effectiveness of the proposed method. It is capable of
identifying coregulated clusters of genes whose average
expression is strongly associated with the sample cate-
gories. The identified gene clusters may contribute to
revealing underlying class structures, providing a useful
tool for the exploratory analysis of biological data.
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