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Abstract—Among the huge number of attributes or features
present in real-life data sets, only a small fraction of them are
effective to represent the data set accurately. Prior to analysis
of the data set, selecting or extracting relevant and significant
features is an important preprocessing step used for pattern recog-
nition, data mining, and machine learning. In this regard, a novel
dimensionality reduction method, based on fuzzy-rough sets, that
simultaneously selects attributes and extracts features using the
concept of feature significance is presented. The method is hased
on maximizing both the relevance and significance of the reduced
feature set, whereby redundancy therein is removed. This paper
also presents classical and neighborhood rough sets for computing
the relevance and significance of the feature set and compares their
performances with that of fuzzy-rough sets based on the predictive
accuracy of nearest neighbor rule, support vector machine, and
decision tree. An important finding is that the proposed dimen-
sionality reduction method based on fuzzy-rough sets is shown to
he more effective for generating a relevant and significant feature
subset. The effectiveness of the proposed fuzzy-rough-set-hased
dimensionality reduction method, along with a comparison with
existing attribute selection and feature extraction methods, is
demonstrated on real-life data sets.

Index Terms—Attribute selection, classification, feature extrac-
tion, pattern recognition, rough sets.

I. INTRODUCTION

IMENSIONALITY reduction is a process of selecting a

map by which a sample in an me-dimensional measure-
ment space is transformed into an object in a d-dimensional
feature space, where d < m [1]. The main objectives of this
Lask are o retain or generate the optimum salent charctenstics
necessary for the pattem mecogmition process and o meduce
the dimensionality of the measurement space so that effective
and easily computable algorithms can be devised for efficient
clustering or classification [2].

The problem of dimensionality reduction has two aspects,
namely, formulation of a suitable critedon to evaluate the good-
ness of a feature set and search of the optimal setin terms of the
criterion [3]. In general, those features are considered o have
optimal saliencies for which mterclass (ntraclass) distances
are maximized (minimized). The critedon of a good featre is
that it should be unchanging with any other possible variation
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within a class while emphasizing differences that are important
in discriminating between patterns of different classes [4].

The major mathematical measures so far devised for the
estimation of feature quality are mostly statistical in nature
and can be broadly classified into two categories, namely,
feature selection in the measurement space and feature selection
in a transformed space. The techniques in the fisst calegory
generally reduce the dimensionality of the measurement space
by discarding redundant or least information-carrying features
[5]. On the other hand, those in the second category utilize all
the information contained in the measurement space Lo oblain a
new transfonmed space, thereby mapping a higher dimensional
pattern 1o a lower dimensional one. This is referred to as feature
extraction [1], [2].

An optimal feature subset selected or extracted by a dimen-
stonality reduction method is always relative 1o a certain feature
evaluation criterion. In general, different criteria may lead to
different optimal feature subsets. However, every criterion tries
to measure the discriminating ability of a feature or a subset of
features 1o distinguish different class labels. One of the main
problems in real-life data analysis is uncertainty. Some of the
sources of this uncertainty include meompleteness and vague-
ness inclass definitions. In this background, the possibility con-
cept intrmoduced by rough set theory [6] has gained populanty in
modelng and propagating uncertainty. It has been apphied 1o
reasoning with uncertainty, fuzzy rule extraction and modeling,
classification, clustering, and feature selection [6], [7].

Rough sets can be used to find the most informative feature
subset of original atributes from a given data set with dis-
cretized attribute values [8]-[10]. However, there are usually
real-valued data and fuzzy mformation i meal-wordd applica-
tions. In rough sets, the real-valued features are divided into
several discrete partitions, and the dependence or the quality of
approximation of a feature is caleulated. The inherent error that
exists in the discretization process is of major concem in the
computation of the dependence of real-valued features. Com-
bining fuzey and mough sets provides an important direction in
reasoning with uncertainty for real-valued data [11]-[13]. They
are complementary i some aspects. The generalized theones
of rough—fuzey computing have been applied successfully o
feature selection of realvalued data sets [7], [11], [14-[18].
Also, neighborhood rough sets [19] [20] are found 10 be
suitable for both numerical and categorical data sets. In [19],
Hu et al. described a neighborhood-rough-set-based feature
sebection algonithm.

On the other hand, a feature extraction lechnique such as
principal component analysis (PCA), hinear discriminant anal-
ysis, and independent component analysis [2] genermtes a new



sel of features using a mapping function that takes some linear
or nonlinear combination of original features. While PCA uses
a linear onthogonal transformation o project a sample space
containing possibly correlated variables into a different space
with uncorrelated variables, independent component analysis
decomposes a multidimensional feature vector into statistically
independent components to reveal the hidden factors from a set
of random variables [2].

In general, a feature extraction technique provides a feature
subset ncher than that obtained using a feature selecton algo-
rithm with a higher cost [21]. Hence, it is very difficult to decide
whether to select a feature from the original measurement space
or Lo extract & new feature by transforming the existing features
for a given data set. A dimensionality reduction algorithm that
can simultaneously select and extract features depending upon
the criteria needs to be formulated, integrating the merits of
both feature selection and extraction lechnigues.

In this megard, a novel dimensionality reducton algonthm
is proposed based on fuzzy—rough sets, which simultaneously
selects and extracts features from a given data set. Using the
concept of feature significance, the feature set in each iteration
is partitioned into three subsets, namely, insignificant, dispens-
able, and significant feature sets. The insignificant feature set is
discarded from the current feature set, while the significant fea-
ture set is used to select or extract a feature in the next iteration.
Depending on the quality of features present in the dispensable
set of the current iteration, a new feature 15 extracted or an
existing feature is selected from the dispensable set for a
reduced feature set. In effect, the final reduced feature set may
simultaneously contain some original features of the measure-
ment space and extracted new features of the trans formed space,
which are both relevant and significant. The effectiveness of the
proposed fuzzy—rough dimensionality reduction method, along
with a comparison with other methods, is demonstrated on a set
of real-life data using the predictive accuracy of nearest neigh-
bor rule, support vector machine (SVM), and decision tree.

The structure of the rest of this paper is as follows. Section 11
briefly introduces the basic notions of rough sets, neighborhood
rough sets, and fuzzy—rough sets. The proposed fuzzy—rough-
set-based simultaneous attribute selection and featwre extrac-
tion method is described in Section 111, A few case studies and
a comparison with other methods are presented in Section IV,
Concluding remarks are given in Section V.

II. DIFFERENT ROUGH SET MODELS

In this section, the basic notions in the theories of rough sets,
neighborhood rough sets, and fuzzy—rough sets are reponed.

A. Rough Sets

The theory of rough sets begins with the notion of an
approximation space, which is a pair {II. &), where U =
S U TR .J:,,} 15 a nonempty sel, also called the universe
of discourse, and & is a family of atiributes, also called knowl-
edge in the universe. V' is the value domain of A&, and f is an
information function f : 1 x & — V. An approximation space
is also called an information system [6].
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Any subset P of knowledge A defines an equivalence or
indiscernibility relation IND{F) on 1

IND{P) = {{z;, z;) e U Ul¥a € P, flzi,a) = flx;.a)}.

If (z;, z;) = IND{F), then z; and = are indiscernible by the
attributes from P. The partition of 17 generated by IND({[F) is
denoted as

U/IND(P) = {[z:]p : z: € U} (1)

where E:J:J; 15 the equivalence class contaming x;. The ele-
ments in [z;]r are indiscemible or equivalent with respect to
knowledge F. Equivalence classes, also termed as information
eranules, are used 1o characterize arbitrary subsets of 1. The
equivalence classes of IND(F) and the empty set @ are the
elementary sets in the approximation space {[LJ, &),

Given an arbitrary set X C 1, in general, it may not be pos-
sible to deseribe X precisely in {1J, &). One may characterize
X by a pair of lower and upper approximations defined as
follows [6]:

P(X) = |J {fzilellzile € X}
F(X) = | J{fzJellzde n X # 8} (2)

Hence, the lower approximation P{X) is the union of all
clementary sets which are subsets of X, and the upper approx-
imation F{ X'} is the union of all elementary sets which have a
nonempty intersection with X. The wple {F(X), F(X )} is the
representation of an ordinary set X in the approximation space
{IU, &) or simply called the rough set of X. The lower (upper)
approximation F{ X)) [B(X )] is interpreted as the collection of
those elements of 1J that definitely (possibly) belong 1o X' The
lower approximation is also called positive region somelmes,
denoted as POSg( X ). A set X is said to be definable in {U, &)
iff B{X) = B(X). Otherwise, X is indefinable and termed as a
rough sel

An information system {J, &) is called a decision able if the
attribute set & = C U D, where T 18 the condition attnbule set
and [ is the decision attdbute set. The dependence between ©
and [ can be defined as

|POS ()|

(3}

where POS- () = | JCX,, X is the ith equivalence class
induced by [, and | - | denotes the cardinality of a set.

B. Neighborhood Rough Sets

Given an arbitrary object z; € U and F C T, the neighbor-
hood $p(x;) of z; with given threshold &, in featre space P,
15 defined as [19]

$plx;) = {J:_,E;r:_, €U A¥zi,z;) < ‘Iﬁ} i)
where A is a distance function. $p(x;) in (4) is the neigh-

borhood information granule centered with sample =, The
neighborhood granule generation is effected by two key factors,
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namely, the used distance function A and parameter &. The first
one determines the shape and the second controls the size of the
neighborhood granule. Both these factors play important roles
in neighborhood rough sets and can be considered o control the
granularity of data analysis. The significance of attributes varies
with the granularity levels. Accordingly, the neighborhood-
rough-set-based algorithm selects different attribute subsets
with the change of the A function and the & valoe [19], [20].

Henee, cach sample generates granules with a neighborhood
relation. For a metric space {11, A}, the set of neighborhood
granules {®(xz;)|z; € U} forms an elemental granuke system
that covers the universal space rather than partitions il as in
the case of rough sets. It is noted that the parition of space
generated by rough sets can be obtained from neighborhood
rough sets with covering principle, while the other way around
15 not possible. Moreover, a neighborhood granule degrades 1o
an equivalence class for & = (. In this case, the samples in the
same neighborhood granule are equivalent o each other, and
the neighborhood mough set model degenerates o rough sets.
Henee, neighborhood mough sets can be treated as a genembzed
case of rough sets.

C. Fuzzy-Rough Sets

A crisp equivalence relation induces a crisp partiion of the
universe and generates a family of crisp equivalence classes.
Comrespondingly, a fuzzy equivalence relation generales a fuzzey
partition of the universe and a series of fuzzy equivalence
classes or fuzzy knowledge granules. This means that the
decision and condition atiributes may all be fuzey [12].

Let {IJ, i} represent a fuzey approximation space and X be a
fuzzy subset of 1. The fuzzy F lower and upper approximations
are then defined as follows [12]:

ppx(Fi) = inf {max {(1 — pp, ()} px(z) )} Vi (5)

ey (Fi) = sup {min{pp.(z), px(z)}} Wi (6)

where F; represents a fuzzy equivalence class belonging to
/P, the partition of I generated by F, and py (x) represents
the membership of = in X These definitions diverge a litle
from the crisp upper and lower approximations, as the mem-
berships of individual objects to the approximations are not
explicitly available. As a result of this, the fuzzy lower and
upper approximations can be defined as [11]

pex(z) = sup min{pp(z), pex(F)} (7
Fell/P

Hpylz) = sup min {p,r:r{_r::l.p?_‘.{F,-:l} . (&)
F.el/P

The tuple {FX,FX'} is called a fuzzy—rough set. This defini-
ton degenerates to tradinonal rough sets when all equivalence
classes are crsp. The membership of an object = € 1T belonging
to the fuzey positive region is

Hposgo)lr) = sup pcx(r) (9
Xell/D

where & = C U D, Using the definition of fuzzy positive re-
zion, the dependence function can be defined as follows [11]:

lppog.m ()| 1 .
Pf}r‘;]l;; I = I[L]i ZPPDH:'[T—‘]{J::I'

=1

(D) = (10)

III. PROPOSED DIMENSIONALITY REDUCTION METHOD

In this section, a new dimensionality reduoction method s
presented, integrating the theory of fuzzy-rough sets and the
merits of both feature selection and extraction technigues. It is
based on the concept of feature significance that follows next.

A. Feature Significance

In real-life data analysis, one of the imporant issues is
computing both relevance and redundancy of features by dis-
covering dependences among them. Intuitively, a set of features
B depends totally on a set of features &, if all feature values
from B are uniquely determined by the values of the features
from /. If there exists a functional dependence between the
values of B and &, then B depends totally on &

Let U= {zy,..., L TR 2y} be the set of » samples and
C={Aicanddjye e,y A | denote the set of m features of a
given data set. Define . (I) as the relevance of the feature
Ay with respect to the class label or decision attribute [ The
relevance represents the quality of a feature or the degree of
dependence of decision attribute [ on condition attribute 4.
Any rough set model reported earlier can be used o compute
the relevance of a feature or a set of features.

To what extent a feature is contributing to calculate the joint
relevance or dependence can be caleulated by the significance
of that feature. The change in dependence when a fealure is
removed from the setof features is a measure of the significance
of the feature.

Definition 1: The significance of a feature A4; with respect
to another feature A; can be defined as follows:

aia, A (A D) = 7ia,.4,1{D) — 74, (D).

Hence, the significance of a feature 4; is the change in
dependence when the feature A; is removed from the set
14,4, 1. The higher the change in dependence, the more
significant the feature A;. If the significance is zero, then the
feature 4; is dispensable. The following properties can be
stated aboul the measure.
1) oy a40A;. D) =0 if and only if the feature A; is
dispensable in the set {4;, 4,1},

2) gy a0 A D) < Of the feature A, is more relevant
than the feature set {4;,.4,}.

3) (A D) = 00f the feature A is significant with
respect o another feature 4.

4) aya a (A D) # o, a1 (Al D) (asymmetric).

(11}

B. Simultaneous Feature Selection and Extraction

A high-dimensional real-life data set generally may contain
a number of nomrelevant and insignificant features. The
presence of such features may lead to a reduction in the useful
information. Ideally, the reduced feature set obtained using



a dimensionality reduction algorithm should contain features
that have high relevance with the classes while the significance
among them would be as high as possible. The relevant and
significant features are expected to be able to predict the
classes of the samples. Hence, 1o assess the effectiveness of the
features, both relevance and significance need to be measured
quantitatively. The proposed dimensionality reduction method
addresses the aforementioned issues through the following
three phases:

1) computation of the relevance of each feature present in

the original featre set;

2) determination of the insignificant, dispensable, and sig-

nificant feature sets;

3) extraction of a relevant feature from the dispensable set.

The fuzzy—rough set 15 used 1o compute both the relevance
and significance of feawres. The insignificant feature set is
discarded from the whole feature set, while the significant
feature set is used o select or extract significant features for
a reduced feature set.

Let .4, (M) represent the relevance of feature 4; € C. The
proposed algorithm starts with a single feature 4, that has the
highest relevance value. Based on the significance values of all
other features, the feature set C is then paditioned into three
subsets, namely, insignificant set I, dispensable set 1), and
significant set 5;, which are defined as follows:

L= {Ajloa.a1(A4,D) < =6 A # e T} (12)
-Da = {A_,li_51E”{_J;..J,}{AJ'-Djiﬁi:AJ ?EA‘EIE:} (13)
5= {AJEJ{A,.A|}|::AJ'D:| >0 A #AE 'E} (14)

where C =1, U D; U S, U{A;} and §; is a predefined thresh-
old value corresponding to the feature 4;.

The insignificant set I; represents the set of features that
are insignificant with respect to the candidate feature 4; of
the current iteration. Hence, the insignificant set I; should be
discarded from the whole feature set T as the presence of
such insignificant features may lead to a reduction in the useful
information. If insignificant features are present in the reduced
feature sel, they may reduce the classification or clustering
performance. The significant set 5; consists of a set of features
that are significant with respect o the feature A;. In other
words, the set 5; represents the set of features of C that have
the significance values with respect to the feature 4, greater
than the threshold 4, . This set 18 considered in the next ileration
to select or extract a new feature.

On the other hand, the dispensable set 1) is used for extract-
ing & new feature in the current iteration. As the significance
values of the features present in the dispensable set are very
low, they form a group of similar features. These features may
be considered o generate a new featre. However, the similar
features of the dispensable set may be in phase or out of phase
with respect to each other. Henee, the following definition can
be used to extract a new feature 4 ; from the dispensable set of
features D;:

1 =A¢+Z}-J.AJ
G 5]
where Aj; € {—1,0,1}and A4; € D,

(13)
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To find out the value of A; for each feature A; € D, the
following greedy algorithm can be used. Let 4, be the initial
representative of the set 0, The representative of D, is refined
incrementally. By searching among the features of set D, the
current representative is merged and averaged with other fea-
tures, both in phase and out of phase, such that the augmented
representative 4, increases the relevance value. The merging
process 15 repeated untl the relevance value can no longer
be improved. If a feature A; € 1) in phase (out of phase)
with the feature 4; increases the relevance value, then A; = 1
(A; = —1). On the other hand, the value of A; = 0if feature 4
does not increase the relevance value, irespective of the phases.
The main steps to find out the values of A; forall A; € D are
as follows,

1) Inmitialize D; +— { A} voas & 7acoand A = Lo

2) Repeat the following six steps (steps 3-8) until D, = .

3) Initialize max + Oand A; = 0%A; € D,

4) Repeat the following three steps (steps 5-7) for each

feature A; € I,
5) Compute two augmented representatives A:"_'_J and .4

i+
by averaging the features of LY, with 4, and its comple-
ment, respectively, as follows:

1

Al =——— A Ar +A (16
b ST S | 2, A A :
A el
1
AL =—m Ay — A (17
TR D P :
--li.-":ﬂ‘:
6) Ewvaluate the value of A; as follows:
—L 1 .'_.gl-+| = .'_.lr_*'+1 ian ."_.1:‘” Z T
7y If A #1), then max + jand
& ar if A; =1
inax JH..I J “-H}
: YA, if Aj =—1

8) If max # 0, then D; + D\ {Apax} and D; + D; U
{ A b: otherwise, stop.

After extracting the feature 4, from the dispensable set I,
using (15), the insignificant feawre set {; and the used features
of D; are discarded from the whole feature set T, From the
remaining features of T, another feawre A4; is selected by
maximizing the following condition:

) 1 :
Ta; (D) + = Z 07,4, (A, D)
T A

(19

where 2 is the already selected or extracted feature set. The
process is repeated to select or extract more features. The
main steps of the proposed simultaneous feature selection and
extraction algorithm are reported as follows.

o [nput: Original set T = {4;, ..., Hiye iy ollmbs

» Ouiput: Reduced set S = {4, ..., A, Asl.

1) Imitialize B+ {A4;,.. ., . e Am}and 5+ @

2) Caleulate relevance value 4, (1) of feature 4; € B.
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3) Select feature 4; from B as the first feature that has the
highest relevance value.
4) Repeat the following five steps (steps a—e) until B = 00 or
desired number of features are selected.
a) Generate three subsets, namely, insignificant set [;,
dispensable set D, and significant set 5;, with re-
spect Lo the candidate feature 4.
by Evaluate the values of A; forall 4; € D,
¢) Extract feature _4; from the dispensable set D, using
(15), and add it to the reduced set S,
d) Discard the subset I, and the used features of D
from the candidate feature set B,
¢) From the remaining features of B, select feature A,
that maximizes condition (19).
5) Stop.

C. Fundamenial Property

From the eadier discussions, the following properties can be
stated about the proposed algorithm.

1) The relevance of extracted feature 4, is higher than that

of original feature 4;, ie., 11{]]3-] = ya, (D).

2) The significance 05, . I’{,-41”.]]3') between any two fea-

wres A; and 4; of educed feature set S is high.

3) IfA; = Oforall 4; € D, then the extracted feature A; at

a particular iteration is actually the candidate feature 4,
of the onginal feature set T.

Hence, the proposed dimensionality reducton method gen-
erales a reduced feature set 5 that may simultaneously contain
some selected features of the ordginal measurement space and
some extracted features of the transformed feature space, which
are both relevant and significant.

D, Computational Complexity

The proposed fuzzy—rough simultaneous feature selection
and extraction algorithm has low computational complexity
with respect to the number of features present in the onginal set.

The computation of the relevance of e features is carried
out in step 2 of the proposed algorithm, which has Q) time
complexity. The selection of the most relevant feature from
the set of m features, which is caried out in step 3, has also
a complexity (). There is only one loop in step 4 of the
proposed dimensionality reduction method, which 1s executed
(d— 1) times, where d represents the number of features in
the reduced feature set. To generate insignificant, dispensable,
and significant sets, the significance of all existing featres
needs o be computed. The computation of the significance of
a feature with respect to another feature takes only a constant
amount of time. If v < m represents the cardinality of the
existing feature set, the complexity 1o compule the significance
of #ir featres, which is carried oul in step 4-a, is O{st). The
computational complexity of extracting a new feature from
the dispensable feature set with cardinality | D] < iz, which
is carried out in steps 4-b and 4-c, is given by (| D,]%). The
computation of the significance of (vs — || — |I;|) candidate

features with respect to the already-selected features, which is
carried out in step 4-¢, has a complexity O — | D;| — |1]),
where || is the cardinality of the insignificant set. In effect,
the selection of a feature from (v — | Dy — |I;|) candidate
features by maximizing both relevance and significance has also
a complexity Qv — | D;| — | L]0,

Hence, the otal complexity to execute the loop (d — 1) times
is Q((d —1)(rin+ |D;|2 + (s — |Dy| — |L]))). In effect, the
selection of a set of d feawres from the whole set of m
features using the proposed simultaneous feature selection and
extracion algorithm has an overall computational complex-
ity of Q{m) + Nm) + (d — V){vh + | D;|* + (v — | D;| —
L)) = O(m+ (d—1)(m+ |Di* — | L)), where |D<

tiv < mand [5] < < m.

E. Selection of Threshold

The threshold §; in (13) plays an important role to form the
dispensable set comresponding 1o the candidate feature 4; at a
particular ieration. It controls the degree of similarity among
the features in the dispensable set. In effect, it has a direct
influence on the performance of the proposed simultaneous
feature selection and extraction algorithm. If §; increases, the
number of features or attributes in the dispensable sel increases,
but the similarity among them with respect W sample categones
or class labels decreases. The similardty among the features in
the dispensable set increases with a decrease of §;.

To find out the optimum value of §;, the following definition,
based on the significance values of the candidate feature set B
for each iteration, can be used:

=

" ]_ . :
W= 1 > {opa (A D)

AieB

(209

where r is a positive integer. Hence, the threshold §; represents
the zero-mean rih-order moment of the significance values of
the attributes A4, £ 5 with respect o the candidate featre 4,

E Computation of Relevance and Significance

In the proposed dimensionality redouction method, both the
relevance and significance of a set of features are computed
using fuzzy equivalence parition matrix that follows next.

1) Fuzzy Egquivalence Partition Matrix: Given a finite set
I, C is a fuzzy attribute set in U, which generates a fuzzy
equivalence parition on 1. If ¢ denotes the number of fuzzy
equivalence classes generated by the fuzey equivalence relation
and n is the number of objects in 1, then ¢ partitions of I can
be arrayed as a (e = n) matrix M-, termed as fuzzy equivalence
partition matrix [ 17], which 1s denoted by

mpp i myy,
My, TG Ty
Me=| 2 T2 (21)
i [ & i
Moy Mgy -0 Mo,

subject to Z:':lm'a =1 %j and for any value of i, if & =

arg m.'l_:c_l.{-m.'a]-, then nunx_..{m.i} = max;{mj; } > 0, where



'H?EI £ [0,1] represents the membership of object z; in the ith
furzy equivalence partition or class F;. Using the concept of
furzy equivalence parition matrdx, the dependence between
condition attribute set © and decision attribute set [ can be
redefined as follows [17]:

(22

Ky —aup{#up{mm{m ||1f{m.tx {l—m,r .l.rr“}}}}} . (23)
k i

2) Generation of Fuzzy Equivalence Partition: The family
of normal fuzzy sets produced by a fuzzy patitioning of the
universe of discourse can play the role of fuzzy equivalence
classes [12], [17]. In general, the 7 function in the 1-D form
is used o assign membership values wo different fuzey equiva-
lence classes for the input features [22], [23]. A fuzzy set with
membership function 7(x; ¢, o) [24] represents a set of points
clustered around &, where

2 (1 = ==l )2 i

e 12 .
1—2(=4Y, foro<z—c| <3
i, otherwise

forf <|z—é| <o

Tr e, T = (24)

where o = () is the radius of the 7 function with £ as the central
point and || - | denotes the Euclidean nonm. When the pattern
x lies at the central point ¢ of a class, then ||z —é|| = 0 and
its membership value is maximum, ie., 7 e, 0) = 1. The
membership value of a point decreases as its distance from
the central point ¢, ie., ||z —&||, increases. When ||z — €| =
{7 /2), the membership value of x is 0.5, and this is called a
crossover point [24].

Each real-valued feature in quantitative form can be assigned
to different fuzey equivalence classes in terms of membership
values using the 7 fuzzy set with appropriate ¢ and o. The
centers and radii of the 7 functions along each feature axis can
be determined automatically from the distribution of training
pattemns or objects [24]. Let vy be the mean of the objects
g Emyag o T, } along the ith feature A;. Then,
and v, are defined as the means, along the dith feature, of the
objects having coordinate values in the ranges of [4, . m)
and (7, .A respectively, where 4;  and A, . denote
the upper and lower bounds of the dynamic range of feature 4,
for the waining set. For three fuzzy sets low, medium, and high,
the centers and coresponding radii are as follows [24]:

1
b | ivin

& |i.l‘-\'|:,"4' :I ”£|rlllﬂ||llllr||:"4' :I e 'i'”'.'r-'highi:Aé:I = Ty, fzj}
"7|-:1w|:_v’4 :I == l:_r'llllt.‘i”llllll;,"iﬂjl — Ol ':.A.':I:I
Jhigh{A :I =2 l::r'lhighl::Aé:I =5 r'I|||-H|i||||||::"‘4'£:|:| (26)
I | S——
"7|||H||||||||:,v‘4:| |:A,.m"x Ah"i“j
x !_"7|-:m'|:,v’4-.i:| '::Aalmm = f-'|||1'<|i|||||'iv""hjljl

+‘Uhig|l{A::I{r-'mm”um{Aaj_A.-mi“jl fz?}

where 1 is a multiplicative parameter controlling the extent of
the overlapping. The distribution of objects along each feature
axis 15 taken mto account whilke computing the comesponding
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centers and radii of the three fuzey sets. Also, the amounts of
overap between the three fuzzy sets can be different along the
different axes depending on the distribution of the objects.

A ¢ xn fuzzy equivalence partition matrix B represents
the ¢ fuzzy equivalence partitions of the universe generated by
a fuzzy equivalence relation. Each row of the matrix B is a
fuzzy equivalence parition or class. The ¢ = n fuzey equiv-
alence partition matrix B4, corresponding to the ith feature
A, can be caleulated from the ¢ fuzzy equivalence classes of

the objects z = {xy,..., LT PP T b, Where
] T2 By The
m::_: — ;{-"—:I (28)
3wz b, o)
i=1

Corresponding to three fuzzy sets low, medium, and high
(e = 3], the following relations hold:
— r'|||-e:1|i|||||'iv""hjl Cg = r'||ig|||::v‘4-£:|
— JIII!N”IIIII'::AEII oy = "'Ihighi:v"‘rl.':l-

] = Clow ':,v’4¢ :I Ca

o] = Tow iAa :I oa

In effect, each positon 'JHA ¢ of the fuzzy equivalence parti-
[mn matrix By, must Hdllhf}' the following conditions [17]:
€ [0,1]; Zk— lﬂ?” 1 % and for any value of &, if

5= .trf_,nmx_..{m 1, then m.lx_..{mﬁ 1= ru.i_xr{m'r” } = 0.

HE-*_

IV. EXPERIMENTAL RESULTS

The performance of the proposed fuzzy-rough simula-
neous attibute selection and feature extraction method is
extensively studied and compared with those of some ex-
isting feature selection and extraction algorithms, namely,
maximal-relevance (Max-Relevance) and maximal-relevance
maximal-significance (MRMS) [9] frameworks with classi-
cal, neighborhood, and fuzzy—rough sets, quick reduct (Max-
Dependency and rough sets) [8], fuzzy—rough quick reduct
(Max-Dependency and  fuzzy—rough sets) [11], neighbor-
hood quick reduct (Max-Dependency and neighborhood rough
sets) [19], mimmal-redundancy maximal-relevance (mRME)
framework [25], fuzzy-rough-set-based mRMRE framework
(fuzzy—rough mRMR) [17], and PCA [2]. All the algorithms
are implemented in C language and mn in Ubuntu 11.04 en-
vironment with 64-b support having machine configurations of
Pentium Core 2 Quad processor at 2.66 GHz, 4-MB L2 cache,
and 4-GB DDR2 RAM.

A. Class Prediction Methods

The following three pattern classifiers are used o evaluate
the performances of different dimensionality reduction methods
with respect 1o several real-life data sets.

[) SVM: The SVM [26] is a relatively new and promising
classification method. It is g margin classifier that draws an
optimal hyperplane in the feature vector space; this defines
a boundary that maximizes the margin between data samples
in different classes, therefore leading 1o good generalization
properties. A key factor in the SVM is o wvse kermels to
construct a nonlingar decision boundary. In the present work,
linear kernels are used.
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2) K-NN Rule: The K-nearest neighbor (K-NN) rule [2] is
used for evaluating the effectiveness of the reduced feature
sel for classification. 1t classifies samples based on closest
training samples in the featre space. A sample is classified
by & majority vote of its K neighbors, with the sample being
assigned W the class most common among its K-NNs. The
vilue of K, chosen for the K-NN, is the square root of the
number of samples in the training set.

3) Cd.5 Decision Tree: The C4.5 [27] 15 a popular decision-
tree-based classification algorithm. 1t is used for evaluating the
effectiveness of the reduced feature set for classification. The
selected feature set is fed to the C4.5 for building classification
models. The C4.5 is used here because it performs feature se-
lection in the process of training, and the classification models
that it builds are represented in the form of decision trees, which
can be further examined.

B. Description of Data Sets

To evaluate the performances of different dimensionality
reduction methods, several benchmark data sets such as Satim-
age, Segmentation, Lsolet, and Multiple Features data sets of
UCI Machine Leaming Repository [28] and Breast Cancer L,
Colon Cancer, Lung Cancer, Leukemia 1, Breast Cancer 11, and
Leukemia 11 of Kent Ridge Bio-medical Data Set Repository
[29] are used. A brief description of these data sets is also
available m [21].

To compute the classification accuracy of the C4.5, K-NN
rule, and SVM. both ten-fold cross-validation (CV) and
training—testing are performed. The ten-fold CV is per-
formed on the Breast Cancer 1, Colon Cancer, Lung Cancer,
Leukerma L Isolet, and Muluple Features data sets, while the
training—testing 15 done on the Satmage, Breast Cancer IO,
Leukermia 11, and Segmentation data sets.

C. Optimum Values of Different Parameters

The multiplicative parameter 1 in (27) of fuzzy-rough sets
controls the extent of overdapping between the fuzzy equiva-
lence classes low and medium or mediom and high. Keeping
the values of a1y, and oy fixed, the amount of overlapping
among the three 7 functions can be altered varying o, ginm - A5
1 is decreased, the radius o0 decreases around i
such that, ultimately, there is insignificant overlapping between
the 7 functions low and medium or medium and high. On the
other hand, as » 15 memeased, the radivs ogedinm INCTEASES
around &,y 50 that the amount of overdapping between the
m functions increases.

The parameter r in (20) is the moment order of the signifi-
cance values of all feares present al a particular iteration. In
effect, it controls the size of the insignificant, dispensable, and
significant feature sets corresponding o the candidate feature
of that iteration. Hence, the quality of the extracted featres
al various iterations, as well as the overall performance of the
proposed dimensionality reduction method, very much depends
on the value of #. Let § = {r, 7} be the set of parameters and
5* = {r*. 9"} be the set of optimal parameters. To find out

the optimum values of r and 4 for a given data set, the class
separability index [1] 15 used.

The class separability index & of a daw set is defined
as 5 = t.r;u:{w::l»’.l;l'-l‘.f’;;:l, where Vi i1s the within-class scatter
matrix and Vi 15 the between-class scatter matrix, defined as
follows:

c o
o = I ( Tl = a0
Viw =3 mE{(X — p)(X — p)Tle} = D mEy
=1

i=1

B
Ve = mi(ps — )y — )’
=1

&

i=E{X] =er_,p_,

i=1

where O is the number of classes, ; is the a priori probability
that a pattern belongs to class e;, X is a feature vector, @ is
the sample mean vector for the entire data points, p; and X
represent the sample mean and covariance matrix of class o,
respectively, and E{-} is the expectation operator. A higher
value of & ensures that classes are well separated by their scatter
MICANS.

For all data sets, the values of moment oder v and muli-
plicative parmmeter » vary from one 1o five and from 06 1o
1.5, respectively. Fig. 1 shows the vadation of class separahility
index & for fuzey-rough sets with respect to different values of
rand 1. The results are reported for the training samples of the
Isolet, Muluple Features, and Segmentation data sets. From the
results shown in Fig. 1, it is seen that, as the values of both r
and 1 increase, the class separability index S also increases and
attains its maximum value at the particular values of v* and +*.
Hence, the optimum values of +* and »* are obtained using the
following relation:

5* = arpg m:';lx{S}. (29)

Table 1 presents the optimum values of v and 5 for fuzey-
rough sets obtamed vsing (29), along with the optimum values
of r for classical rough sets and {r, &} for neighborhood rough
sets, on different data sets. From the results reported in Table 1,
it can be seen that the optimum value of r is either two or three,
while that of 5 vardes in between (0.8 and 1.5, in the case of the
proposed fuzzy—rough dimensionality reduction method.

D, Effectiveness of Parameter Optimization Technigue

In order to establish the effectiveness of the proposed method
for finding the optimum values of different parameters, exten-
sive experimentation is done on different real-life data sets.
To compute the relevance and significance of the feature set
in the proposed dimensionality reduction method, classiceal or
Pawlak’s, neighborhood, and fuzzy—rough sets are used.

Table Il presents the performances of the classical, neigh-
borhood, and fuzey-rough seis on the Satimage, Breast 11
Leukemia 11, and Segmentation data based on training—testing
and the Colon Cancer, Breast Cancer I, Lung Cancer,
Leukemia 1, Isoler, and Multiple Features data based on ten-fold
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Fig. 1. Variation of the class separability index for di fferent values of moment order v and multiplicative parameter 5.

TABLE 1
OPTIMUM VALUES OF THE PARAMETERS FOR THE CLASSICAL, NEIGHRORHOOD, AND FUZZY-ROUGH SETS ON INFFERENT DATA SETS

Foperimieniad 1 3 Terenl Drillerent Rough Sels
Hetp [ara Bets Claszical: &7 — r* | Neighbodheod: 5% — v, 47 Fuzz: &7 — {r*, 0%}
Colon Canci 3 {4 0.25] ERE
13-l el Broast Canger | 3 45, 03 35T 2101
Ciriie. T.ung Cancer 3 [F4d 0A003E] (2, LERS LALE4 1L41.5)
Walidation Lenkemia 1 i {20100, 200 {4, 010} {30810}
Il : 14, (L0} 12, 0.8}
Multiple leatrcs 2 {3, 0030250 12011}
Halimage 2 42, A0} 13 1.2
Training Segmnentalion 2 12 0nE] 12 LE}
lesting Lewkemia 11 1 f2 075 £ 3580 0w 3y
Hresasd ameer 1 43 12, AN 25} 13, 1.2}

CV. For ien-fold CV, only the mean of the best accuracy of ten-
fold 15 presented. The results and subsequent discusswons are
analyzed in this table with respect wo the classification accuracy
of K-NN, VM, and C4.5. The best test accuracy obtaned from
all possible parameter values on each data set s compared with
the test accuracy coresponding to the best training accuracy
and that for the optimum parameters.

All the results meported i Table I confirm that the test
accuracy obtained using the optimum parameters 15 higher than
the test accuracy cormesponding to the best training accuracy
and comparable with the best test accuracy in most of the cases,
irrespective of the rough sets, classifiers, and data sets used.
Ot of 30 cases, the test accuracy obtaimed vsing the proposed
technique is exactly the same with the best test accuracy in
22, 20, and 25 cases for the classical, neighborhood, and
fuzzy—rough sets, espectively. For fuzzy-rough sets, the test
accuracy comesponding W the best tmining accuracy 15 better
than that of the proposed technigue in only two cases, while for
classical and neighborhood rough sets, itis only seven and ten
cases, respectively.

E. FPerformances of Various Rough Set Models

In the dimensionality reduction method, the reduced feature
set 15 always relative to a centain featwre evaluation index.
In general, different evaluation indices may lead to differ-
ent reduced feawre subsets. To establish the effectiveness of
fuzzy—rough sets over Pawlak’'s or classical and neighborhood
rough sels, extensive experiments are done on vanous data sets.
Table Il presents the comparative performances of different
rough set models for a simultaneous attribute selection and

feature extraction task. The resuls and subsequent discussions
are presented in this table with respect 1o the classification accu-
racy of the K-NN, 5VM, and C4.5 on test samples considenng
the optimum parameter values.

Both tramming-testing and ten-fold CV are performed o com-
pute the classification accuracy of the SVM, C4.5, and K-NN.
In the case of ten-fold CV, the means and standard deviations
of the best classification accuracy obtained in different folds are
computed for the Breast Cancer 1, Colon Cancer, Lung Cancer,
Leukemia 1, Isolet, and Multiple Features data sets. Tests of
significance are performed for the ineguality of means (of the
best classification accuracy of the SVM, C4.5, and K-NN rule)
obtained using the fuzey—mough sets and other rough sets. Since
both the mean pairs and the varnance pars ae unknown and
different, a generalized version of #-test 15 used here. The afore-
mentioned problem is the classical Behrens—Fisher problem in
hypothesis testing, The test statiste, described and tabled in
[30]. 15 of the form

f1— Ha

(30
}'l'ﬂ-l._ + }ugv!".l'g.'

where py and pe are the means, o and o2 are the standard
deviations, Ay = 1/nq, and As = 1/na, with n; and ns being
the number of observations. Table 111 reports the individual
means and standard deviations and the value of the test statistic
computed. The corresponding tabled value 15 1.81 at an error
probability level of 0.05. If the computed value is greater than
the tabled value, the means are significantly different.

From the results reported in Table I, it can be seen
that the proposed dimensionality reduction method based on
fuzey-rough sets atlains maximum classification accuracy of
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TABLE

I

CLASSIFICATION ACCURACY FOR THE OPTIMUM PARAMETERS ON DIFFERENT DATA SETS
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TABLE 11
COMPARATIVE PERFORMANCES OF VARIOUS ROUGH SET MODELS ON IMFFERENT IDATA SETS
Expuerimaental | 1lTeneni | HITamenl, lest Acouraey e k%% lesl Acenracy ¢ 5V lesl Avenmaey of £9.8
Solup Crata Sols Statistizz Classical | Meiehbor | Fuzey Classical | Meiehbsar | Fusey Classical | Meightsir | Fusey
Meun AR [ i AR (I A5 [T (] [EN]
Lolen St 0.7 [0 4,04 (.54 [FALE 954 (1.5 [HIAH 2.0
Connn 2R - I1es BERE - -
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the K-NN, VM, and C4.5 in most of the cases. Out of 12 cases
of training—testing, the proposed method with fuzey-rough sels
achieves the highest classification accuracy in ten cases, while
that with classical or Pawlak’s rough sets attains it only in two
cases. On the other hand, among the 36 comparisons of len-
fold CV, the proposed method with fuzzy—rough sets provides
sigmificanty better results m 14 cases and better results but not
signmificanty in four cases, while significantly better resulis ane
achieved only in three cases vsing neighborhood rough sets. In

all other cases, the performances of different rough sets are the
same. In briel, out of the total 30 cases, the classical and neigh-
borhood mough sets attam higher classification accuracy than
the fuzzy—rough sets in two and three cases, respectively. In
all other cases, fueey—rough sets provide higher or comparable
classification accuracy, irrespective of the data sets, expenmen-
tal setup, and classifiers used. The better pedormance of the
fuzey—rough sets s achieved doue to the fact that it can capture
uncertamies associated with the data more accurately.
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F. Performances of Different Algovithms

Fmally, Tables 1V-VII compare the pedormance of the pro-
posed fuzzy—rough simultaneous feature selection and extrac-
ton algorithm with those of different existing feature selection
and extraction algonthms on vanous data sets.

From the results reported in Table IV, it 1s seen that the
proposed dimensionality reduction method achieves the highest
classification accuracy of SWM, C4.5, and K-NNin 11 cases out

of the total 12 cases, while PCA attains the highest classifica-
tion accuracy inonly one case. The proposed method also pro-
vides higher classification accuracy than the Max-Relevance,
Max-Dependency, and MRMS critena in all cases, nrespective
of the classifiers, rough sets, and data sets used. Tables V
and VI report the perdformances of different methods in the
case of ten-fold CV, along with the results of the test of
significance, for the K-NN, SVM, and C4.5. From the mesults
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reported in these tables, it can be seen that the proposed method
attains significantly better accuracy than the other algorithms
in all cases, wrespective of the data sets and classifiers vsed.
Moreover, Table VII meports the execution ume of differ-
ent algorithms. The significantly lesser ume of the pro-
posed algonthm is achieved due 1o its low computational
complexily.

Hence, all the results reported in Tables IV-VI confirm that
the proposed fuzzy-rough dimensionality reduction method se-

lects a set of features having the highest classification accuracy
of the K-NN, VM, and C4.5 in most of the cases, irespective
of the data sets. Also, the proposed method can potentially yield
significantly better results than the existing algorithms. The
better perdformance of the proposed method 1s achieved doe 1o
the fact that it provides an efficient way to simultancously select
and extract features for classification. In effect, a reduced set of
features having maximum relevance and significance 15 being
obtained using the proposed method.



V. CONCLUSION

One of the important problems in patlem recognition and
data mining, particulardy given the explosive growth of avail-
able information, is the dimensionality reduction using feature
selection and/or feature extraction. In this regard, this paper has
presented a novel dimensionality reduction method, integrating
judiciously the theory of fuzzy—rough sets and the merits of
both attribute selection and feature extraction. An efficient algo-
rithm has been introduced by performing simultaneous feature
selection and extraction. 1t uses the concept of fuzzy—rough fea-
ture significance for finding significant and relevant featres of
real-valued data sets. Finally, the effectiveness of the proposed
method has been presented, along with a comparison with other
related algorithms, on real-life data sets. This formulation is
geared toward maximizing the utility of fuzzy—rough sets, fea-
ture selection, and feature extraction with respect o knowledge
discovery tasks. Through these investigations and experiments,
the potential wtility of fuzey-rough sets for dimensionality
reduction 15 demonstrated.
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