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Rough Hypercuboid Approach for Feature
Selection in Approximation Spaces
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Abstract—The selection of relevant and significant features is an important problem particularly for data sets with large number of
features. In this regard, a new feature selection algorithm is presented based on rough hypercuboid approach. It selects a set of features
from a data set by maximizing the relevance, dependency, and significance of the selected features. By intreducing the concept of
hypercuboid equivalence partition matrix, a novel representation of degree of dependency of sample categories on features is proposed
to measure the relevance, dependency, and significance of features in approximation spaces. The equivalence partition matnx also
offers an efficient way to calculate many more quantitative measures to describe the inexactness of approximate classification. Several
quantitative indices are introduced based on rough hypercuboid approach for evaluating the performance of proposed method. The
superiority of the proposed method over other feature selection methods, in terms of computational complexity and cdassification
accuracy, is established extensively on various real life data sets of different sizes and dimensicns.

Index Terms—Pattern recognition, data mining, feature selection, rough sets, rough hypercuboid approach.

1 INTRODUCTION

D IMENSIONALITY reduction or feature selection from
a data set is an essential preprocessing step used
for mining large data sets, both in dimension and size
[1L [2]. Many problems in pattern recognition, data
mining, and machine learning may involve thousands
of features. One of the important problems of large
data analysis is to obtain a smaller set of representative
features by preserving the semantics of the data. It leads
to more compactness of the models learned and better
generalization as well as decreases the processing time.
Hence, the objective is to reduce dimensionality using
information contained within the data set and preserve
most relevant information of the original data according
to some optimality criteria [1], [2].

The optimal characterization condition often means
the minimal classification error, which usually requires
the maximal statistical dependency of the sample cat-
egories or class labels on the data distribution in the
reduced feature space. This scheme is called maximal
dependency or Max-Dependency, in which, the task of
feature selection is to find a feature subset from the
whole feature set, which jointly have the largest depen-
dency on the target class.

An optimal feature subset selected by a dimensionality
reduction method is always relative to a certain feature
evaluation criterion. In general, different criteria may
lead to different optimal feature subsets. However, every
criterion fries to measure the discriminating ability of a
feature or a subset of features to distinguish different
class labels. One of the main problems in real life data
analysis is uncertainty. Some of the sources of this un-
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certainty include incompleteness and vagueness in class
definitions. In this background, the possibility concept
introduced by rough set theory has gained popularity
in modeling and propagating uncertainty [3], [4]. It has
been successfully used to find informative feature subset
from the original attributes of a data set with discretized
attribute values [5], [6], [7], [8] [9] [10]. The quick reduct
algorithm of Chouchoulas and Shen [7] is based on the
principle of Max-Dependency criterion.

There are usually real valued data and fuzzy infor-
mation in real world applications. In rough set theory,
the real valued features are divided into several discrete
partitions to calculate the dependency of a feature. How-
ever, a best partition of feature values is NP-hard prob-
lem [11]. Also, the inherent error that exists in discretiza-
tion process is of major concern in the computation
of the dependency of real valued features. Combining
fuzzy and rough sets provides an important direction in
reasoning with uncertainty for real valued data sets [12],
[13], [14], [15], [16]. The generalized theory of rough-
fuzzy computing has been applied successfully to feature
selection of real valued data [16], [17], [18], [19]. [20].
[21], [22]. Also, neighborhood rough sets [23] and rough
hypercuboid approach [24] are found to be suitable
for numerical data sets. The fuzzy-rough quick reduct
algorithm due to Jensen and Shen [17] and neighborhood
rough set based feature selection algorithm of Hu et al.
[23] are based on Max-Dependency criterion.

However, for real life high dimensional data set, the
number of samples is often inadequate and generation
of equivalence classes for rough sets is usually an ill-
posed problem. In effect, it is very hard to estimate
correctly the joint dependency of the features when the
number of equivalence classes increases very quickly
and gets comparable to the number of samples. Also,
the computational speed of Max-Dependency is very



slow. Hence, Max-Dependency feature selection is not
appropriate for real life applications where the aim is
to achieve high classification accuracy with a reasonably
compact set of features, although it might be useful to
select a very small number of features [25].

An alternative to Max-Dependency criterion is to
select features based on maximal relevance or Max-
Relevance criterion. It is to search a set of features
that approximates Max-Dependency criterion with the
mean value of all dependency values between individual
feature and target class label [26], [27], [28]. However,
unlike Max-Dependency criterion, this criterion does not
consider the joint effect of features on the target class.
Also, it is likely that features selected according to Max-
Relevance could have rich redundancy. The minimal
redundancy (Min-Redundancy) or maximal significance
(Max-5ignificance) criterion can be used for searching
mutually exclusive or independent features. However,
this is not sufficient for selecting highly discriminative
features. Combining redundancy or significance crite-
rion with relevance criterion, the minimal redundancy-
maximal relevance (mRMR) [29] and maximal relevance-
maximal significance (MRMS) [25] criteria have been
proposed to select relevant and nonredundant or signif-
icant features, although both mEMR and MREMS criteria
do not consider dependency between the data distribu-
tion in multidimensional space and class labels.

In this paper, a novel feature selection method is pro-
posed, which employs rough hypercuboid approach to
provide a means by which real valued noisy data can be
effectively reduced without the need for user-specified
information. The proposed method selects a subset of
features from whole feature set by maximizing relevance,
dependency, and significance of the selected features.
Using the novel concept of hypercuboid equivalence par-
tition matrix, the degree of dependency is calculated for
condition attributes, which is used to compute relevance,
dependency, and significance of the features. Hence, the
only information required in the proposed method is in
the form of equivalence classes for each attribute, which
can be automatically derived from the data set. Several
quantitative measures are introduced based on rough
hypercuboid approach to evaluate the performance of
proposed feature selection method. The effectiveness of
the proposed method, along with a comparison with
other methods, is demonstrated on a set of real life data.

The structure of this paper is as follows: Section 2
briefly introduces the necessary notions of rough sets.
In Section 3, the formulae of degree of dependency is
introduced for approximation spaces with a hypercuboid
equivalence partition matrix. The proposed feature selec-
tion method based on hypercuboid equivalence partition
matrix is described in Section 4. Different quantitative
measures are introduced in Section 5 based on the con-
cept of rough hypercuboid to evaluate the inexactness
of approximate classification. A few case studies and a
comparison with other methods are presented in Section
6. Concluding remarks are given in Section 7.
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2 RoOUGH SETs

An approximation space or information system is a pair
< U, & > [3], where U = {zy,---,24,---, 7, } be a non-
empty set, the universe of discourse, and A& is a family
of attributes, also called knowledge in the universe. V' is
the value domain of & and f is an information function
f: U= & — V. Any subset P of knowledge 4 defines an
equivalence or indiscernibility relation TN D(F) on U

IND(P) = {(zi, ;) € U xU|Va € P, f(z:,a) = f(z;,a)}.

If (z x;) € IND(F), then x; and z; are indiscernible
by attributes from F. The partition of U generated by
IND(PF) is denoted as

U/IND(P) = {[zp : z; € U} (1)

where [z;]p is the equivalence class containing z;. The
elements in [z;]p are indiscernible or equivalent with
respect to knowledge [F. Equivalence classes, also termed
as information granules, are used to characterize arbi-
trary subsets of U. The equivalence classes of TN D(F)
and the empty set [} are the elementary sets in the
approximation space <[ A4 =,

Given an arbitrary set X C T, in general, it may
not be possible to describe X precisely in < U, & =.
One may characterize X by a pair of lower and upper
approximations, defined as follows [3]:

B(X) = | J{lzde | [zde € X} and (2)
P(X) = | Hlzle | [m]en X # 0} (3)

Hence, the lower approximation F(X) is the union
of all the elementary sets which are subsets of X, and
the upper approximation F(X) is the union of all the
elementary sets which have a non-empty intersection
with X. The tuple < P{X),F(X) > is the representa-
tion of an ordinary set X in the approximation space
< I, & = or simply called the rough set of X. The lower
(respectively, upper) approximation F(X) (respectively,
PF(X)) is interpreted as the collection of those elements
of U that definitely (respectively, possibly) belong to X,
The lower approximation is also called positive region
sometimes, denoted as POSp(X). A set X is said to
be definable or exact in < U, 4 > iff B(X) = F(X).
Otherwise X is indefinable and termed as a rough set.
BNDy(X)=FX)\FX)is called a boundary set.

Definition 1: An information system < [J, & > is called
a decision table if the set & = C U D, where C and I are
condition and decision attribute sets, respectively. The
dependency between © and [ can be defined as [3]

|[POSC(ID)|
PR 1) R Eiachacket o b |
e (D) 0]
where POS-(D = LDCX,, X, is the ith equivalence class
induced by [ and |- | denotes the cardinality of a set.

Definition 2: Given C,ID and an attribute A € C, the
significance of the attribute .4 is defined as [3]:

ac(A) = ve(D) — ve— pay (D). (5)

(4)



MAJ: ROUGH HYPERCUBOID APPROACH FOR FEATURE SELECTION IN APPROXIMATION SPACES 3

3 HypercuBoID PARTITION MATRIX

In this section, the concept of hypercuboid equivalence
partition matrix, based on rough hypercuboid approach
[24], is introduced to compute the degree of dependency
of decision attribute set on the condition attribute set.

3.1 Hypercuboid

Generally, an m-dimensional hypercuboid or hyperrect
angle is defined in the m-dimensional Euclidean space,
where the space is defined by the w» variables measured
for each sample or object. In geometry, a hypercuboid
or hyperrectangle is the generalization of a rectangle
for higher dimensions, formally defined as the Cartesian
product of orthogonal intervals.

Fig. 1 presents the scatter plots of samples from two
classes, namely, Class A and Class B, considering two
attributes A; and A4;. The intervals [A,C] and [B, D] are
the value ranges of attribute 4; with respect to Class
A and Class B, respectively. That is, the attribute .4;
value of each sample with class label A falls within
the interval [A, C], while that with class label B belongs
within the interval [B,D|. These two intervals form
two hypercuboids along the attribute 4;. Similarly, two
hypercuboids can be formed by the intervals [E, G| and
|[F, H| corresponding to Class A and Class B, respectively,
along the attribute A,

0 Class A

o Cles B

Fig. 1. Rough hypercuboids in two dimension

A d-dimensional hypercuboid with d attributes as
its dimensions is defined as the Cartesian product of
d orthogonal intervals. It encloses a region in the d-
dimensional space, where each dimension corresponds
to a certain attribute. The value domain of each dimen-
sion is the value range or interval that corresponds to a
particular class. Hence, the 2-dimensional hypercuboid
for Class A can be formed by taking the Cartesian
product [A, C] x [E, G| of two orthogonal intervals [A, C]
and [E.G| corresponding to the attributes 4; and A,
respectively. This hypercuboid is also referred to as the
class hypercuboid of Class A. Similarly, the Cartesian
product (B, D| x [F, H| of two orthogonal intervals [B, D]
and [F.H| forms the 2-dimensional hypercuboid for
Class B. For all hypercuboids, any two objects belong
to a same class hypercuboid are said to be indiscernible
with respect to that particular class.

However, in real data analysis, uncertainty arises due
to overlapping class boundaries. Hence, every two class
hypercuboids may intersect with each other. The inter-
section of two hypercuboids also forms a hypercuboid,
which is referred to as implicit hypercuboid. The implicit
hypercuboids encompass the misclassified samples or
objects those belong to more than one classes. The degree
of dependency of the decision attribute set or class label
on the condition attribute set depends on the cardinality
of the implicit hypercuboids. The degree of dependency
increases with the decrease in cardinality.

3.2 Hypercuboid Equivalence Partition Matrix

Let U= {xy,---,2;,-- -, z.} be the finite set of n objects,
and C = {4;,---, 4g,---, Ay} and I are the condition
and decision attribute sets in 1, respectively. If U/ =
1/ ---. i ---, 3] denotes ¢ equivalence classes or in-
formation granules of 1] generated by the equivalence
relation induced from the decision attribute set [, then
¢ equivalence classes of IJ can also be generated by
the equivalence relation induced from each condition
attribute 4, € C. B U/ A = {dy,---.4i,---, 4.} denotes ¢
equivalence classes or information granules of I induced
by the condition attribute .4; and n is the number of
objects in 1T, then c-partitions of U are the sets of (en)
values {h;;(.4;)} that can be conveniently arrayed as a
(r x n) matrix H{Ay) = [h;(Ax)]. The matrix H{.A,) is
termed as hypercuboid equivalence partition matrix of
the condition attribute .4, and is denoted by

hu{:!—\k:l IltE{Akj |i1"|:;,.4_k:|
H(Ay) = | BatAe) hn(d) ha (A &
hei(Ar)  hea(Ai) b (Ar)

1 L <zy(Ax) €U,

where h;;(4;) = { 0 otherwise. @

Here h;;(4r) € {0,1} represents the membership of
object z; in the ith equivalence partition or class j
satisfying following two conditions:

1<) hy(Ap) nVi; 1<) hy(A) <e ¥ (@)
=1 i=1
The above axioms should hold for every equivalence
partition, which correspond to the requirement that an
equivalence class is non-empty. The tuple [L;, U;| repre-
sents the interval of ith class 3; according to the decision
attribute set . The interval [L;, U;] is the value range
of condition attribute 4; with respect to class 3, It is
spanned by the objects with same class label 3;. That is,
the value of each object z; with class label J; falls within
interval [L;,1);]. This can be viewed as a supervised
granulation process, which utilizes class information.
In general, the number of class hypercuboids is equal
to the number of classes ¢. Each hypercuboid corre-
sponds to a unique class. However, more than one class
hypercuboids may correspond to one class. If the interval



[L;, U;] corresponding to class §; is completely covered
by another interval [L;,U;| of class ; and no object
of class f3; falls within the interval [L;, U;], the interval
[L;,U,] is then cut and shrunken into two short intervals
for class §;, namely, [L;,L;] and [U;, U;], both of which
don’t overlap with the interval [L;, U;] of class 3;.

However, such a granulation process does not nec-
essarily result in a compatible granulation in the sense
that every two intervals may intersect with each other.
These intersections form the implicit hypercuboids. The
degree of dependency of decision attribute on a con-
dition attribute or a subset of attributes is evaluated
by finding the implicit hypercuboids that encompass
misclassified objects. Using the concept of hypercuboid
equivalence partition matrix, the misclassified objects of
implicit hypercuboids can be identified based on the
confusion vector defined next

V(Ag) = [Vi(Ag), - (Ak) Vo (Al ©)

where v;(Ay) = min{1, Zh” Ap) —1}. (10)

In other words, if an object x; belongs to the lower ap-
proximation of any class f3;, then it does not belong to the
lower or upper approximations of any other classes and
v;j(Ak) = 0. On the other hand, if the object x; belongs
to the boundary region of more than one classes, then
it should be encompassed by the implicit hypercuboid
and v;(Ax) = 1. Hence, the hypercuboid equivalence
partition matrix and corresponding confusion vector of
the condition attribute A; can be used to define the
lower and upper approximations of the ith class f; of
the decision attribute set ID.

Let g; € U. p; can be approximated using only the
information contained within A, by constructing the A-
lower and A-upper approximations of /3;:

A(Bi) = {z;] hij(Ax) =1 and v;(Ax) = 0};
A(Bi) = {zj| hij(Ap) = 1};

where equivalence relation A is induced from attribute
Ay The boundary region of §; is then defined as

BNDa(B:) = A(B:) \ A(5:) (13)
ie., BNDA(B;) = {xj| hi;(Ax) =1 and v;(Ag) = 1}. (14)

(11
(12)

A ¢ x n hypercuboid equivalence partition matrix
H(Ay) represents the c-hypercuboid equivalence par-
titions of the universe generated by an equivalence
relation. Each row of the matrix H(Ay) is a hyper-
cuboid equivalence partition or class. The ith hyper-
cuboid equivalence partition is, therefore, given by
Bi = {hi (Ag)/z1 + hia(Ak) /x2 + - - + hin(Ag) /20 }. (15)

As to a hypercuboid partition induced by an equiva-
lence relation, the equivalence class is a set. “+” means
the operator of union in this case. The cardinality of the
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set is the cardinality of the upper approximation of the
class 3; that can be calculated with
[A(B)] = hij(Ap) (16)

j=1
which appears to be a natural generalization of crisp set.

Similarly, the cardinalities of lower approximation and
boundary region of class 3; can be calculated as follows:

17)

67. | = th] Ak 1 _V](Ak)]

|IBND4(8i)| = Zhij(Ak) Nv;(Ak).

j=1

(18)

3.3 Dependency and Significance

Based on the definitions of lower and upper approxi-
mations, the positive, negative, and boundary regions of
decision attribute set D can be defined as:

POSAD) = ) A(B); (19)
Bi€U/D
NEGA(D - U 4@ (20)
B,€U0/D
BNDA(D)= | U A®). (1)
Bi€U/D B:€U/D

The positive region, POS4(D), contains all objects
of U that can be classified to classes of U/D using
the knowledge in attribute Aj;. The boundary region,
BND 4(D), is the set of objects that can possibly, but not
certainly, be classified in this way. The negative region,
NEG 4(D), is the set of objects that cannot be classified
to classes of U/D.

Combining (6), (9), and (19), the cardinality of positive
regions of decision attribute D, in terms of hypercuboid
equivalence partition matrix and confusion vector of
condition attribute Ay, is given by

=303 b n

i=1 j=1

|POSA(D N1 —v;(Ap)] (22)

Hence, the dependency between condition attribute
Ay, and decision attribute ID can be redefined as follows:

C

1w = S A AL @)
=1 j=1
: LI
that is, y4, (D) =1 nj;VJ(Ak% (24)

where 0 < v4, (D) < 1. If y4, (D) = 1, D depends totally
on A, if 0 < 74,(D) < 1, D depends partially on Ay,
and if v4, (D) = 0, then D does not depend on A;.

An important issue in real life data analysis is dis-
covering dependencies between attributes. Intuitively, a
set of attributes D depends totally on a set of attributes
C, denoted C = D, if all attribute values from D are



4.2 Computational Complexity

Prior to computing the relevance, dependency, or signif-
icance of a condition attribute, the hypercuboid equiv-
alence partition matrix and confusion vector for each
condition attribute are to be generated first.

The computational complexity to generate a (¢ =) hy-
percuboid equivalence partition matrix is O(en), where ¢
and n represent the number of classes and objects in the
data set, respectively, while the generation of confusion
vector has (n) time complexity. In effect, the computa-
tion of the relevance of a feature has (M en+n) =)0(cn)
time complexity. Hence, the total complexity to compute
the relevance of m features, which is carried out in step
2 of the proposed algorithm, is O(men). The selection of
most relevant feature from the set of m features, which
is carried out in step 3, has a complexity O(m).

There is only one loop in step 4 of the proposed
feature selection method, which is executed (d—1) times,
where d represents the number of selected features. The
computation of dependency of a candidate feature has
the complexity (ecn). Similarly, the complexity to com-
pute the significance of a candidate feature with respect
to another feature has also the complexity Q{en). If +h
represents the cardinality of the already selected feature
set, the total complexity to compute the significance and
dependency of (m — 9] candidate features, which is
carried out in step 5, is O({m —v)en). The selection of a
feature from (m — ) candidate features by maximizing
relevance, dependency, and significance, which is carried
out in step 6, has a complexity O(m — ). Hence, the
total complexity to execute the loop (d — 1) times is
(O(d— 1) — ) + (m—ilen)) =)D den{m — i),

In effect, the selection of a set of d relevant and sig-
nificant features from the whole set of m features using
the proposed hypercuboid equivalence partition matrix
based first order incremental search method has an
overall computational complexity of (O(men) + O(m) +
MNden(m — i) =)Ddnm) as o0 << m.

5 QUANTITATIVE INDICES

In this section, some quantitative indices are introduced,
incorporating the concepts of rough sets [3] and hyper-
cuboid equivalence partition matrix.

5.1 Average Accuracy, o Index

The « index represents the average accuracy of « classes.
It is the average of the ratio of number of objects in lower
approximation to that in upper approximation of each
class and is given by

_ Ly~ 4@ -
¢ =1 |A{5]
where |A(3;)| = Z hy; (S); (37)
=1
JAB =D _hyy(8) N [L — vy(8)] (38)
=1
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represent the cardinalities of upper and lower approxi-
mations of the class 3, respectively, h;;(5) and v;(5) are
hypercuboid equivalence partition matrix and confusion
vector of condition attribute set 5, respectively.

The o index captures the average degree of complete-
ness of knowledge about all classes. A good feature set
should make all classes as separable as possible. The
a index increases with decrease in overlapping among
different classes. When A(3;) = A(3;), ¥4, that is, all the
classes {3} are exact or definable, then we have o = 1.
Whereas if A(3;) = BND4(3,), ¥i, the value of o = ().
Hence, () < o < 1.

5.2 Average Roughness, ; Index

It represents the average roughness of ¢ classes and is
defined by subtracting the average accuracy o from 1:

L o [A(E)I
g=l—a=1— - =
e i=1 |A':.‘Ii!:||

(39)

where |[A(3;)| and |A(3,)| are given by (37) and (38),
respectively. Note that the lower the value of p, the better
is the overall classes approximations. Also, () < p < 1.
Basically, p index represents the average degree of in-
completeness of knowledge about all classes.

5.3 Accuracy of Approximation, «* Index

The o* index represents the accuracy of approximation
of all classes and can be defined as

(40)

where |A(3,)| and |A(3,)| are given by (37) and (38),
respectively. It captures the exactness of approximate
classification. A good feature selection procedure should
make the value of o* as high as possible. The o* index
maximizes the exactness of approximate classification.

5.4 Quality of Approximation, ~ Index

It is the ratio of the total number of objects in lower
approximations of all classes to the cardinality of the
universe of discourse U and is given by

1w o
thallii ;Iz_ﬂcidl. (41)

where |[A(3;])| is given by (38). The + index basically
represents the quality of approximation of a classification

algorithm. A good feature selection procedure should
make the value of v index as high as possible.
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uniquely determined by values of attributes from C. If
there exists a functional dependency between values of
T and [, then [ depends totally on C.

Given < LA =, 4 and 4; are two condition at-
tributes of 4. The cxn hypercuboid equivalence partition
matrix corresponding to the set {4,..4;} can be calcu-
lated from two ¢ x n hypercuboid equivalence partition
matrices H{.4;) and H{.4;) as follows:

H{ {Ax, Ai}) = H{Ap) nH(A); (25)
where by ({Ak Ai}) = b (Ae) Nhg(Ar). (26)
Hence, the ¢ = n hypercuboid equivalence partition

matrix of the set C = {4;,---, A, -+, Ay } of condition
attributes is given by

H(C)= (] H(A); where hi;(C) = [] hy(Aw). 27)
Apel A el
In this regard, it should be mentioned that the concept
of positive approximation accelerator [30] can be used to
improve the computing performance of dependency of a
condition attribute set T,y = {41, Ao, ---, A1} using
the following recursive expression principle:

POSE: | (D) = POSE (D)U PrJSji*; ' (D); (28)

where Upyy = U; — POSE (D) = {zlv,(C:) =1} (29)

and 1, =1 In effect, the decision atiribute set [ can be
positively approximated using granulation orders C; and
Ciy1 on the gradually reduced universe, respectively.

The change in dependency when an attribute is re-
moved from the set of condition atiributes, i1s a measure
of the significance of the attribute. To what extent an
attribute is contributing to calculate the dependency on
decision attribute can be calculated by the significance of
that attribute. Combining (5), (24), and (27), the signif-
icance of the attribute .4, with respect to the condition
attribute set T is given by

oo, A) = = Y AC—{AD - vi(O  6O)

where 0 < o[, 4. ) < 1. Hence, the higher the change
in dependency, the more significant the attribute .4, is.
If significance is 0, then the attribute is dispensable.

4 PRoOPOSED FEATURE SELECTION METHOD

The real life high dimensional data set may contain
a number of irrelevant and insignificant features. The
presence of such features may lead to a reduction in the
useful information and degrade the prediction capability.
The selected feature subset should contain the features
those have high relevance and high dependency with
the classes and high significance in the feature set. Such
features are expected to be able to predict the classes of
the samples. Accordingly, a measure is required that can
assess the effectiveness of a feature set. In this paper,
rough set theory and hypercuboid equivalence partition
matrix are used to select relevant and significant features
from high dimensional data sets.

4.1 Rough Hypercuboid for Feature Selection

Let © = {A4;,---, A;,---, Aj,---, A, } denotes the set
of m features of a given data set and S is the set of
selected features. Define ~4,(I[0) as the relevance of the
feature .4; with respect to the class labels I, ~3(II) as
the dependency of the class labels I' on the selected
feature set 5, while oy 4, 4..([,.4;) as the significance
of the feature 4; with respect to another feature 4; € &.

The average relevance of all selected features is, there-
fore, given by

1 .
LTmhw o] @ Z T ':.JE':I' {31}
Ael
the dependency of the class labels I' on the selected
feature set 5 is given by
x-rlquhrp-uu — F:'ﬂq,]]}:h {-32}

while average significance among selected features is

3 o paay DA + o, (DA}

A A e
&?:-sigul' == I

SIS 1) )

Therefore, the problem of selecting a set 5 of relevant
and significant features from the whole feature set T is
equivalent to maximize e, Jiepen, and e, that is,
to maximize the objective function .7, where

JF == "-"-'Lxl?;:dm.' + q,]- = M:I[}L\IJMM.*H =t {1 = }':I\T:-siguf,l

where w and A are two weight parameters. To solve the
above problem, the following greedy algorithm is used.
1) Initialize C « {A;,---, 4o 4, AL+ 0.
2} Calculate the relevance .4, (M) of feature A, & C.
3) Select .4; as most relevant feature that has highest
relevance 4. (). In effect, A; e Sand T=T" A,
4) Repeat the following two steps until C = 0 (or the
desired number of features d is selected).
5) Repeat the following two steps for each of the
remaining features of C.

a) Calculate dependency and average signifi-
cance of each feature 4; € T with respect to
the already selected features of &.

b) Remove 4; from C if the dependency remains
same with respect to the already selected fea-
tures. In effect, C =C" 4;.

&) From the remaining features of T, select feature A
that maximizes the following condition:

wy.A; (D) + M1 — w)[vqs.4, (D) — 7s(D)] +
(1—w)(l—N) ;
R L Ty (BA). ()

' A; €8
As a result of that, 4; eSand C=0T" 4.

Both relevance ~, () of a feature .4, with respect to
class labels [ and dependency ~s(I}) of class labels I on
the selected feature set 5 are calculated using (24), while
significance oz(ID, .A4;) of the feature .4; with respect to
the set § is computed using (30).

(34)
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6 EXPERIMENTAL RESULTS

The performance of proposed hypercuboid equivalence
partition matrix based feature selection method is ex-
tensively studied and compared with that of some
existing feature selection algorithms. The performance
of “Max-Relevance Max-Dependency Max-5Significance”
(MEMDMS) criterion is also compared with that of
different combinations of the individual components of
the proposed hybrid criterion. All the algorithms are
implemented in C language and run in Ubuntu 10.04
having machine configuration Pentium D, 2.66 GHz, 2
MB cache, and 4 GB RAM. Several benchmark data
sets, namely, Iris, Satimage, Isolet, lonosphere, Segmen-
tation and Multiple Features of UCI Machine Learning
Repository [31], and Breast Cancer, Lung Cancer, DLB-
CLNIH, Prostate Cancer and Leukemia of Kent Ridge
Bio-Medical Data Set Repository [32] are used to evaluate
the performance of different methods. The leave-one-
out cross-validation is performed on Isolet, lonosphere
and Multiple Features data sets, while training-testing is
done on remaining data sets.

6.1 Feature Evaluation Indices

Following five feature evaluation indices are used to
evaluate the performance of different algorithms.

6.1.1 Class Separability Index

The class separability index 5 [2] of a data set is defined
as § = trace(Vg Wi ), where Vi is the within class
scatter matrix and Vg is the between class scatter matrix,
defined as follows:

Vw = Z mi E{(X — p; )(X — j‘l'_-':ITl-‘;i_-'.} = Z LNE
i=1 i=1

Ve = Z‘TJ':“J' — i)y — @) iand i= B{X} = Zﬂ-}j‘l‘i:
i=1

=1

where ¢ is the number of classes, 7; is a priori probability
that a pattern belongs to class 3;, X is a feature vector,
is the sample mean vector for the entire data points, j;
and £, represent the sample mean and covariance matrix
of class j3;, respectively, and E{-} is the expectation
operator. A lower value of § ensures that classes are
well separated by their scatter means.

6.1.2 Entropy
The entropy E of a data set is defined as [33]:

E=-)"% 8 xlbog8;+(1—Sy) x log(l - Syj) (42)

=1 3=1

where S;; = e D represents the similarity between
two objects x; and =z, o is '—"-I':%, D is the average
distance between data points computed over the entire

data set, and the distance I);; between z; and =z, is

o

o, =[5 (=2

k=1

(43)

where ;. is the feature value for z; along kth axis, ma,,
min are the maximum and minimum values computed
over all samples along kth axis, and d is the number of
features. If the data is uniformly distributed in feature
space, entropy is maximum. When the data has well-
formed clusters uncertainty is low and so is entropy.

6.1.3 Representation Entropy
The representation entropy is defined as [2]

o

o : . A
Hy = _Z}‘-’ log Aj; where \j = —~ (44}
=1 Zj.l:l}'.-'
and A;.j = 1,---.d are the eigenvalues of d x d co-

variance matrix of a feature set of size d. The function
Hy attains a minimum value zero when all eigenvalues
except one are zero, that is, when all the information
is present along a single coordinate direction. If all the
eigenvalues are equal, that is, information is equally
distributed among all the features, Iy is maximum and
s0 is the uncertainty involved in feature reduction.

6.14 Support Vector Machine

The support vector machine (SVM) [34] is a margin
classifier that draws an optimal hyperplane in the feature
vector space; this defines a boundary that maximizes the
margin between samples in different classes, therefore
leading to good generalization properties. A key factor in
the SVM is to use kernels to construct nonlinear decision
boundary. In the present work, linear kernels are used.

6.1.5 C4.5 Decision Tree

The C4.5 [35] is a decision tree based classification
algorithm. It is used for evaluating the effectiveness of
reduced feature set for classification. [t performs feature
selection in the process of training and the classification
models it builds are represented in the form of decision
trees, which can be further examined.

6.2 Result onIris Data

The relevance values of four features of Iris data ob-
tained using the proposed feature selection method are
(1.1867, 0.0467, 0.7533, and 0.7467, respectively, consider-
ing w = A = (L.5. Hence, the Feature 3 is selected first as
it has highest relevance value. After selecting Feature
3, the dependency, overall significance, and average
significance of each feature are calculated.

Dependency of each feature:

Feature 1: 0.7533; Feature 2: (0.7533; FPeature 4: (.8267
Overall significance of each feature:

Feature 1: 0.0000; Feature 2: 0.0000; Feature 4: (0.0733
Average significance of each feature:

Feature 1: 0.0000; Peature 2: (.0000; Feature 4: 0.0733

Based on the values of overall and average signifi-
cance, two features, namely, Features 1 and 2, are elim-
inated as they are insignificant features with respect to
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TABLE 1
Performance of Proposed Algorithm on Different Data Sets (w = 0.5, A =0.5)

D Hrerent Selected Performance on Training Set _ Performance on Test Set
Data Sets Features || SVM | (4.5 | « index | a index | ~ index || SV | CL5 | o index | a° imdex | ~ index
1 5769 | T435 0.163 (1164 0282 Jngd | 5789 (1400 0.407 0.579
2 6923 | BL05 0.321 0322 A&7 5263 | 57.89 (1455 0.462 0.652
Breast Cancer 3 7051 | 8974 .429 1431 0605 6842 | 6315 0.571 (.583 07537
mo= 24481, ¢ =2 4 7051 | 8974 0.520 0.529 0692 7368 | 6315 (1635 0652 0.789
n="T4:1%9 5 7051 | 8974 (1.586 0.592 0744 7368 | 6315 0705 0.727 0842
6 7051 | 9130 0.686 (.69 0821 TI6E | 6842 0.780 0.510 0.8395
7 7564 | 9130 0.727 0.733 (1540 THA5 | TI68 (.780 0.810 (0.895
1 5914 | 6112 (L0126 0021 s 5715 | 5845 005 (.21 0.091
2 THAT | 8L 0.053 (L0350 0124 a0 | FVA5 (.06 0.058 0.133
3 8016 | 8534 0.057 0038 01z 65 | TEAS 062 (.40 (.135
Satimage 4 8074 | 87.62 0.059 0041 0133 T7E5 | 745 (L0653 0.4z 0.139
m =16 c=6 5 158 | 90.30 0.061 o4z 0137 TE.ES | 7940 0067 0.(H6 0.149
n = 4435 1 2000 6 8169 | 9113 0.062 (1043 013 .10 | 7990 L0068 (L047 0.150
7 B625 | 933 0072 (L.057 0170 H3.90 | 83.50 0.0%% 0.061 0.183
& 8638 | 9411 0073 (L058 0173 8425 | 8375 (L0785 0.063 0.186
49 8656 | 9474 0074 .05 0174 845 | 8375 o7 0.065 0.188
10 8665 | 9542 (L0935 (084 0231 865 | 8430 144 (L1353 0.331
1 4509 [ 61.90 0.080 055 0200 Ha0 | 4285 0 0.003 0014
2 7286 | B85 03z 0.203 0414 .67 | 7438 0067 0.052 0.166
3 7809 | 90.45 0.419 0277 0481 7652 | Tel3 0.225 0.121 0.295
Segmentation ! B857 | 96.19 0.626 .525 0710 8886 | BE42 (1435 0.268 0.476
m=18, c=7 5 9143 | 9714 0.679 (L6006 0770 .36 | 8933 0462 0.321 0.523
n o= 210 : 2100 6 9238 | 9714 0.687 .618 0780 .86 | 8933 0.465 0.325 0.525
7 9333 | 9714 0.729 (La8d 0833 9276 | 8933 (1468 (.328 0.527
& 9381 | 9714 0.739 0697 (1543 9262 | 8933 0469 0.329 0.528
9 9381 | 9714 0.752 0715 (0845 9267 | 89.62 0,470 0.3350 0.529
10 9381 | 9714 0.752 0.715 (1545 9524 | 90.00 0472 0.352 0.529
the already selected feature, namely, Feature 3; only the . :
remaining feature, namely, Feature 4 is selected next :
as the second feature that has the objective function s
value 0.41. Fig. 2 presents the scatter plots of samples A
from three classes of Iris data set, along with three 2
two-dimensional class hypercuboids constructed with 3 &
Features 3 and 4. Each hypercuboid encloses a region I
in the two-dimensional space. However, the class hy- B s
percuboids for Classes 2 and 3 intersect with each other S N
and the intersection forms an implicit hypercuboid. The oot
o 15k i)
implicit hypercuboid encompasses the misclassified sam-
ples or objects those belong to more than one classes. The B T T T T T

values of different quantitative indices for Features 3 and
4 are reported next, along with that for whole feature set.

Measures,/ Features Jand4 1t 4
Classification accuracy, SVM | 95.33%  96.00%
Classification accuracy, C4.5 098.00%  98.00%
Class separability index, S (1.069 {1350
Entropy, E 0.690  0.741
Representation entropy, Hy 0.097 (L.879
Average accuracy, o 0.723 0.723
Accuracy of approximation, o | (1.705 [1.705
Quality of approximation, ~ (.827 0.827

The results reported above establish that the proposed
method selects most effective features from the whole
feature set by maximizing relevance, dependency, and
significance of the selected features.

6.3 Effectiveness of Proposed Method

To better understand the effectiveness of the proposed
method, extensive experimental results are reported in

Faature 3

Fig. 2. Rough hypercuboids for Iris data in two dimension

Table 1 for Breast Cancer, Satimage, and Segmentation
data sets. Subsequent discussions analyze the results
with respect to various proposed quantitative indices
such as o, a*, and ~, and the classification accuracy of
both SVM and C4.5. Results are presented for different
values of the number of selected features d, considering
weight parameters w = A = (L5, All the results reported
here confirm that as the number of selected features d
increases, the classification accuracy of both SVM and
C4.5 as well as the values of o, o, and ~ indices increase.
Finally, all the indices are saturated when d equals
to the number of selected features for each data set.
Hence, the proposed indices such as o, o*, and + can be
used to act as the objective function of feature selection
algorithm in approximation spaces as they reflect good
quantitative measures like existing SVM and C4.5. Also,
the values of different indices for training and testing
confirm that the proposed feature selection algorithm
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TABLE 2
Performance of Proposed Feature Evaluation Criterion on Different Data Sets

Ditferent Selected || Parameters Dhifferent Evaluation Criteria
Data Sets Features | w A SVM (%) | C45 (%) | & index o g aindex | o index | v index
| 1.0 ¥ R oY 0779 | Zebs 0778 0810 0.595
Breast Cancer an [N L] 12RH O7El | ZeA7 075 (.50 (.55
m = 24481 0.0 10 ] 65.42 15714 | 0779 | 2678 (.590 0.900 0.947
n=T8:1% d=7 05 a6 5789 9. 706 (752 | 2585 (.75 0.800 0.5847
c=32 | ai 7HS 7568 989 07 | Eeed 075 0810 0.595
0.5 10 7895 7368 9.879 0777 | 26l (.78 0.810 0.895
05 78.95 7368 9.579 0777 | 26l (.78 0.510 0.895
[0 ¥ [ ®% | ®10 | 04T | 07% [ 325 | 008 | 0069 | 0%
Satimage : Qi &850 B 032 |07 | 335 | 008 0.077 0.220
m =36 0.0 10 B H5.60 0416 0767 | 3.193 0149 0.135 0.338
no=4435 : 2000 | d=10 05 85.15 85.20 0.385 0780 | 3.220 0143 0.129 0.328
c=f | ai BLE] Fr ] 0353 0750 | 344 .05z 0.0 0.0
0.5 10 B B30 0372 0754 | 3243 R 0.133 0331
05 Bah B30 0.372 0754 | 3243 014 0133 0331
| 1.0 % 5827 B0 1.679 02% | 4416 0007 0.004 0044
Eolet | ai 6031 5651 1.507 0% | 4474 iKY 0.005 [
m = (17 0.0 10 a7 U 18 0.919 027 | 4.433 0.1m 0.055 0.258
n= T d=25 || 05 5659 ] 0.515 027 | 4416 .00 0.058 0. 260
o= | ai A7 5 L5995 02% | 4468 (008 (L0035 004
0.5 10 5541 U B8 0.789 0276 | 4464 Q.093 0.058 0.257
05 Be.92 95.20 0.782 027 | 4478 01m 0.072 0.285
| 1.0 % 758 6504 (.788 0793 | 3.518 0949 0.545 0.973
Leukemia | ai ] TRAT (.55 0795 | 354 T 0.9a5 (.952
m = 125568 0.0 10 8.3 7768 1.800 (0810 | 3.297 0923 0431 0.904
n=1215:112 d =49 05 A3 7679 0.541 0798 | 3.309 0932 0.945 0.973
=7 | an i ] A (1.500 0791 | 3553 T 0.9a5 0.552
0.5 10 B2 7143 0.544 0792 | 3.652 0943 (.95 0.9582
| 05 §9.29 850 0.716 0763 | 3711 0960 0.9a5 (.952
| 1.0 * 5652 9173 9.188 0759 | 317 0.1a? 0194 0.325
lonosphere ain 5652 B 557 0758 | 312 01a2 [INEE! 0.3
m =33 0.0 10 §7.18 95.72 9.168 0759 | 3126 0led 0.198 0.328
n=J3hl d=1 05 §7.18 95.72 9.168 0759 | 3126 016 0.19% 0.328
c=1 | an 5052 5.7z R 075 | 3128 01aZ 0194 0325
0.5 10 §7.18 4 58 9.168 0759 | 3126 01ed 0.198 0.328
| 05 87.7A S8.00 §.597 0758 | 3126 014 0.198 0.528
| 1.0 ¥ 9105 L0 0.747 trrs | 2271 0470 0.529 0.5258
Segmentation | an 3 ] 538 .52 07ed | 2 0475 0333 0.531
m =18 0.0 10 9286 5.2 0.759 0793 | 2.006 0472 0332 0.522
fo= 210 : 2100 d =10 05 95,24 .00 (.681 0793 | 1.977 0472 0.329 (.525
=7 | ain Er a7 0512 07ee | ZFS 0471 0550 0550
0.5 10 x4 562 0.699 0769 | 2.400 0470 0322 0.520
| 05 95.24 S0.00 0.159 0769 | 2.400 0472 0.332 0.529

can generalize a data set irrespective of the number
of original and selected features, classes, and samples.
However, the classification accuracy of the SVM using
7 selected features on test set of Segmentation data is
higher than that obtained using 8 and 9 features.

6.4 Importance of Relevance and Significance

To establish the effectiveness of proposed MEMDMS cri-
teriom for feature selection over other eriteria, extensive
experimental results are reported in Table 2 with respect
to classification accuracy of both SVM and C4.5, and
different quantitative indices such as 8, Hg, E, o, o*, and
7. The results obtained using the MR, MD, MS, MEMD,
MEMS, and MDMS criteria, which are equivalent to the
MBMDMS criterion with w = 1.0, {w = 0.0, A = 1.0},
{w=00,A=0.0}, {w=05Xx= 10}, {w=05Xx=00},
and {w = 0.0, A = 0.5}, respectively, are also presented
in this table for the sake of comparison,

From the results reported in Table 2, it is seen that the
performance of proposed MEMDMS criterion is better
than that of MR and MRMD criteria irrespective of the

data sets and quantitative indices used, and that of
other criteria in most of the cases. The MD criterion
achieves better performance in terms of o, o*, and ~
indices for Breast Cancer and Satimage data, i value
for Breast Cancer data, and classification accuracy of
the C4.5 for Satimage data. The MS criterion provides
higher values of Hgy for Breast Cancer data and a, a*,
and v for Segmentation data. On the other hand, the
MRMS criterion attains higher classification accuracy of
the SVM and H i value only for Satimage data, while the
MDMS criterion achieves higher classification accuracy
of both SVM and C4.5 for Satimage data, and lower
value of § index for Breast Cancer data. Out of total
288 cases, the proposed MREMDMS criterion achieves
significantly better results than other criteria in 270 cases.
Hence, the proposed criterion must be used to get a
reduced set of relevant and significant features.

6.5 Optimum Value of Weight Parameter .v

The parameter w regulates the relative importance of the
significance, both average and overall, of the candidate
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TABLE 3
Performance on Various Data Sets for Different Values of Weight Parameter w (A = (1.5)

D Herent Evaluation Value of Weight Farameter w ]
Data Sets Criteria [iKi] 0 (1] i3 04 a5 e [ 07 LEEE] 10|
SWVM (%) 6316 | 6316 | 6316 | TI6E | THO5 | YHOS | FRO5 | Y95 | YHO5 | THOS | 6842 |
C4.5 (%) 5789 | 6842 | 6842 | 6B42 | T36E | 368 | TieS | YA6E | 6516 | 6315 | 6315
& index 9706 | 9706 | 9706 | 12761 | 9879 | 9879 [ 9879 | 9879 | 98/ | 989 | 9859
Breast Cancer E 0782 | 0782 | 078 | 0782 | OF7 | 0777 | 0777 | 0777 | Q777 | 0577 | 075
d=7 Hpy 2585 | 2585 | 2585 | 2591 | 2e6l | 2661 [ 266l | 2661 | 266l | 2661 | 2653
o index 0786 | 0576 | 077 | 0576 | 0786 | 0786 | 078 | 0.786 | 0786 | 0.786 | 0778
o index (0800 | 0800 | 0800 | 0800 | 0810 | 0810 [ Q810 | 0810 | 0810 | 0810 | 0810
v index 0847 | 0847 | 0847 | 08T | 0895 | 0895 | 0895 | 0895 | 0895 | 0895 | 0.595 |
SWVM (%) 8515 | 8440 | 8440 | B465 | 8465 | 465 [ 8430 | 5420 | R | BR20 | E3A)
C4.5 (%) B53X) | H3B5 | 8385 | B430 | B4.30 | 8430 | 8345 | B345 | B30 | B310 | E310
& index 0385 | 0361 | 0361 | 0372 | 0372 | 0372 | 0400 | 0400 | 0411 | 0411 | 0411
Satimage E 0760 | 0757 | 0757 | 0754 | 0754 | 0754 | 0759 | 0.759 | 0755 | 0755 | 0755
d=10 Hp 32X | 3214 | 3214 | 3243 | 3243 | 3243 | 3222 | 3222 | 3225 | 3223 | 3223
o index 0143 | 0140 | 0140 | 0144 | 0144 | 0344 | Q07 | 0009 | 008 | 0084 | 0084
a* index 012 | 0128 | 0128 | 0133 | 013 | 0133 | Q0a5 | 0065 | 0069 | 0.069 | 0069
7 index 032 | 0323 | 0323 | 0331 | 0331 | 0331 | 190 | 0.190 | 0204 | 0204 | 0204
SWVM (%) Ba89 | 80Al1 | BE4L | 8847 | 88.71 | BR9Z | Ba56 | VRFV | 6478 | 5EZ9 | 583 |
C4.5 (%) 9463 | 32 | 9531 | 9534 | B2 | 9520 | 94X | 9245 | 8946 | BE19 | V.
& index 0815 | 0813 | 0775 | 0774 | 0817 | 0782 [ 0959 | 1.293 | 1491 | 1.49 | 1679
[solet E 027 | 026 | 027 | 0.6 | 027 | 0276 [ 02% | 0% | 027 | 0276 | 027
d=25 Hpy 4416 | 4418 | 4397 | 4399 | 44009 | 4478 [ 4434 | 4347 | 4426 | 4459 | 4416
o index 0090 | 0089 | 0090 | 0,091 | 0090 | 0101 [ Q057 | 0030 | 0010 | 0.008 | QU007
o index 0058 | 0055 | 0063 | 0067 | 0063 | 0072 [ Q041 | 0021 | 0006 | 0.004 | 0004
7 index 0260 | 0254 | 0262 | 0260 | 0255 | 0265 [ 0202 | 0142 | Q053 | 045 | Q04 |
UM || 5504 | 561 | BR% | BEXY | X | BN | B® | Tie [ S |85 | E
C4.5 () 7o | 6518 | 6780 | 6786 | 6875 | 036 | 685 | Y411 | 143 | T143 | 6804
& index 0841 | 0842 | 0825 | 0795 | 0807 | 0716 | 0788 | 0747 | 0725 | 0.725 | 0788
Leukemia E 079 | 0797 | 079% | 0795 | 0795 | 0Fe3 | 0793 | 0788 | 0782 | 0782 | 0793
d= 49 Hpy 3309 | 3526 | 3715 | 316 | 3714 | 3711 | 3711 | 3540 | 3539 | 3539 | 3518
o index 0932 | 090 | 0960 | 0590 | 0960 | 0960 [ 0960 | 0960 | 0951 | 0.951 | 0949
o index 0945 | 095 | 0965 | 095 | 0965 | 0965 [ 0965 | 0965 | 0962 | 0942 | (948
+ index 0973 | 0982 | 0982 | 0982 | 0982 | 0982 | 0982 | 0982 | 0951 | 0.9581 | 0973
SVM () BUIE | BVIE | BUAS | BUAE | BAOE | BAYD [ BFOR | BVIE | BUIE | VIS | Be3R |
C4.5 (%) Q9572 | 9173 | 9173 | 9173 | 9173 | 9800 [ 9173 | 9LY3 | 9173 | 9173 | 91.73
& index Q168 | 9168 | 9168 | 9168 | 9168 | B897 [ 9168 | 9168 | 9168 | 9168 | 9168
lonosphere E 075 | 0759 | 075 | 0759 | 0759 | 0758 [ 0759 | 0.759 | 0759 | 0759 | 0759
d=1% Hpy 3126 | 3126 | 3126 | 3126 | 3126 | 3126 | 3126 | 3126 | 3126 | 3126 | 3126
o index 0164 | 0164 | 0164 | 0164 | 0164 | Oded | Osd | 0164 | 0164 | 0164 | 0162
o index 01% | 0196 | 019% | 019 | 0.19% | 019 [ 0.1% | 0.19 | 0.1% | 0.19 | 0.1
7 index 0328 | 0326 | 0325 | 0328 | 0325 | 0328 | 0328 | 0328 | 0328 | 0328 | 0325 |
SVM ) O5F [O5E% | 92905 | 9234 | U | 0534 | 9245 | 9243 | 924 | 9248 | 915 |
C4.5 () 9000 | 000 | 8952 | 952 | B9.52 | 90.00 | 8962 | B962 | B9YG | 976 | S0.00
& index 0681 | 0681 | 0681 | 0700 | OF00 | 0159 [ 0974 | 0974 | Q747 | 0747 | 0747
Segmentation E 0793 | 0793 | 0788 | 0570 | OF70 | 0Fe9 [ Q792 | 0792 | 0775 | 0775 | 0775
d=10 Hpg 1977 | 1977 | 2261 | 2386 | 238 | 2400 | 2328 | 2328 | 2271 | 2271 | 2271
o index 0472 | 0472 | 0472 | 0471 | 0471 | 0472 | 0470 | 0470 | 0470 | 0470 | 0470
o index 033 | 0329 | 0330 | 0332 | 0332 | 0332 | 0332 | 0332 | 0332 | 0332 | 0329
7 index (0528 | 0528 | 0522 | 0529 | 0529 | 0529 [ 0522 | 0.522 | 0.521 | 0.521 | Q528 |
feature with respect to the already selected features and A = 0.5, From the results reported in Table 3, it is

the relevance with the output class. If w is one, only
the relevance of each feature with the output class is
considered. If the significance between features is not
taken into account, selecting the features with the highest
relevance with respect to the output class may tend to
produce a set of redundant and insignificant features
that may leave out useful complementary information.
On the other hand, if w 15 zero, the features are selected
based on their average and overall significance values
only without considering the relevance of each feature.
In effect, the selected feature set may contain a number of
irrelevant features. Hence, the value of weight parameter
w should be in between zero and one in order to obtain
good results, that is, | <w < 1.

Table 3 presents the performance of proposed feature
selection method for different values of w considering

seen that as the value of w increases, the classification
accuracy of both SVM and C4.5, and the values of Hg,
o, o, and v indices increase, whereas the values of 8§
index and I decrease. The performance of the proposed
method detoriates when w = (.0 and 1.0 as the selected
feature set may contain irrelevant features for w = 0.0
and redundant and insignificant features for w = 1.0.
The proposed method achieves its best performance at
0.4 =< w =< .7 for Breast Cancer data, 0.3 =< w < 0.5
for Satimage data, and w = (.5 for Isolet, Leukemia,
lonosphere, and Segmentation data with respect to most
of the quantitative indices. Hence, it provides its best
performance for w = 0.5 irrespective of the quantita-
tive indices and data sets uwsed. In other words, the
best performance of the proposed method is achieved
when nearly equal weightage is given to both relevance
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TABLE 4
Performance on Various Data Sets for Different Values of Weight Parameter A (. = 0.5)
[Chfferent Evaluation | Value of Weight Farameter A

Data Sets Criteria (i} 01 [1§] 0.3 | ud 0.5 6 ik [IF:] 09 10
SVM (%) 5480 | 8480 | B4B0 | 8480 | 8450 | 8465 | 8465 | 8465 | 8465 | Bab | Bdab

C45 %) 5295 | 8295 | 295 | £.95 | 8295 | 84.30 | §4.30 | 84.30 | 5430 | 84.30 | 8430

& index 0.383 | (0383 | (.383 | 0383 | Q383 | 0372 | 0.372 | 0372 | 0.372 | 0372 | 0.372

Satimage E 0.755 | 755 | 0.755 | 0755 | 0.755 | 0754 | 0.754 | 0754 | 0.754 | 0.754 | (0.754
d=10 Hg 324 | 3244 | 3244 | 3244 | 3244 | 3243 | 3243 | 3243 | 3243 | 3243 | 3243
o index 0.082 | 0082 | 0.082 | Q082 | 0082 | 0144 | 0144 | 0144 ) 0144 | 0144 | 0.144

a” index 0070 | Q07 | 0070 | 00D | 0070 | 0133 | 0133 | 0133 | 0133 | 0133 | 0.133

~ index 0.200 | Q200 | 0.200 | Q200 | 0200 | 0331 | 0.331 | 0331 | 0.331 | (.331 | 0.331

SVM (%) 5701 | 75.34 | B533 | 8735 | 8723 | 8592 | 8871 | B8.69 | BF91 | 8798 | 5841

C45 (%) B771 | 8765 | 9184 | .49 | 9446 | 9520 | 9510 | 4.8 | 9501 | .77 | 9488

& index 1.595 | 147 | 1.280 | 0907 | 0.903 | .78 | 0.880 | 0.817 | 0.781 | 0.807 | (.789

Isolet E 026 | 027 | 0276 | 027 | 0276 | 0276 | 0276 | 0276 | 0.276 | 0278 | 0.27a
d =125 Hp 4468 | 4473 | 4339 | 4430 | 4454 | 4478 | 4394 | 4409 | 4428 | 4466 | 4484
o index 0.008 | 0007 | 0.034 | Q038 | 0.0al | 0101 | 0081 | Q087 | 0.090 | 0.0% | 0.093

a* index 0.003 | 000 | 0.018 | Q041 | 0044 | 0072 | 0.063 | 0063 | 0.065 | 0038 | 0.058

~ index 0044 | 0044 | 0133 | 0199 | 0210 | 0265 | 0.254 | (258 | 0.262 | (0.261 | 0.257

SVM (%) 5125 | 8571 | B839 | 88.30 | 8839 | 892X | §5.39 | 5839 | 8929 | §7.50 | 8482

C45 %) 7500 | 75.00 | 6875 | 6875 | 6875 | 8036 | 6R75 | 6875 | 6875 | 7232 | 7143

S ind 0866 | 0761 | 0.805 | 0805 | O.788 | 0716 | O.788 | 0788 | 0.787 | 0.798 | (.844

Leukemia E 0791 | 0792 | 0793 | 079 | 0793 | 0763 | 0.793 | 0793 | 0.793 | 0.7 | 0.792
d =49 Hp 3523 | 3512 | 3600 | 3V05 | 3711 | 311 | 3711 | ATI1 | 3709 | 3648 | 3.652
o index 0.90 | 0960 | 090 | 0960 | 0.90 [ 0960 | 0.90 | 0960 | 0.9%0 | 0960 | 0.943

a” index 095 | 0945 | 0.9%5 | 0945 | 0.95 [ 0945 | 0.965 | 0965 | 0.95 | (.9a5 | (.9a5

~ index 0.982 | 0982 | (.982 | 0982 | 0.982 | Q982 | 0.982 | 098 | 0.982 | (982 | (.982
BT IR S R A AR AR A R AR & BE A AR A BE AR A BETALS

C45 %) 9572 | 95.72 | 9572 | 98.00 | 98.00 | 95.00 | 9500 | 4.58 | 9458 | 94858 | 9458

S ind 9168 | 9168 | 9188 | 9168 | 9168 | BE9F | 9.168 | 9168 | 9.168 | 9.168 | 9.1a8

lomosphere E 0.759 | 0.759 | 0.759 | 0759 | 0.759 | Q758 | 0.759 | 0759 | 0.759 | 0.759 | (.7R9
d=9 Hg 3126 | 3128 | 3126 | 3126 | 3126 | 3126 | 3126 | 3126 | 3128 | 3126 | 3126
o index 0162 | 0.1ed | 0164 | O1ed | 0164 | 016d | 0164 | O1sd | 0164 | 0184 | 0.184

o index 0.194 | 0.1% | 0.19a | 0.1% | 0.196 | 019 | 0.196 | 0.1%9% | 0.198 | 0.19% | (.194

~ index 0325 | 0328 | 0328 | 0328 | 0.328 | 0328 | 0.328 | 0328 | 0.328 | (.328 | (.328

SVM (75) OFqa7 | 9243 | 9F43 | 9r M [ 9FE |95 | 9REY | 9 | 9FXI | 9rHE [ 9xH

C45 %) 5967 | 8942 | B9a2 | 8942 | 8942 | 90.00 | §9.62 | 962 | B9.62 | 89.42 | B9.a2

S index 0.512 | 0974 | 0974 | 0699 | 0699 [ 0159 | 0.699 | 0699 | 0.699 | 0.699 | (.699

Segmentation E 0.769 | 0792 | 0.792 | 0769 | 0709 | 0769 | 0.769 | 0769 | 0.7089 | 0.769 | (0.789
d=10 Hp 225 | 2328 | 2328 | 2400 | 2400 | 2400 | 2400 | 2400 | 2.400 | 2400 | 2.400
o index 0471 | 0471 | 0471 | 0471 | 0472 | 0472 | 0472 | 0472 | 0470 | 0470 | 0470

a” index 0.330 | 0330 | 0.330 | 0332 | 0332 | 0332 | 0322 | 032 | 0.322 | (322 | (.322

v index || 0.530 | 0.530 | 0.522 | 0529 | 0.529 | 0529 | 0.529 | 0.529 | 0.529 | 0.529 | 0.520
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and significance of each feature selection. However, the
values of & index at 0.0 < w =< 0.2 and w = 1.0 for
Breast Cancer data and w = 0.1 and (2 for Satimage
data are lower than that obtained at w = 0.5. Also,
the proposed method provides highest accuracy of both
SVM and C4.5 at w = 0.0} for Satimage data, that of the
C4.5 at w = 0.2 and 0.3 for Isolet data, and highest value
of Hg at 0.2 < w < 0.4 for Leukemia data.

6.6 Optimum Value of Weight Parameter A

The weight parameter A controls the relative importance
of average significance of the candidate feature with
respect to the already selected features and the overall
significance of the feature or dependency of the output
class on the set of selected features. If A becomes one,
only the dependency of the output class on the selected
feature set is considered. On the other hand, the features
are selected based on their average significance values
only when A is zero. In effect, the dependency between
data distribution in multidimensional space and output
class is not considered in this case. Hence, the value of
parameter A should also be in between zero and one in
order to obtain better performance, thatis, 0 < A< 1.

Table 4 presents the performance of proposed method
for different values of A considering w = (1.5, From the
results reported in Table 4, it is seen that the proposed
method achieves its best performance at (L5 << A < 1.0
for Satimage data, and A = (.5 for Isolet, Leukemia,
lonosphere, and Segmentation data with respect to most
of the quantitative indices, while the performance re-
mains unchanged on Breast Cancer data irrespective of
the values of A That is, it provides its best performance
for A = (L5 irrespective of the quantitative indices and
data sets used. In other words, the best performance
of the proposed method is achieved when nearly equal
weightage is given to both average significance and
overall significance or dependency for each feature se-
lection. However, the proposed method provides highest
classification accuracy of the SVM at 0.0 < A < .4 for
Satimage data, and 0.2 < X < 0.4, A = 0.6 and 0.7 for
Leukemia data. Also, the highest value of ~ index for
Segmentation data is obtained at A = (1.0 and 0.1.

6.7 Performance of Different Rough Set Models

Furthermore, extensive experiments are done to evaluate
the performance of different rough set models such as
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TABLE 5
Comparative Performance of Various Rough Set Models on Different Data Sets

D Hrerent Dhfferent Rough Ditferent Evaluation Criteria
Data Sets Set Models d | SVM ) | C45 (%) 5 | E e | « a | 7 Time (ms)
Pawlak's Rough Sets 8 RT3 5790 12615 | 0781 | 2497 | 0770 | 0795 | (0.785 312744
Breast Meighborhood Rough Sets 13 FERE: 5790 7401 0778 | 2661 | 0781 | 0.795 | (.84 2163081
Cancer Fuzzy Rough Sets 10 6542 5790 B85 | 0778 | 2653 | 0775 | 0800 | 0.890 1090860
Rough Hypercuboid 7 7895 FERE: 987 | 0777 | 266l | 0786 [ 0510 | (0.895 1344
Pawlak's Rough Sets f a9 7E40 0467 | 0754 | 2821 | (081 | 01 | 0.R5 78131
F— Meighborhood Rough Sets 15 TEAD 5140 0478 | 0.754 | 2985 | 0.112 | 0126 | 0117 95217
Be Fuzzy Rough Sets 11 TR0 5190 0460 | 0.755 | 3006 | 0.136 | 0130 | 0.199 91383
Rough Hypercuboid 10 B 54.30 0372 | 0.754 | 3243 | (0.144 | 0135 | 0.331 402
FPawlak's Rough Sets 19 SRS B4.H] L&/ | 0507 | 4433 | 0.080 | 0035 | 0.104 | s081d75s
fsaisr Meighborhood Rough Sets || 32 TRV B8.60 1239 | 0.322 | 44ed | 0099 | (065 | 0217 | 91488501
: Fuzzy Rough Sets 14 8050 88.10 1272 | 0.279 | 44ed | 0099 | 0069 | 026 | 98327762
Rough Hypercuboid 25 85 .92 95.2) 0782 | 0.276 | 4478 | 0,101 | 0072 | 0.265 107101
Pawlak's Rough Sets 22 7h.8a 6780 0860 | 0.793 | 3523 | 049 [ 0961 | 0.933 | 119731822
Leukemia Meighborhood Rough Sets || 37 TR.57 TREY 0865 | 0.783 | 3625 | 049 [ 0965 | 0970 | 471501988
Fuzzy Rough Sets 03 8.3 7REY 0865 | 0.703 | 3718 | 0.49 [ 0960 | (0.982 | 531395284
Rough Hypercuboid 49 80X B3 07 | 073 | 3711 | 0.90 [ 0965 | (.9582 14654
Pawlak's R.u_u_g]'l Sets 10 8.7 HE.3 B89 | 0788 | 312 | 0119 | 0175 | 0.2 2516
TR S Meighborhood Rough Sets 14 805 91.73 913 | 0758 | 312 | 0.162 | 017 | 0.311 32174
F Fuzzy Rough Sets 14 g82.05 91.73 11050 | 0.758 | 3126 | 0.160 | 0177 | 0.309 74199
Rough Hypercuboid 9 8775 98.00 8897 | 0758 | 3126 | 0164 | 019 | 0.328 11
FPawlak's Rough Sets B a1.s 3R] .51 0769 | 2505 1 0474 | 033 | 0.521 1A1153
Segmentation Meighborhood Rough Sets 14 g2.a0 8938 0512 | 079 | 2271 | 0474 | 032 | (.525 27391
= Fuzzy Rough Sets 11 G224 89X 0512 | 079 | 2271 | 0471 | 032 | (.528 240925
Rough Hypercuboid 10 9524 90.00 015 | 0789 | 2400 | 0472 | 0332 | (.529 11
Pawlak's Rough Sets 14 FERE 74.50 3714 | 0712 | 2628 | 0801 | 0812 | 0.817 449517
Lung Meighborhood Rough Sets || 27 5121 512 2088 | 0787 | 2904 | 0.825 [ 0825 | (.833 610648
Cancer Fuzzy Rough Sets 21 7987 5188 1995 | 0.781 | 3118 | 0.861 | 0869 | (0.890 283829
Rough Hypercubid 13 8792 £5.91 138 | 0.750 | 3700 | 1.000 [ 100D | 1.000 157
Pawlols Tough S 21 6550 P28 | 216 | 078 | 263 | 026 | 028 [ 003 | EE
DLECLNIH Meighborhood Rough Sets || 52 525 H25] 7392 | 0830 | 3007 | 0.2Fe | 0322 | (0472 92375
Fuzzy Rough Sets 77 68,75 Ha.00 10895 | 0.806 | 3816 | 0309 ( 0391 | 0497 15801458
Rough Hypercuboid 19 7000 6875 19380 | 0810 | 4248 | 0395 | 041a | (.588 5l
Fawlak's Rough Sets f et e Q0 | 08I0 | 1672 | 0513 | 0BM | 0B5F | 5O%
Prostate Meighborhood Rough Sets 18 B 91.18 4285 | 0.786 | 1909 | 0.902 [ Q907 | (.922 HXIEST
Cancer Fuzzy Rough Sets 11 91.18 9412 1994 | 0780 | 2104 | 0971 | 0985 | 1.000 539281
Rough Hypercuboid 5 412 G412 2015 | 0774 | 232 | 1.000 [ 100D | 1.000 72
Pawlak's Rough Sets 17 51.70 7962 602 | 073 | 1733 | 0561 | 0577 | (0.628 47210
Multiple Meighborhood Rough Sets || 52 355 8289 359 | 0.0 | 1984 | 0.574 | 0&0a | 0611 857421
Features Fuzzy Rough Sets 3 355 BAA7 7691 0.747 | 1871 | 0.5399 | Q641 | 0450 735871
Rough Hypercuboid 18 .68 88.21 5672 | 0.758 | 2806 | 0.907 [ 0925 | (.928 41

Pawlak's rough sets [3], neighborhood rough sets [23],
fuzzy-rough sets [12], and rough hypercuboid approach.
Table 5 compares the performance of feature selection
using different models considering w = (1.5 and A = (1.5,
The best results obtained using Pawlak's rough sets,
neighborhood rough sets, and fuzzy-rough sets are pre-
sented in this table for the sake of comparison.

From the results reported in Table 5, it is seen that
the proposed rough hypercuboid equivalence partition
matrix based approach can potentially yield significantly
better results compared to other rough set models, irre-
spective of the data sets and quantitative indices used.
However, fuzzy-rough sets provide lower S index for
Breast Cancer, DLBCLNIH and Prostate Cancer data,
lower E for DLBCLNIH and Multiple Features data, and
higher Hy index for Leukemia data, than the proposed
approach. Also, neighborhood rough sets attain lowest
& index for Breast Cancer, DLBCLNIH and Multiple
Features data, while Pawlak's rough sets achieve lowest
E for Lung Cancer and DLBCLNIH data. Both neigh-
borhood and Pawlak’s rough sets attain highest o index
for Segmentation data. The better performance of the
proposed approach is achieved due to the fact that the

hypercuboid equivalence partition matrix evaluates the
quality of a feature set through supervised granulation
process that utilizes class information of samples. From
the results reported in Table 5, it can also be seen that
the execution time of the proposed model is significantly
lower than that of other models, irrespective of data sets
used. The lower execution time of the proposed model
is achieved due to its low computational complexity
to compute the relevance, significance, and dependency
with respect to the number of selected features, total
number of features and samples in original data set.

6.8 Performance of Different Algorithms

Finally, Table 6 compares the performance of proposed
algorithm with that of various feature selection algo-
rithms such as mutual information based approaches: In-
foGain [26] and mBMR framework [29]; rough set based
approaches: quick reduct (RSQR) [7], discernibility ma-
trix using genetic algorithm (GADM) [5], [9] and MRMS
framework (RSMRMS) [25]; fuzzy-rough set based ap-
proaches: quick reduct (FROR) [17] and mEMR frame-
work (FRmRMR) [20]; and margin based approaches: rel-
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TABLE &
Comparative Classification Accuracy of Different Feature Selection Methods
Dhfferent Ditferent | Mutual Information Rough Sets /Fusey-Rough Sets Margin Based Proposed
Data Sets Criteria | Infolain | mEME | BSOR | GADM [ ESMEMS T FREOR | FEmEME | REL SIMBA | Algorithm
d 40 kT 4 I k] | =& 26 ik ) 7
Breast SVM (%) aila it a3.16 57.59 63la e 6316 6842 6842 TRYA
C4.5 (%) 6842 6842 e 57.59 6316 | &ile 63la 6842 6842 7368
d 36 36 5 ] iz 7 kT ] 34 i
Satimage SVM (%) B6.00 86,00 60,24 §1.90 TEAQ 8190 86,00 B4 86,00 RN
C4.5 (%) 8490 H4.90 75.20 8215 TH35 THAQ H4.80 8430 H4.30 430
d 59 78 7 ] 16 ii LE! e L] ]
Isolet SVM (%) 5294 8418 60.24 6349 | a2 81 §7.51 H6.24 5651 5892
C4.5 (%) 8750 87.70 B4.80 7623 8671 8720 91.20 H6.25 Q480 95.20
d 46 52 7 9 20 5 45 ! 6y 49
Leukemia SVM (%) 5839 B4.52 7143 4554 8125 7589 §7.50 87.50 839 §9.29
C4.5 (%) H3.00 FA.00 6504 3452 ThE9 7143 7946 TRAT aEH 8036
d 29 3l B ] e [ 11 28 H EEl g
lonosphere | SVM (%) 8775 87.18 7493 7549 H632 H148 B6.59 B4a2 §5.19 877
C4.5 (%) 9260 9520 88.30 9202 9520 | 9150 Q740 Q5.4 97 S8.00
d 18 15 14 9 13 12 15 17 15 10
Segmentation | SVM (%) 043 043 9a1.57 7i91 9219 A 52 a1.05 9138 9143 95.24
C4.5 (%) 038 | 9024 S0.00 7791 5938 | B4 Q0,00 Ha0A 8578 Q0,00
d . 3 i [ 10 7 2 4 4 13
Lung SVM (%) 59,06 A7.72 6308 7114 7449 7449 8054 1.1 8255 g7.92
C4.5 (%) 7450 74.50 7182 H0.55 7785 7152 7050 FEA 1.1 8591
d 94 81 17 12 22 x 83 7z (k] 19
DLBCLNIH | SVM (%) A5.,00 60,00 60.00 5625 6125 874 HA00 70,00 70,00 70,00
C4.5 () 4875 A7.50 61.25 H0.00 A7 50 5875 6250 6125 687A 687
d 21 33 4 7 [ | 9 23 18 15 A
Prostate SVM (%) §2.35 HR.24 647 7941 8235 8529 5823 91.18 91.18 9412
C4.5 () a7.6a5 7941 6768 7047 7941 | &7e5 §5.29 .24 9412 9412
Multiple d 6l 44 1 10 15 12 k] A7 45 18
Bl SVM (%) 5821 B3890 .7 TRA0 8390 8130 H4.95 §1.80 BA7A Q.68
C4.5 (%) 8821 &80 7670 7a70 | &ad5 8135 B0.35 H4.95 §8.90 §8.11
TABLE 7
Comparative Execution Time (in milli second) of Different Feature Selection Methods
Data Sets [ Infolzain | mRME RS0 FSMERS FROR FEmREME | RELIEF | S5IMBA | Froposed /FAA
Breast 1855 pELER] 235651 13150 P 25714 557 613 1344 /80
Satimage 7 1247 JR987 951 42178 131 17 an 462 f 236
Eolet 1413 133505 | 70458913 108973 FI412735 139733 BH49 10911 107101 /55837
Leukemia 11958 110519 | 117387083 5379 A2n3TT 189 116548 a3x BT 14654 /6579
lonosphere 549 85 207 47 6487 95 10 11 11/6
Segmentation 26 46 167995 | 170278 35 7 7 11/5
Lung aih 1090 a1z 971 4061 1107 511 523 157 /862
DLBCLNIH 21061 35814 3728 40761 436061 105674 10754 11037 651,289
Prostate 14675 2797 LEiE; 4173 1312773 16954 13728 17554 2727153
Multiple Features 517 043 74289 96216 4925 11065 261 10254 4617279

evance in estimating features (RELIEF) [27] and iterative
search margin based algorithm (SIMBA) [36].

From the results reported in Table 6, it is seen that
the proposed method selects a set of features having
highest accuracy of both 5VM and C4.5 in most of the
cases. Also, the proposed method can potentially yield
significantly better results than existing algorithms. The
method due to Chen and Wasikowski [37] for binary
class data sets achieves 63.16%, 81.48%, 80.54%, 68.75%
and 85.29% accuracy using the SVM, and 52.63%, 92.02%,
80.53%, 61.25% and BH.24% accuracy using the C4.5 on
Breast Cancer, lonosphere, Lung, DLBCLNIH, Prostate
Cancer data, respectively. Fig. 3 presents the variation
of classification error of the SVM over different num-
ber of selected features on Satimage and Segmentation
data. All the results reported in Fig. 3 establish that
the proposed method significantly outperforms others,
especially small number of features regime. The better

performance of hypercuboid equivalence partition ma-
trix based proposed method is achieved due to the fact
that it provides an efficient way to compute degree of de-
pendency of class labels on feature set in approximation
spaces. In effect, a reduced set of relevant and significant
features is being obtained using the proposed method.
Moreover, Table 7 reports the execution time of dif-
ferent algorithms. The significantly lesser time of the
proposed algorithm is achieved due to its low computa-
tional complexity. The execution time of the proposed al-
gorithm is reduced significantly when it is implemented
using (28) based on the concept of positive approxima-
tion accelerator (PAA) [30], and the difference is more
visible for large data sets, both in size and dimension.

7 CONCLUSION

The contribution of the paper is three fold, namely, the
development of a feature selection algorithm, integrating
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Fig. 3. Classification error of the SVM obtained using
various methods for different number of selected features

the merits of rough sets and hypercuboid equivalence
partition matrix; defining new quantitative indices based
on rough hypercuboid approach in order to describe the
inexactness of approximate classification; and demon-
strating the effectiveness of the proposed algorithm,
along with a comparison with other algorithms, on
several real life data sets.

The concept of hypercuboid equivalence partition ma-
trix is found to be successful in selecting relevant and
significant features of real valued data sets. This for-
mulation is geared towards maximizing the utility of
rough sets and hypercuboid approach with respect to
knowledge discovery tasks. The methodology of inte-
grating rough sets and hypercuboid approach can also
be applied to other feature selection problems, and the
proposed indices may be used in a suitable combination
to act as the objective function of an evolutionary algo-
rithm for feature selection.
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