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On fuzzy-rough attribute selection: Criteria of Max-Dependency, Max-Relevance,
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ABSTRACT

Attribute selection is one of the important problems encounterad in pattern recognition, machine learn-
ing. data mining, and bioinformatics. It refers to the proklem of selecting those input attributes or features
that are most effective to predict the sample categories. In this regard, rough set theory has been shown
to be successful for selecting relevant and nonredundant attributes from a given data set, However, the
classical rough sets are unable to handle real valued noisy features. This problem can be addressed by
the fuzzy-rough sets, which are the generalization of classical rough sets. A feature selection method is
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presented here based on fuzzy-rough sets by maximizing both relevance and significance of the selected
features, This paper also presents different feature evaluation criteria such as dependency, relevance,
redundancy, and significance for attribute selection task using fuzzy-rough sets. The performance of dif-
ferent rough set models is compared with that of some existing feature evaluation indices based on the
predictive accuracy of nearest neighbor rule, support vector machine, and decision tree, The effectiveness

of the fuzzy-rough set based attribute selection method, along with a comparison with existing feature
evaluation indices and different rough set models, is demonstrated on a set of benchmark and microarray

ZENE EXpression data sets.

1. Introduction

Artribute or feature selection is a process of selecting a map by
which a sample in an m-dimensional measurement space is trans-
formed into anobject in a d-dimensional feature space, whered < m.
The main objective of this task is to retain the optimum salient
characteristics necessary for the pattern recognition process and to
reduce the dimensionality of the measurement space so that effec-
tive and easily computable algorithms can be devised for efficient
classification [1-3].

The problem of attribute selection has two aspects, namely, for-
mulation of a suitable criterion to evaluate the goodness of a feature
set and searching the optimal set in terms of the criterion [4]. In
general, those features are considered to have optimal saliencies
for which interclass (respectively, intraclass) distances are max-
imized (respectively, minimized). The criterion of a good feature
is that it should be unchanging with any other possible variation
within a class, while emphasizing differences that are important in
discriminating between patterns of different classes |5.6).

The conventional feature selection is based on the minimal
classification error, which usually requires the maximal statistical
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dependency of the sample categories or class labels on the data
distribution in the reduced feature space. This scheme is called
maximal dependency or Max-Dependency, in which, the task of
feature selection is to find a feature subset from the whole feature
set, which jointly have the largest dependency on the target class
[7-9]. However, the main drawback of this approach is the slow
computational speed. Also, the joint dependency of the features for
high dimensional real life data sets cannot be estimated correctly
[10,11]). Hence, although Max-Dependency feature selection might
be useful to select a very small number of features, it is not appro-
priate for real life applications where the aim is to achieve high
classification accuracy with a reasonably compact set of features.

As Max-Dependency criterion is hard to implement, an alter-
native is to select features based on maximal relevance or
Max-Relevance criterion. Max-Relevance is to search a set of fea-
tures that approximates Max-Dependency criterion with the mean
value of all dependency values between individual feature and tar-
get class label. However, Max-Relevance criterion does not consider
the joint effect of features on the target class. Moreover, it is likely
that features selected according to Max-Relevance could have rich
redundancy, that is, the dependency among these features could
be large [12,13].

Some feature selection methods have been reported to reduce
redundancy among the selected features directly based on mini-
mal redundancy or Min-Redundancy criterion |14,15] or indirectly
based on maximal significance or Max-Significance criterion
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[16-18]. Min-Redundancy criterion has also been studied in prin-
cipal component analysis (PCA) and independent component
analysis (1CA) [2,19)], which aims to find nonredundant features
in a transformed domain. Combining redundancy or significance
criterion with relevance criterion, minimal redundancy-maximal
relevance ([mRMR) [10,11,20] and maximal relevance-maximal sig-
nificance (MEMS) [16-18] criteria have been proposed to select
relevant and nonredundant or significant features.

An optimal feature subset selected by a feature selection algo-
rithm is always relative to a certain feature evaluation index. In
general, different indices may lead to different optimal feature
subsets [5,21]. However, every index tries to measure the discrim-
inating ability of a feature or a subset of features to distinguish
different class labels or sample categories. To compute the effec-
tiveness of a feature or a subset of features, different statistical
measures, Euclidean distance [10], mutual information [7-9], class
separability index [1], Davies—Bouldin index [22], Dunn index [23].
and fuzzy feature evaluation index [24] are widely used. One of
the main problems in real life data analysis is uncertainty. Some of
the sources of this uncertainty include incompleteness and vague-
ness in class definitions. In this background, the possibility concept
introduced by rough set theory |25] has gained popularity in mod-
eling and propagating uncertainty. It has been applied to reasoning
with uncertainty, fuzzy rule extraction and modeling, classification,
clustering, and feature selection [25-34].

Rough set theory can be used to find a subset of informative fea-
tures from the original attributes of a given data set with discretized
attribute values [17,35). While the quick reduct algorithm of Chou-
choulas and Shen [35] is based on the principle of Max-Dependency
criterion, the MRMS criterion is used in [17] for attribute selection
task. However, there are usually real valued data and fuzzy informa-
tion in real world applications, In rough set theory, the real valued
features are divided into several discrete partitions and the depend-
ency or quality of approximation of a feature is calculated. The
inherent error that exists in discretization process is of major con-
cern in the computation of the dependency of real valued features.
Combining fuzzy and rough sets provides an important direction
in reasoning with uncertainty for real valued data sets [36.37].
They are complementary in some aspects. The generalized theories
of rough-fuzzy computing have been applied successfully to fea-
ture selection of real valued data [20,31,36,38]. Also, neighborhood
rough sets [39] are found to be suitable for both numerical and cate-
gorical data sets. The fuzzy-rough quick reduct algorithm of Jensen
and 5hen [36] and neighborhood rough set based feature selection
algorithm of Hu et al. [39] are based on Max-Dependency criterion,
while the feature selection method based on f~information meas-
ures in fuzzy approximation spaces of Maji and Pal [20] uses the
mRME criterion.

In this regard, a fuzzy-rough feature selection method is pre-
sented, integrating judiciously the merits of fuzzy-rough sets and
MEMS criterion, to provide a means by which real valued noisy fea-
tures can be effectively reduced without the need for user-specifiad
information. The proposed method selects a subset of features or
condition attributes from the whole feature set by maximizing the
relevance and significance of the selected features. Both relevance
and significance of the features are computed using the concept of
fuzzy positive regions of fuzzy-rough sets. Hence, the only infor-
mation required in the proposed feature selection method is in the
form of fuzzy partitions or information granules for each condition
attribute. The & function in the one dimensional form is used to
generate fuzzy information granules corresponding to each con-
dition attribute, where the centers and radii of the 7 functions
can be determined automatically from the distribution of train-
ing patterns. The fuzzy positive regions of decision attributes or
class labels are computed based on the concept of fuzzy equivalence
partition matrix [20). The method can be applied to regression as

well as classification problems with continuous decision attributes,
The effectiveness of the proposed fuzzy-rough attribute selection
method, along with a comparison with other methods, is demon-
strated on a set of benchmark and microarray gene expression data
sets using the predictive accuracy of nearest neighbor rule, support
vector machine, and decision tree.

The structure of this paper is as follows: Section 2 briefly intro-
duces the basic notions of rough sets, neighborhood rough sets,
and fuzzy-rough sets, along with some existing feature evaluation
indices. The proposed fuzzy-rough attribute selection method is
described in Section 3. A few case studies and a comparison with
other methods are presented in Section 4. Concluding remarks are
given in Section 5.

2. Feature evaluation indices and rough sets

This section presents some existing feature evaluation indices
and various rough set models for feature selection task.

2.1, Existing feature evaluation indices

Following four feature evaluation indices, namely, class separa-
bility index [1], Davies-Bouldin index [22]. Dunn index [23], and
fuzzy feature evaluation index [24]. are considered to measure the
effectiveness of the feature subset.

2.1.1. Class separability index
The class separability index 5 [1)] of a data set is defined as
8 = trace(Vy 'Viy ), (1)

where Vi is the within class scatter matrix and Vy is the between
class scatter matrix, defined as follows:

[4 L4
Vw = ZH‘IEHX - 1{,]{:’( Uj:lrlﬁﬂ = ZJTJ EJ: (2]
J=1 J=1
[
Vo= mly -0y -7 (3)
i=1
and

[5
T=EX) =) mu (4)
Jm=1
where ¢ is the number of classes. 7; is a priori probability that a
pattern belongs to class #; X is a feature vector, ¥ is the sample mean
vector for the entire data points, v and EJ represent the sample
mean and covariance matrix of class §;, respectively, and E{-} is
the expectation operator. & lower value of class separability index
& ensures that classes are well separated by their scatter means.

Hence, a good feature subset should have the value of & index as
low as possible.

2.1.2. Davies—Bouldin index

The Davies-Bouldin (DB) index [22] is a function of the ratio
of sum of within class distance to between class separation and is
given by

C
1
DE = - max
Corrjzk

Slvs) 4 S{H*}} 2

P for 1 =i k=c 3
{ dlvy, 1) = 2 (5)
The DB index minimizes the within class distance 5(1;) and maxi-
mizes the between class separation d(w, v, ). where v is the sample
mean of class ;. Therefore, for a given data set and ¢ value, the
higher the similarity values within the class and the between class
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separation, the lower would be the DE index value, A good feature
set should have the value of DB index as low as possible.

2.1.3. Dunn index
Dunn'sindex [23] is also designed to identify sets of clusters that
are compact and well separated. Dunn's (D) index maximizes

D=min{min{M}} for 1 =i,k l=c (&)

i Pk L maxSiy)

A good feature subset should have the value of Dunn index as high
as possible.

214, Fuzzy feature evaluation index
The fuzzy feature evaluation index is defined as [24]

n n
2 1
FFEI = mzzi [sef(1 = uY+ 01 = )] (7)
i jgi
where_u?r? and ,u,g are the degrees that both patterns x; and x; belong

to the same cluster in the original feature space 25 and reduced
feature space £2g, respectively, and nis the total number of samples.
The membership function u can be defined as

dy
1- <L ifdy <D
Hij = s

0 otherwise,

(8)

where dj is the distance between patterns x; and xj, and D may be
expressed as

D = fdmax. (9)

where dygy is the maximum separation between patterns in the
respective feature spaces and # is an user defined constant ranging
0 to 1. In the present work, the value of f is set to 0.2. dj; can be
defined in many ways, lilke Euclidean distance. The value of FFEI
decreases as the intercluster (respectively, intracluster) distances
increase (respectively, decrease). Hence, the lower the value of FFEL
the more crisp is the cluster structure,

2.2, Various rough set models

In this section, the basic notions in the theories of rough sets,
neighborhood rough sets, and fuzzy-rough sets are reported.

22.1. Rough sets

The rough set theory begins with the notion of an approxima-
tion space, which is a pair (U, &), where U be a non-empty set,
U=iX oo aXiivenn Xyt the universe of discourse, and & is a fam-
ily of attributes, also called knowledge in the universe. ¥ is the
value domain of & and fis an information function f ;U = & — V.,
An approximation space is also called an information system [25].

Any subset P of knowledge & defines an equivalence or indis-
cernibility relation IND(F) on T

IND(F) = [(x;, ) & U = Ul¥a = P, flxg, a) = fix;. al.

IF (. %) 2 INDYP), then x; and x; are indiscernible by attributes from
P, The partition of I generated by INID{F) is denoted as

U/ININP) = |[x;]z : x5 € UL, (10)

where [x;]; is the equivalence class containing ;. The elements in
[%}7 are indiscernible or equivalent with respect to knowledge P.
Equivalence classes, also termed as information granules, are used
to characterize arbitrary subsets of U, The equivalence classes of
INIYNF) and the empty set @ are the elementary sets in the approxi-
mation space {l, &}.

Given an arbitrary set X € U, in general, it may not be pos-
sible to describe X precisely in (U, &). One may characterize X
by & pair of lower and upper approximations defined as follows
|25]:

PO = | Jilxile 1 Il < X1 and B = | Jilxle | il X £ 01
(11}

Hence, the lower approximation P(X) is the union of all
elementary sets which are subsets of X, and the upper approx-
imation F(X) is the union of all elementary sets which have
a non-empty intersection with X, The tuple (F[X), 5X) is the
representation of an ordinary set X in the approximation space
{0, &) or simply called the rough set of X, The lower (respec-
tively, upper) approximation B{X ) {respectively, F( X)) is interpreted
as the collection of those elements of U that definitely {respec-
tively, possibly) belong to X. The lower approximation is also
called positive region sometimes, denoted as POSH(X). A set X
is said to be definable in the approximation space (U, &) iff
F(X) = FX). Otherwise X is indefinable and termed as a rough
set.

An information system (U, &) is called a decision table il the
attribute set & = C U I, where T is the condition attribute set and [
15 the decision attribute set. The dependency between T and T can
be defined as [25]:

|[POS (1)

w -
where PO5S-(IM) = U X, X; is the ith equivalence class induced by
[ and |-| denotes the cardinality of a set, If (D) = 1, I depends
totally on T, if 0 < p(D) = 1, I depends partially on C, and if
y¥-() = 0, then [ does not depend on . Given C, I' and an attribute
A e T, the significance of the attribute A is defined as [25]:

oD, A) = ye(D) = yo_.4(D) (13)

Hence, the change in dependency when an attribute is removed
from the set of condition attributes, is a measure of the significance
of the attribute. The higher the change in dependency, the more
significant the attribute is. If the significance is 0. then the attribute
i5 dispensable.

Yol = (12)

222, Neighborhood rough sets
Given an arbitrary x; U and F < C, the neighborhood @g(x;) of
x; with given threshold @, in feature space P, is defined as [39]

Do(x;) = 1% € U, AT(x;, %) = P}, (14)

where 4 is a distance function. @c(x;] in (14) is the neighborhood
information granule centered with sample x;. The neighborhood
granule generation is effected by two key factors, namely, the used
distance function A and parameter @@, The first one determines
the shape and second controls the size of neighborhood granule.
Both these factors play important roles in neighborhood rough sets
and can be considered to control the granularity of data analy-
sis. The significance of attributes varies with the granularity levels.
Accordingly, neighborhood rough set based algorithm selects dif-
ferent attribute subsets with the change of A function and &
value [34].

Hence, each sample generates granules with a neighborhood
relation. For a metric space (U, A), the set of neighborhood
granules {@(x;}]x; « U] forms an elemental granule system that
covers the universal space rather than parfitions it as in case
of rough sets. It is noted that the partition of space gener-
ated by rough sets can be obtained from neighborhood rough
sets with covering principle, while the other way round is
not possible [34]. Moreover, a neighborhood granule degrades
to an equivalence class for @=0. In this case, the samples in
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the same neighborhood granule are equivalent to each other
and neighborhood rough set model degenerates to rough sets
[39].

2.2.3. Fuzzy-rough sets

A crisp equivalence relation induces a crisp partition of the
universe and generates a family of crisp equivalence classes. Corre-
spondingly, a fuzzy equivalence relation generates a fuzzy partition
of the universe and a series of fuzzy equivalence classes or fuzzy
knowledge granules. This means that the decision and condition
attributes may all be fuzzy [37].

Let (1, &) represents a fuzzy approximation space and X is a
fuzzy subset of 11, The fuzzy P-lower and F-upper approximations
are then defined as follows [37]:

ppx(F) = il;lf[max[lil = pp 0], pex(x1)) WL (15)
gy Fi) = supiminjpeg (x), pex(x VI, (16)

where F) represents a fuzzy equivalence class belonging to U/, the
partition of U generated by P, and o x(x) represents the membership
of x in X. These definitions diverge a little from the crisp upper and
lower approximations, as the memberships of individual ohjects to
the approximations are not explicitly available. As a result of this,
the fuzzy lower and upper approximations can be defined as [36]

fex(X) = sup  mindur (), pepx (Rl (17
Fel/i

MaehX) = sup  minfug(x), pg, (FlL (18)
FielljE

The tuple (EX, FX) is called a fuzzy-rough set. This definition
degenerates to traditional rough sets when all equivalence classes
are crisp. The membership of an object x = U, belonging to the fuzzy
pOSitive region is
Hpos.(z)(x]= sup  poxlx), (19)

Xew/m
where A = © U, Using the definition of fuzzy positive region, the
dependency function can be defined as follows |36]:

|itpos. (o2

ye(D) = o fl’.lﬁZ“m-'“”m' kel

3. Fuzzy-rough attribute selection method

This section presents a feature selection algorithm, integrating
Judiciously the theory of fuzzy-rough sets and merits of the MEMS
criterion.

3.1. Fuzzy-rough MRMS method

The real life high dimensional data set may contain a number of
irrelevant and insignificant features, The presence of such features
may lead to a reduction in the useful information. The selected fea-
ture subset should contain the features those have high relevance
with the classes and high significance in the feature set. The features
with high relevance are expected to be able to predict the classes
of the samples. In contrast, the presence of insignificant features
in the subset may degrade the prediction capability. A feature set
with high relevance and high significance enhances the predictive
capability. Accordingly, a measure is required that can assess the
effectiveness of a feature set. In this paper, the theory of fuzzy-
rough sets is used to select relevant and significant features from a
data set.

Let €= [Ay. ... Ao Ao A ) be the set of m condition
attributes or features of a given data set and & © C with cardinality

i = misthe set of selected features, Define y.4 (D) as the relevance of
the feature .4; with respect to the class labels I while ‘T{A...-i)lm- Ail
as the significance of the feature .4; with respect to the set 1.4;, Al
The average relevance of all selected features is, therefore, given by

1
R= ﬁz}u.(m (21)
AgaZ
while the average significance among the selected features is
E,lj - A‘If_ftﬂl-‘l.'--'-‘_ri[u:’.1 Ap) + o (D A

. 110151 - 1)

(22}

i.e.,
24 2 42t an(D) = {74 (D) + yay (D)}
- EEEED

Therefore, the problem of selecting a set 2 of d relevant and
significant features from the whole set  of m features is equivalent
to optimize R and 3 simultaneously:

max PR, 5), P =wR+(1-ms. (24)

5 ’ (23)

where 0= =1 is a weight parameter and the operator (R, 5] is
defined to combine K and 5.

3.2, Computation of relevance and significance

Both relevance and significance of a feature are calculated based
on fuzzy-rough set theory. Given a finite set U, T is a fuzzy attribute
set in U, which generates a fuzzy equivalence partition on U7, If ¢
denotes the number of fuzzy equivalence classes generated by the
fuzzy equivalence relation and n is the number of objects in U, then
c-partitions of I can be arrayed as a (¢ = n) matrix k., termed as
fuzzy equivalence partition matrix (FEPM) [20], which is denoted
by

My Mn o My
2t 3
mE mS, ... mE
r‘.lJt_ — 21 22 2n 2 (25]
C el C
My Mg - Mg

where mrj e [0, 1] represents the membership of object x; in the ith
fuzzy equivalence partition or class Fj.

Definition 1. The relevance of the condition attribute 4; with
respect to the decision attribute set [0 can be defined as follows:

n
1
yalln) = EZK’J‘, D=ypylD)=1; and
=1

Ky = sq:p{s?p{minrm;}'. il;nf{maxll - mZ, mEim. (26)

The family of normal fuzzy sets produced by a fuzzy partitioning
of the universe of discourse can play the role of fuzzy equivalence
classes. In general, the 7 function in the one dimensional form is
used to assign membership values to different fuzzy equivalence
classes for the input features. A fuzzy set with membership function
mia; €. o) represents a set of points clustered around ©, where

N
X =T _
2(1—! = ") fﬂf%illx—flifﬁ

T(X T, ) = _ay’ 27
1 _E(E.TT.':_") for 0= |lx=t| = %

0 otherwise
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where o= 0isthe radius of the 7 function with € as the central point
and |- || denotes the Euclidean norm. When the pattern x lies at the
central point € of a class, then ||x — €1 = 0 and its membership value
ismaximum, that is, w(c; €, ) = 1. The membership value of a point
decreases as its distance from the central point ¢, that is, ||x — €|
increases. When ||x — ¢| = a/2, the membership value of the object
x is 0.5 and this is called a crossover point [40].

The cxn FEPM K4, corresponding to the ith feature .4;, can
be calculated from the c-fuzzy equivalence classes of the objects
x={Xy,.... X, ... Xn}, where

mff o ?:-(x_l': EE' fk:l .

! Zr..l-'_"[xji £ oy
In effect, each position m-[;; of the FEPM By, must satisfy the fol-
lowing conditions:

(28)

m;;,r'e[lll]: Zm;;,f=l. ¥i and for any value of k, if
k=1

§=arg max{m;{ji}. then max{mﬁii = m!a.x[mj;'ll = 0.
I I

In the present work, three fuzzy equivalence classes, namely,
low, medium, and high, are considered. Corresponding to three
fuzzy sets (c=3). the following relations hold:

Ty = ClowlAil T2 = CmediumlAili T3 = ChignlAi 12

1 = Flowl Al T2 = Fpedgiuml-Aili T3 = FpignlAi )

Each real valued feature in quantitative form can be assigned
to different fuzzy equivalence classes in terms of membership val-
ues using the m fuzzy set with appropriate © and o. The centers
and radii of the = functions along each feature axis can be deter-
mined automatically from the distribution of training patterns or
objects [41], Let m; be the mean of the objects x={xy..... & .. . Xu !}
along the ith feature A;. Then ii; and ff; are defined as the means,
along the ith feature, of the objects having co-ordinate values in
the range [.4;_ . m;) and (m;, A;,, . respectively, where 4;  and
Ao denote the upper and lower bounds of the dynamic range of
feature _4; for the training set. For three fuzzy sets low, medium,
and high, the centers and corresponding radii are as follows [41]:

ClowlAi) =M} Cmediom{Ai) =i ChighlAi) =5, (29]
Tiaw-Ai) = 2 Crmediuml-4i] — Crowl-4i1)
lowh -3 _mcdmm i ) Towr k-4 (30)
Hh:gll{-“j] v 2I:l:lriu;h[-)“-i:I il I:-lrll.-|1i1.||1|'::-"1-1':]]
Tmedium{Ai) = mwmw(vlr}[ﬂlmn — Cmedium A ))
+ Thaghl A ) Cmediun A = A (31)

where n is a multiplicative parameter controlling the extent of the
overlapping. The distribution of objects along each feature axis is
taken into account, while computing the corresponding centers and
radii of three fuzzy sets. Also, the amount of overlap between three
fuzzy sets can be different along the different axis, depending on
the distribution of the objects,

To calculate the significance of a condition attribute, the joint
relevance y|_,1|,_4,ﬂ{l}j between two attributes 4; and 4; needs to be
computed. The construction of resultant FEPM K 4. 4 is necessary
for computing the joint relevance. Let ¢; and ¢; be ti‘if.' number of
fuzzy equivalence classes generated by the condition attributes .4;
and 4;, respectively. If r is the number of resultant fuzzy equiva-
lence partitions, then the r = n FEPM Bllyq;, 4 CAN be computed as
follows:

Bllya;, 4 = MLy Ly, (32)

where rnj;r‘u-*u% = m;’;.u r mf;. k={p-1l+g, and max{c,
i} =r =g In the present work, three fuzzy equivalence classes
are considered, that is, ¢ =¢=3.

3.3, Fuzzy-rough MEMS algorithm

Following greedy algorithm is used to solve (24) based on the
theory of fuzzy-rough sets:

1. Initialize T {Aq. ... Ao A Aml & — @,

2. Calculate the centers and radii of three 7 fuzzy sets for each
feature 4; € T according to (29)-(31)

3. Construct the FEPM I, for each feature .4; € C according to
(28).

4. Calculate the relevance -, [[7) of each feature .4; « C according
to (26).

5. Select feature .4; as most relevant feature that has highest rel-
evance value p, (D). In effect, 4; c Eand T =T A,

6. Repeat the following four steps until C = # or the desired num-
ber of features d is selected.

7. Construct resultant FEPM h-i..q,-_gj.] for each remaining feature
A; e Cand selected feature 4; = £ using (32).

8. Calculate the significance of 4; = © with respect to each of the
selected features 4; = 5 as follows:

T ATy A = P (D) = ya (D). (33)

9. Remove 4; from T if o4, 4y(D, A;) = O for any feature 4; ¢ 5.
10. From the remaining features of C, select feature .4; that maxi-
mizes the following condition:

1- :
Wry(B)+ —5= i 4)(Ds 4. (34)

Arel

Asaresultof that, 4; e Sand T =1 Aj.
11. Stop.

3.4, Computational complexity

The fuzzy-rough set based feature selection method has low
computational complexity with respect to the number of features
and samples in the original data set. The steps 2, 3, and 4 of the
proposed algorithm are executed m times for m attributes. The
complexity to compute the centers and radii of three fuzzy sets
for each attribute, which is carried out in step 2, is @(n}. The con-
struction of the FEPM of each feature performed in step 3 has @(n¢)
time complexity. The computation of the relevance of each feature
is carried out in step 4, which has O{ncé) time complexity, where
¢ represents the number of fuzzy equivalence classes of decision
attribute, Hence, the overall time complexity of steps 2, 3, and 4 for
m features is {mncc).

The selection of most relevant feature from the set of m features,
which is carried out in step 5, has a complexity &(m). There is only
one loop in step G of the proposed feature selection method, which
isexecuted (d — 1) times, where d represents the number of selected
features, The construction of the resultant FEPM, which is carried
out in step 7, and the computation of significance of a candidate fea-
ture with respect to an already-selected feature, which is carried
out in step 8, have @(nc?) and Nnc?E) time complexity, respec-
tively, If i = m represents the cardinality of the already-selected
feature set, the total complexity of steps 7 and 8 is O[(m — mi)(nc?E)).
The selection of a feature from (m = i) candidate features by max-
imizing both relevance and significance, which is carried out in
step 10, has a complexity O{m — m). Hence, the total complexity
to execute the loop (d — 1) times is O{[d — 1)(m — m)(nc?E)).

In effect, the selection of a set of d relevant and significant
features from the whole set of m features using the proposed
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Table 1
Comparative performance analysis of different rough sets on Satimage, Segmentation, and Leukemia 1L
Different criteria Different rough sets Satimage Segmentation Leukemia Il
K=MM 5VM 4.5 K-MM WM 4.5 F=MM WM 4.5
Classical G9.2/8 67.3/8 G7.5/8 63.2/11 570013 63.2/8 B1.312 831.3/13 B1.3/14
Max-Relevance Neighborhood T7I13 747110 T9.6/17 TBO13 FENTER] FENI K B3.0/25 80.4/11 BO.4/21
Fuzzy 77.8/10 TG.4/9 80011 TBSM13 78.9/13 TE914 B3.0/1G 32,114 BL.1{15
Classical 70.4/8 67.3/9 G7.5/8 632,10 57.9)6 GB.4/R B2.1{15 832,112 BZ.1/12
Max-Dependency Neighborhood BE.2M #1.710 B1.5021 Ta.03 73712 e B3.721 33,0012 B304
Fuzzy R3.zN2 BROM RLENS TES13 78913 TE913 R3.7TNT 84,813 R4.E13
Classical 74.0/9 73.9/10 741010 72.7/9 741013 T4.712 BAE[15 85.7/15 B5.7/15
MRMS Neighborhood 83410 85.0/16 35211 80.5/14 B26/15 83.2/13 B7.5015 89.3/16 EB4/18
Fuzzy 84.1/10 B4.1413 241112 B0.8/14 B24.0/14 85115 Ba.4/16 90.2j17 E9.3/16

fuzzy-rough set based first order incremental search method has
an overall computational complexity of C’?{nmdraﬂ

4. Experimental results and discussion

The performance of fuzzy-rough attribute selection method
based on the MRMS criterion (fuzzy-rough MREMS) is extensively
studied and compared with that of different feature selection
and extraction algorithms. The algorithms compared are mutual
information based mRMR framework (classical mRMR) [11] and
InfoGain [42]; rough set based quick reduct [35] and MEMS frame-
work [17]; fuzzy-rough set based quick reduct [36] and mRMR
method [fuzzy-rough mEMR) [20]; margin based approaches such
as relevance in estimating features (RELIEF) |43] and iterative
search margin based algorithm {SIMBA) [44]; and existing feature
extraction algorithms, namely, PCA, ICA, and linear discriminant
analysis (LDA) [2]. The performance of fuzzy-rough sets and the
MRMS criterion is also compared with that of other feature evalua-
tion criteria, namely, Max-Relevance and Max-Dependency, several
existing feature evaluation indices, namely, class separability index

|1}, DBindex [22], Dunnindex [23], and FFEI [24], and various rough
set models such as classical and neighborhood rough sets.

4.1. Experimental setup

All the algorithms are implemented in C language and run in
Ubuntu 11,04 environment with 64 bit support having machine
configuration Pentium Core 2 Quad, 2.66 GHz, 4 MB L2 cache, and
4GB DDR2 RAM. The value of multiplicative parameter nin (31) of
fuzzy-rough sets is set to 1.5, while the weight parameter w in (34)
and that of mEMRE method are set to 0.5. The discretization method
reported in [45] is used to generate equivalence classes of Pawlak’s
or classical rough sets.

Three pattern classifiers, namely, support vector machine (SVM)
[4G], K-nearest neighbor (K-NN) rule [2], and C4.5 decision tree [47],
are used to evaluate the performance of different dimensionality
reduction methods. In the present work, linear kernels are used in
the SWM to construct nonlinear decision boundary, while the value
of K. chosen for the K-MM rule, is the square root of number of sam-
plesin training set. For the data set with small number of features,
80% of total features is selected, while fifty top ranked features is

Table 2
Comparative performance analysis of different rough sers on Colon, Breast |, and Lung.
Different classifiers  Different criteria Different rough sets  Colon Breast | Lung
Mean 5tDv - Comp o Mean  5tDv Comp d Mean  StDw Comp d
Classical 58.00 1259 345 2 5950 832 1.24 42 7320 10 1m 18
Max-Relevance Meighborhood 5050 1136 336 6 6350 1275 072 10 7675 650 1.91 13
Fuzzy 61.19 2171 1.79 3 6600 2503 035 3 7839 767 130 15
Classical 50.53 2454 1.8 4 59.50 B3z 124 3 7731 845 153 B
K=MMN Max-Dependency Meighborhood G952 1475 080 2 6150 1034 093 11 7947 384 050 4
Fuzzy G810 1118 142 2 G300 1034 081 11 7947 345 093 G
Classacal 59.50 B3z 372 38 5850 B3Iz 1.24 3 BOG] 710 06T 13
MRMS MNeighborhood G309 1R59 2.37 7 6200 532 093 13 80.61 342 062 11
Fuzzy 74.29 R.00 3 7000 2539 44  HLR4 767 43
Classical 64.52 262 197 10 5700 1034 1.30 & 7450 710 252 12
Max-Relevance Meighborhood 65.00 037  1.59 11 5750 1275 1.08 10 7817 925 1.76 13
Fuzzy 6761 2493 066 42 5900 1886 0G4 4 T7.84 TE6T 146 18
Classical G142 1484 1BV 1 5750 83z 130 4 7731 1021 137 4
WM Max-Dependency Meighborhood G308 1635 1.53 2 be50 1275 1.26 3 7839 767 130 5
Fuzzy 6476 1110 L.54 1 G050 B3Z 065 4 7947 737100 3
Classacal G67.61 o) I 3 38 5750 1034 1.20 3 7853 733 098 17
MEMS Melghborhood TOLED B29 051 1 GOS0 1034 0.60 13 BLE1 46 LB6 21
Fuzzy 73.57 1426 3 6350 1203 8 8283 TH7 2
Classical 63.08 2127 1.35 11 6150 1751 091 14 7506 963 253 11
Max-Relevance Meighborhood 6452 1580 142 8 6000 1581 1.4 13 7675 708 233 18
Fuzzy 66.19 1165 1.38 15 6250 1751 079 15  783% 1021 151 21
Classical G119 1603 1.94 8  Gouon 832 135 4 7506 875 271 G
4.5 Max-Dependency Meighborhood G285 1560 170 4 G100 1275 1.09 5 78T 345 190 3
Fuzzy 6308 2127 1.35 5 6350 1581 Q70 3 7839 843 173 4
Classacal 66,19 1165 1.38 9 6350 1034 079 11 7947 343 140 14
MEMS Meighhorhood TORD 1490 044 13 6600 1751 036 & A061 767 1.1 17
Fuzzy 7357 1231 12 6900 1933 14 #8395 5.59 18
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Table 3
Comparative performance analysis of different rough sets on Leukemia 1, [solet, and Multiple Features,
Different classifiers Different criteria Different rough sets Leukemia | Isolet Multiple Features
Mean  5tDv Comp o Mean  5tDv Comp d Mean  5tDv Comp
Classical 70.72 500 168 2 5812 1328 523 17 7490 8338 524 15
Max-Relevance Meighborhood 7196 1613 098 B 7343 BEod4 258 23 75365 a0 467 18
Fuzey 7321 1458 084 14 7839 G622 139 27 BOGOD 1042 266 10
Classical 5929 1745 132 5 G312 1492 474 9 7RI10 03 500 7
K-MNN Max-Dependency Meighborhood 036 1613 1.22 7784 1184 076 6 7460 1273 366G 4
Fuzzy TG 1652 085 I 638 088 4 BO40 R22 0 304 &
Classical 7196 1985 086 7 BTO9 1322 329 17 B6I0 B31 131 17
MRS Meighborhood 7464 1613 058 12 7a7 1132 473 13 8740 4903 079 12
Fuzzy 7857 1388 7 8212 5.83 44 BO.BOD 326 E
Classical G500 2363 055 B 5807 1421 520 21 8110 893 365 12
Max-Relevance Meighborhood G643 1B38 046 1o 7417 1182 206 18 8020 1025 349 9
Fuzzy BRG] 1671 046 9 7834 731 153 12 B2EOD %21 3.00 17
Classical G714 1613 039 10 5807 1363 541 5 7960 803 455 16
SV Max-Dependency Melghbarhood G300 1420 072 12 7853 Ta1 147 B BOED 1127 309 8
Fuzzy 6357 1724 QB85 45 79,49 4,29 154 11 R3.45 1203 219 4
Classical 6714 1613 039 12 a7 594 362 22 BO9.7S 438 1.35 17
MRMS Meighborhood 6768 1553 032 14 7929 4331 165 21 9065 426 085 13
Fuzzy 7000 1660 48 8235 3.99 41 89210 3.34 28
Classical 5929 1745 089 8 5788 1625 272 B 7610 693 385 15
Max-Relevance Meighborhood 7036 1717 075 14 G463 1266 1.84 B 7820 1073 221 14
Fuzzy T8 1613 056 1M 6506 11.04 200 7 7955 922 209 a
Clazsical GEOB3 1796 052 5 G7HR 1625 272 B 7645 883 300 13
C4.5 Max-Dependency Melghborhood 6929 1613 0852 2 B465 1266 194 B B4A40 1071 055 a9
Fuzzy 7196 1985 050 7 B5.06 1104 200 T 7935 04 218 5
Classical 7036 1535 079 12 BAS5I1 028 1.84 17 8530 11.21 030 18
MRMS Meighborhood 7339 2291 030 15 7203 1113 064 14 8730 877 -027 ]
Fuzzy 76.07 16.82 16 7532 1194 3B BG4S 4.93 19

considered for the data set with large number of features. In all
cases, the result is presented for highest classification accuracy.

4.2, Description of data sets

This section reports some benchmark data sets that are used to
evaluate the performance of different methods. While Satimage,
Segmentation, Isolet, and Multiple Features data sets are down-
loaded from the UCI Machine Learning Repository [48), Breast Cancer
I, Leukemia I, Colon Cancer, Lung Cancer, and Leukemia Il data sets
are available at the Kent Ridge Bio-medical Data Set Repository [49).

. Satimage: The database is a tiny sub-area of a scene, consisting
of 82 = 100 pixels, each pixel covering an area on the ground of
approximately 80 = 80m. The information given for each pixel
consists of the class value and the intensities in four spectral
bands, from the green, red, and infra-red regions of the spectrum.

The data set contains 6435 examples: 4435 training and 2000
testing, with 36 real valued attributes and 6 classes.

. Breast Cancer I: This data set contains expression levels of

7129 genes in 49 breast tumor samples. The samples are
classified according to their estrogen receptor (ER) status:
25 samples are ER positive while other 24 samples are ER
negative.

. Lewkermia I 1t is an Affymetrix high density oligonucleotide array

that contains 7070 genes and 72 samples from two classes
of leukemia: 47 acute lymphoblastic leukemia and 25 acute
myeloid leukemia.

. Colon Cancer: The colon cancer data set contains expression lev-

els of 2000 genes and 62 samples from two classes: 40 tumor
and 22 normal colon tissues,

. Lung Cancer: This data set contains 181 tissue samples: among

them 31 are malignant pleural mesothelioma and rest 150
adenocarcinoma of the lung. Each sample is described by the
expression levels of 12,533 genes.

Table 4
Comparative performance analysis of different indices on Satimage, Segmentation, and Leukemia 1L
Different criteria Different indices Satimage Segmentation Leukemia Il
K-MN SV C4.5 K=NN SVM C4.5 K-NN SV C4.5
Class separahility 60,37 57.2/6 50.2(7 55.5/6 46.1/5 58.2(7 750011 76812 77713
— DB index 77.2/10 75.7/11 77110 72.0/9 TR0/ 77810 TN 795013 795014
bk o Dunmn index 56017 49.2/6 5067 55.5/7 47717 57.8/8 E04{13 81,314 79.5/14
FFEI G038 54.3/6 5867 77.3/10 813014 82.8/13 714010 T2 75013
Class separability 60,37 5727 SB.6/6 52.6(5 46.1/5 57406 75.0/9 750012 THE11
P OB index 70,5010 75.3/9 78811 68.4/8 737110 78.9/11 TREN0 75,0010 78511
AR=LIEPEnCEnCY Dunn index 56.0(7 S1.8/8 50,66 5557 4746 57007 71.4)9 773012 786110
FFEI 60.3/7 54.37 5547 57.49/7 737011 TRO(10 B04/13 75.9/11 74.1/10
Class separahility 60,37 57.27 50.2(7 55.5/7 46.1/5 5827 750011 7611 777112
OB index 833/10 81.2/9 83.4/11 72009 TGO 77.8/11 80412 81.3/13 79.5/12
MRMS Dunn index 56.0/8 49.2/6 5067 55.5/9 47.7/6 57.8/9 B0.4{12 #1.3/13 79.5/13
FFEI 60,37 54,37 5868 78813 £3.0/15 22,814 71.4/9 TR0 750012
Fuzzy-rough 84110 84113 84112 BO.E14 54014 85.1/15 BRA4/16 90217 89316
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Table 5
Comparative performance analysis of different indices on Colon, Breast |, and Lung.
Different classifiers Different criteria Different indices  Colon Breast | Lung
Mean 510w Comp o Mean  5tDwv Comp  d Mean  5tDv Comp
Class separability 6824 1329 123 12 5850 832 136 11 7506 885 210 10
DB index 7095 1467 063 T 5900 1165 125 12 7RIS 700 184 13
Ifist-Rll e Dt index 7148 453 107 4 5950 1301 116 7 7675 B8Ol 173 16
FFEI 6962 1124 107 13 5900 1165 148 10 7506 756 228 14
Class separability 6521 1422 176 3 5750 832 133 4 7506 755 239 5
DB index GGEI 1125 1N 2 5900 1248 123 2 7506 755 229 4
K-MN Max-Dependency Dunn index FGE3 1125 171 4 SR50 1034 133 3 7787 G50 156 6
FFEI 6538 1066 211 3 5R00 1248 1.34 3 706 713 235 10
Class separability 7262 1095 039 5 5750 1034 144 10 T7EIS  7EY 175 11
DB index 7238 1384 038 3 G150 1034 0898 16 TFEIS 550 203 10
MEMS Dunn index 7238 1384 038 4 G150 1248 085 13 FAE7 1021 123 14
FFEI 7095 1146 075 75900 1301 122 18 TGI7 767 195 I8
Fuzzy-rough 7429 8.00 3 7000 2534 44 B84 76T 43
Class separability 6881 1461 0,74 & 5700 1275 117 13 7450 1055 202 15
DB index 7071 1551 043 1% 5750 1275 108 17 TEI7 GE0 170 17
Max-Relevance Dunn index 7071 1551 043 14 5750 1886 085 12 7R BES 165 19
FFEI G205 1481 060 17 5700 1275 117 16 7506 767 227 10
Class separability 6738 1607 081 18 5650 1248 128 3 7506 843 7.00 5
K DegEHEE DB index G381 1461 074 12 5600 1301 134 4 7617 1055 152 ]
SYM Dunm index 605 1483 060 9 5700 1275 117 27731 880 140 3
FFEI 6738 1384 088 10 5600 832 162 5 7506 843 216 6
Class separability 7214 1112 025 10 5650 832 151 10 7561 885 195 14
DB index 7238 1384 009 4 S5B00 1248 10 17 RIS 6T 17T 15
MRRS Dunm index T238 13.84 IR 4 2750 8532 1.30 5 T1.87 760 1.46 21
FFEI 7180 1396 026 6 5700 1301 116 6 7R17 843 185 1%
Fuzzy-rough 7357 1428 3 B350 1203 & B283 767 2
Class separability 6976 1214 070 14 6050 1275 116 13 7506 801 288 13
DB index 7085 1289 046 13 G350 B3z 083 11 TRI7 OTS6 G2 11
e Relevance Dunn index 7085 1214 048 9 G350 1165 077 12 FAET OGS0 224 20
FFEI 6905 1140 085 3 GlLOD 832 120 7 7506 I3 L1017
Class separability 6619 1405 125 4 5850 1248 131 9 7561 B0l 270 &
DB index 6738 1083 119 3 O5R00 1301 149 4 7787 156 205 8
C4s5 Max-Dependency Dunn index B8O 1118 104 5 SES0 1275 143 5 7787 B42 190 4
FFEI G619 1258 1.33 3 5050 832 143 3 7506 747 289 6
Class separability 7190 1405 028 10 6300 832 0980 10 7787 783 200 14
DB index 7238 1550 049 13 G500 1248 055 13 7B4Z 550 221 18
MREMS Dunn index 7238 1322 021 5 G450 1248 062 14 7E42 836 174 24
FFEI 7180 1405 028 13 G350 1034 079 11 FGI7 8BS 235 18
Fuzzy=rough 7357 1231 12 69.00 1933 14 £385 559 18

6. Leukemia ll: This data set consists of gene expression profiles of
215 training and 112 testing samples classified into 7 classes, six
subtypes of pediatric acute lymphoblastic leukemia and one that
contains diagnostic samples that did not fit into any one of the
six groups. The data set contains total 12,558 genes.

7. Isolet: The data set consists of several spectral coefficients of
utterances of English alphabets by 150 subjects. There are 617
real valued fearures with 7797 instances and 26 classes.

8. Multiple Features: Multiple features data set consists of features
of handwritten numerals ('0°-'9") extracted from a collection of
Dutch utility maps. 200 patterns per class (for a total of 2,000 pat-
terns) have been digitized in binary images, Total 649 attributes
are there in the data set.

9, Segmentarion; This data set contains instances that are drawn
randomly from a database of 7 outdoor images. The images
are hand segmented to create a classification for every pixel,
where each instance is a 3 = 3 region. The data set contains 3310
examples; 210 training and 2100 testing, with 18 continuous
attributes and 7 classes,

To compute the classification accuracy of the C4.5, K-NN, and
SVM, both training-testing and 10 fold cross-validation (CV) are
performed. The 10-fold CV is performed on Breast I, Colon, Lung,
Leukemia I, Isolet, and Multiple Features data sets, while the
rraining-testing is done on Satimage, Leukemia I, and Segmenta-
tion data sets.

4.3, Statistical significance test

In case of 10-fold CV, the means and standard deviations of the
classification accuracy of the SWVM, C4.5, and K-NM are computed for
Breast I, Colon, Lung, Leukemia 1, Isolet, and Multiple Features data
sets, Tests of significance are performed for the inequality of means
(of the classification accuracy of the 5VM, C4.5, and K-NM) obtained
using the fuzzy-rough MREMS method and other approaches. Since
both mean pairs and variance pairs are unknown and different, a
generalized version of -test is used here, The above problem is
the classical Behrens-Fisher problem in hypothesis testing. The test
statistic, described and tabled in |50, is of the form

My =2

LY JL]G]E -+ lzﬂ'zz g

t= (33)

where juq, po are the means, o, 72 the standard deviations,
and Ay=1fny, Az=1/nz, ny, nz are number of observations.
Tables 2, 3, 5, 6, 8 and 9 report the individual means and standard
deviations, and the value of test statistic computed. The corre-
sponding tabled value is 1.81 at an error probability level of 0.05. If
the computed value is greater than the tabled value, the means are
significantly different.
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Table 6

Comparative performance analysis of different indices on Leukemia |, lsolet, and Multiple Features.

Different classifiers  Different criteria Different indices  Leukemia | Izolet Multiple Features
Mean 51D Comp o Mean 510w Comp d Mean 510w Comp
Class separability 6750 1830 152 12 4533 1683 650 11 7260 1071 486 11
DB index 6883 203 124 10 7326 1233 206 14 73890 B3Il 563 18
RAaERe Ve Dunn index 6893 1420 153 15 7311 1157 230 12 7380 903 524 9
FFEL 67.68 1553 165 13 6388 1034 436 16 7320 936 535 14
Class separability 6661 1571 174  § 4500 1622 679 7 7180 636 577 5
DB index 6T.H6 1907 144 7 6BI7 1264 317 6 7380 803 534 8
KN Max-Dependency Dunn index 6020 1745 1.32 B 6047 1243 293 6 7270 E38  GO1 4
FFEI 6786 1726 151 6 638F 1003 466 & 7240 0322 563 6
Class separability 7196 1985 08 13 4520 1753 632 15 E040  00% 310 17
DE index 7321 2022 069 10 7311 1038 240 21 B205 1071 249 13
MRMS Dunn index 7464 2022 051 12 7289 937 265 16 8210 B3IE 271 23
FFEL 7036 1613 122 14 638B 1126 455 19 B060 B3Il 326 18
Fuzzy-rough 7857 1358 7 8212 589 44 E9ED 326 3
Classseparability 6071 1833 119 13 45325 1565 737 13 7580 1237 378 12
DB index 63,75 21.54 072 16 7323 11.52 237 & BOID 0,23 387 14
Max-Relevance Dunn index 6375 1613 085 10 TG 1025 280 19 7905 1071 342 1
FFEL 6195 1605 107 14 7101 1177 28 10 7805 E31 464 19
Class separability 6268 1695 098 6 4525 1621 703 6 7840 E38 480 6
e DB index G482 1436 074 4 6074 932 393 8 BO3D 732 460 3
SV Dunn index 6482 1729 068 3 G080 831 431 4 E0Z0 903 391 8
FFEI 6268  14.36 4 7101 833 338 6 705 901 436 4
Class separability 6482 1728 068 13 4530 1821 629 11 8070 B3 403 18
DB index 6518 1535 067 18 7337 821 311 17 B530 1071 182 9
MMRMS Dunm index B5,18 1905 .59 11 rrari T.66 353 21 B5.35 0,26 217 32
FFEI 6393 1753 080 14 G087 852 419 32 E2S0 1327 233 17
Fuzzy-rough 7000 1660 48 8235 109 4l 0210 334 28
Class separability 6750 1692 114 14 4543 1253 546 21 7430 001 374 16
DE index 6893 1745 083 11 6260 1033 255 13 7735 732 3 19
M Rehvance Dunn index 6893 1985 087 8 5493 1143 390 18 7740 903 278 11
FFEL 6768 1717 111 15 5201 942 485 16 7670 B3I8 117 10
Class separability 6500 2055 132 8 4543 1328 529 7 7375 1137 33 5
. DB index 6786 1613 102 6 G084 1427 246 6 7580 1071 286 &
4.5 Dunn index BE.93 1813 097 5 54.93% 11.84 383 15 7625 0,26 3.07 o4
FFEI 8661 1671 126 7 5240 1253 410 6 7520 E31 36E 10
Class separability 7036 1613 €78 0 4552 1627 467 12 8330 026 005 19
DB index 7196 1985 050 10 6392 937 238 31 E7A5 732 035 &
MRMS Dunn index 7196 1783 053 11 5493 1022 410 18 BG20 B3I 008 17
FFEI 7036 1671 076 12 5240 1123 442 6 E7.30 901 025 21
Fuzzy-rough 7607 1652 15 7532 1194 35 8645 493 19

4.4. Performance of various rough set models

In dimensionality reduction method, the reduced feature set
is always relative to a certain feature evaluation index. In gen-
eral, different evaluation indices may lead to different reduced
feature subsets. To establish the effectiveness of fuzzy-rough sets
over Pawlak's or classical and neighborhood rough sets, exten-
sive experiments are done on various data sets. Different feature
evaluation criteria such as Max-Dependency, Max-Relevance, and
MRMS are considered for feature selection. In this regard, it should
e mentioned that the classical or Pawlak's rough set based fea-
ture selection method reported in [17] uses the MRMS criterion,
while the quick reduct |35], fuzzy-rough gquick reduct |36), and
neighborhood quick reduct [39] algorithms select features using
Max-Dependency criterion.

Tables 1-3 present the comparative performance of different
rough set models for attribute selection task, The results and subse-
quent discussions are presented in these tables with respect to the
classification accuracy of the K-MM, 5VM, and C4.5. From the results
reported in Table 1, it can be seen that the fuzzy-rough MRMS
method attains maximum classification accuracy of the K-NN, VM,
and C4.5 in most of the cases. Out of 9 cases of training-testing, the
fuzzy-rough MEMS method achieves highest classification accu-
racy in 7 cases, while neighborhood rough set based MEMS method
attains it only in 2 cases.

On the other hand, among the 144 comparisons of 10-fold CV
reported in Tables 2 and 3, the MREMS criterion with fuzzy-rough

sets provides significantly better results in 47 cases and better
results but not significantly in 96 cases, while better result is
achieved only in 1 case using neighborhood rough sets based on the
MREMS criterion. In brief, out of total 27 cases, the fuzzy-rough sets
and neighborhood rough sets attain highest classification accuracy
in 24 and 3 cases, respectively, based on the MRMS criterion.

Following conclusions can be drawn from the results reported
in Tables 1-3:

o the performance of the MEMS criterion is significantly better
than that of other criteria, namely, Max-Dependency and Max-
Relevance, irrespective of rough set models used;

» the performance of fuzzy-rough sets is significantly better than
that of classical and neighborhood rough sets, irrespective of the
feature evaluation criteria used; and

o the MREMS criterion based feature selection method using fuzzy-
rough sets achieves higher classification accuracy in most of the
cases, irrespective of the data sets, feature evaluation criteria,
rough set models, experimental setup, and classifiers used,

The better performance of the fuzzy-rough MRMS method is
achieved due to the fact that the MRMS criterion can identify rel-
evant and significant features from high dimensional real life data
sets more efficiently than Max-Dependency and Max-Relevance
criteria, while the fuzzy-rough sets can capture uncertainties asso-
ciated with the data more accurately. In effect, a reduced set of
relevant and significant features is obtained using fuzzy-rough
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Table 7

Comparative performance analysis of different methods on Satimage, Segmentation. and Leukemia I
Different methods/algorichms Satimage Segmentation Leukemia Il

K=MNM 5VM C4.5 K=MMN WM 435 K=MM 5V C4.5

InfoGain 714013 7229 71.8/15 T2.4(14 T26/9 72311 B2.7[5 8277 B3z{10
Classical mRME 75.5/9 75410 754010 T2.8/10 73810 74.3/10 B4EM 34.8/10 B4E/11
Fuzey-rough mEMR 340011 B4.6/13 83712 80.3/11 B41)12 84,712 B7.5/13 38,312 50.2/16
RELIEF 83,323 EL71G 32228 FENT] B2.4/7 §6,3/13 B7.5/10 35712 B4.E/9
SIMEA 832032 B1.5(21 B2.7/20 TAE3 B35 B4.3M B7.513 89,315 B3.712
PCA BLG/8 B4.0(8 H20S TRAT B9.5/9 94,714 BL4{12 TEG0 79.5012
ICA #3.310 B3512 B2 75.1/9 900013 90,1411 BR324 85,7/ R4.8/15
LOA 82719 BLTN0 824010 B2.OM2 90.3/14 BO.6/10 BB.6[15 874018 B4.E[14
Fuzzy-rough MRMS 84.1/10 B4.113 84.1/12 B0.8/14 Ba4.0/14 85.1/15 Ba.4/18 @0.2/17 B9.3/16

MRMS algorithm with significantly lesser time as reported in
Table 10.

4.5, Performance of different feature evaluation indices

In order to establish the effectiveness of fuzzy-rough sets over
other feature evaluation indices, extensive experimentation is done
on different real life data sets. Tables 4-6G present the compara-
tive performance of fuzzy-rough MREMS method and various feature
evaluation indices such as class separability index, DB index, Dunn
index, and FFEI considering different feature evaluation criteria
such as Max-Relevance, Max-Dependency, and MRMS,

From the results reported in Table 4, it can be seen that the
fuzzy-rough MEMS method attains highest classification accuracy
on Satimage, Leukemia II, and Segmentation data sets, irrespective
of the classifiers used. Tables 5 and 6 report the comparative per-
formance in case of 10-fold CV on Colon, Breast I, Lung, Leukemia
I, Isolet, and Multiple Features data sets. The results and subse-
quent discussions are analyzed in these tables with respect to the
classification accuracy of the K-MNN, SWM, and C4.5. All the results
reported in Tables 5 and & confirm that the fuzzy-rough MRMS
method provides significantly better results in 94 cases and better

but not significantly in 120 cases out of total 216 cases. On the other
hand, both DB index and FFEIl based on the MEMS criterion achieve
better results, but not significantly, than that of the proposed fuzzy-
rough MEMS method in only 1 case each. The results reported in
Tables 4-6 also establish the fact that the performance of the MEMS
criterion is better than that of other two criteria, namely, Max-
Dependency and Max-Relevance, irrespective of feature evaluation
indices, classifiers, and data sets used.

4.6, Performance of different algorithms

Finally, Tables 7-10 compare the performance of the proposed
fuzzy-rough MEMS algorithm with that of different existing feature
selection and extraction algorithms on various data sets. From the
results reported in Table 7, it is seen that the fuzzy-rough MREMS
algorithm achieves highest classification accuracy of the SVM, C4.5,
and K-NN in 4 cases out of total 9 cases, while the PCA, LDA, and
fuzzy-rough mEMR attain highest classification accuracy in only
1, 2, and 2 cases, respectively. Tables 8 and 9 report the perfor-
mance of different methods in case of 10-fold CV, along with the
results of test of significance, for the K-NN, 5VM, and C4.5. From the
results reported in these tables, it can be seen that the proposed

Table 8
Comparative performance analysis of different methods on Colon, Breast |, and Lung.
Different classifiers Different methodsjalgorithms  Colon Breast | Lung
Mean St Comp d Mean Sthw Comp d bean St Comp d

InfoGain GT.B6 17.82 1.04 2 56.00 27497 1.17 7 GA.10 11.18 3.4 37
Classical mRMR G7.BG 16.12 1.13 A6 59.50 18.33 1.06 G G3.10 11.18 3.4 37
Fuzzy-rough mRMR 71.43 2026 042 5 56.00  20.66 1.35 3 B2.B4 767 0.00 7
RELIEF G5.71 15.07 1.59 G 59.50 832 1.24 13 74.53 7.62 243 17

K=MMN SIMBA G119 14.89 1.51 14 G1.00 033 1.05 16 T6.75 8.07 1.62 19
PCA G3.88 15.24 0.59 4 G350 1438 070 9 7947 1021 0.a3 11
ICA G7.68 16.82 1.12 7 63,50 1593 (.69 12 BOLG] 245 062 10
LA GT.EG 11.35 1.46 1 G300 1337 077 9 BOL0G H.43 07 13
Fuzzy-rough MRMS 74.29 B.00 3 ToO0 2539 44 R2.B4 767 43
InfoGain 68.33 16.91 0.75 14 G000 2B2RB 036 12 G7.25 34.12 1.41 49
Classical mRMR 72.38 1140 021 11 58.00 3327 312 9 TE.20 885 1.79 17
Fuzzy-rough mRMR 73.09 19.38 0.06 10 6200 2394 946 26 7741 8.45 1.50 19
RELIEF G5.28 12.31 1.38 10 50.50 755 09 10 75.09 8.07 220 13

WM S5IMBA G7.01 1123 1.14 13 50.50 826 087 5 7364 204 205 ]
PCA G3.24 10,63 095 11 G200 1337 026 9 77.31 770 1.G1 10
ICA GE.897 11.44 1.14 G G61.00 1370 043 7 TE.20 753 1.95 9
LIvA G750 984 1.0% 9 62,00 043 0.3 5 741 903 145 14
Fuzzy-rough MREMS 73.57 14.26 3 63.50 12,03 B B2.E3 167 2
InfoGain G619 11.65 1.38 12 57.50 14.29 1.51 13 G8.01 1.70 3389 a
Classical mRMR 72.38 11.40 022 1 50.00 11.32 1.41 12 T7.86 8.35 1.9 11
Furzy-rough mRMR 73.09 1630 007 a9 57.50 15.94 1.45 14 78.29 204 166 15
RELIEF G476 18.02 1.28 13 59.00 13.99 1.33 11 75.64 7.37 2.84 12

4.5 5IMBA GG.19 19.506 1.0 14 &0.50 12.03 1.18 12 TE.20 B8.45 242 15
PCA 69,76 12.14 070 11 G350 2374 058 [i] 78.98 TE3 1.63 &
1A 63,24 13.57 092 ] G300 2352 OE2 7 T71.86 746 DG 7
LA 676 17.04 0.57 L] 61,50 1647 003 12 78.08 756 167 q
Fuzzy-rough MEMS 73.57 12.31 12 G000 19.33 14 f3.05 5.59 18
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Table 8
Comparative performance analysis of different methods on Leukemia [ Isolet, and Multiple Features.
Different classifiers Different methodsfalgorithms ~ Leukemia l Isolet Multiple Features
Mean S Comp o Mean St Comp d Mean 51D Comp

InfoGain 72.14 183.83 0.87 20 T6.00 11.38 1.49 26 T6.70 5.03 6.91 21
Classical mRMR TO.ED 16.79 111 18 TT04 11 1.4% 15 79.75 9.37 3.20 14
Fuzzy-rough mRME 7322 4.53 116 10 B2.06 G.G4 0.3 23 B3.75 10.21 1.79 13
RELIEF 71.96 1571 0.96 10 7832 710 1.31 16 BLED 8.38 281 16

K-NN SIMBA 73.39 17.26 0,74 11 TB.38 487 1.56 1 B2.900 B.I7 245 13
PCA 74.64 1783 .55 B 7621 538 2.36 10 B4.15 722 226 8
Ica 7464 14.000 063 12 T8.27 G.44 1.40 13 B5.10 A.05 1.7 11
LD T6.07 16.82 0.36 10 T8.43 518 1.50 14 B4.65 9.2 1.67 ]
Fuzzy-rough MEMS 78.57 13.88 7 82.12 5.83 44 B9.80 326 El
InfoGain GO.00 28.28 0.96 12 T6.47 13.83 129 16 79.50 10.32 367 16
Classical mRMR G3.00 18.58 063 16 7563 12,48 1.62 12 3310 826 289 15
Fuzzy-rough mREME G357 19.98 o7 48 8192 833 015 21 BR.GO 831 1.24 21
RELIEF G643 19.57 0.44 10 TH18 B19 1L1n 14 B3.00 10,33 234 15

SV SIMBA 67.68 1400 034 21 70,43 733 1 13 B5.20 9.51 216 13
PCA 69.29 1745 .00 11 BO.76 BB2 0.52 9 R5.70 8.05 232 7
ICA 70.36 16,13 =005 ] 8325 503 -044 7 B4.95 10.27 2.00 11
LD 0.7 1692 010 14 82.07 G618 012 12 B5.75 3.1 227 a
Fuzzy-rough MEMS F0.00 16.60 48 8235 3.99 41 92,10 334 28
InfoGain 036 16.13 078 7 T1.48 038 0.EBD 14 T8.50 926 240 19
Classical mRMR T0.54 2091 0G5 B T1.54 1042 0.75 19 B0.35 10.44 1.67 21
Fuzzy-rough mREME 73.21 19.85 035 11 7348 Ta4 0.42 22 BL.05 .04 166 a
RELIEF 71.79 20,49 0.51 k] T1.75 6.06 0.B5 18 ROLED 926 1.70 14

C4.5 SIMBA 7186 19.85 .50 10 T2 727 0.73 11 H1.30 438 1.68 14
PCA 73390 201 030 & GGHEE 822 184 12 B5.20 1128 032 11
Ica T4.64 1783 018 7 BO.76 674 -1.25 9 B7.80 922 -0.41 ]
LD T4.64 1400 021 7 8225 611 ~1.63 14 Ba.00 527 -1.07 10
Fuzzy-rough MEMS 76.07 16.82 16 7532 11.94 33 BE.45 4.03 19

method attains significantly better results than other algorithms
in 28 cases out of total 144 cases and better results but not sig-
nificantly in 109 cases, while better results, but not significantly,

brief, out of total 27 cases, the fuzzy-rough MRMS method attains
highest classification accuracy in 18 cases, while the PCA, ICA, LDA,
and fuzzy-rough mEMR methods achieve itonly 1,1, 5, and 2 cases,

are achieved by the ICA and LDA in 4 and 3 cases, respectively. In respectively.
Table 10
Execution time [in second) of different methods for varicus data sets,
Dilferent criteria Different indices  Different benchmark data sets
Colon Breast | Lung Lewkemial  lsalet Mult.Feat.  Satimage  Segmentation  Leukemnia Il
Class Separ 0.26 0,38 277 021 1.26 0.28 0.08 0,04 6.28
DB index 028 0,39 1.28 032 1.66 048 012 003 210
Dunn index 019 0.22 0.96 028 1.72 037 011 003 208
lax-Relevance FFEL 2O8E03 3A4A3E03 9.83E03 3.83E03 1.83E04 4.TREDS 252E03 004 7.25E03
Classical 0.20 031 2.00E01 080 8.30 3.30 010 010 5.21
MNeighborhood 5.40E02 6.30E02 B 10ED4 7.30E02 2.10ED4 1.00ED4 B.A40ED2 6.30E02 5. 70E04
Fuzzy-rough 0.20 221 41 210 2.20EM 741 1.70EM 1.60E0 2.20E01
Class Separ .77 1.98 3322 204 428 2.83 0.45 0.05 768
DB index 234 1.82 382 216 502 382 084 0,04 298
Dunn index 182 1.33 i 1.93 4.88 437 078 0,04 312
Max-Dependency FFEI 1. 19E04 1.43E04 1,38E04 1.27E04 1.87ED4 1.53E04 B.34E03 06 B.25E03
Classical 2B0EM 1.40ED B.30EM 1.A0E0 1.30E02 460801 4.91 330 Q40802
Meighborhood 1.20E04 9.30E03 6.20E05 1.10E04 2.20ED5 6. TOED4 2A0ED4 2. 80E04 5.30E05
Fuzzy-rough 9.80E03 9.80E03 5.90E05 9.40E03 2.60EDS 5. 20E04 3.30E04 2. TOED4 5.50E05
Class Separ 0.52 0.62 382 042 1.52 042 046 025 G.12E02
DB index 037 062 2.55 041 2.81 R0 208 022 1.12ED3
5 Dunn index 0.2% 0.44 1.28 045 3.12 052 262 0.20 G.O1EDZ
kM FFEI 432609 A484E03  123E04  S27E03 21304 GFIE03  53IE04  425E00 7.53E04
Classical 0.20 0.40 4, 30EDN 1.52 9.40 582 0,31 024 7.90
Meighborhood T.30E02 B.20ED2 0.20E04 0.20E02 3.40E04 210804 1,00E03 B.50E02 B.TOED
InfoGain 051 5.39 1.7T1EM 540 702 036 0.09 005 4.72
Classical mRME 0.52 551 1.830EMM 540 740 040 0.10 010 5.00
Fuzy-rough mEME 1.7 6. 10EM 3.80EM 3 10EM 5.60ED1 1. 40801 1.20 1.80 6.50
RELIEF 206 5.28E01 2 0TED 1.33E01 32GED 1.24E01 277 1.29 422
SIMEA 3.3%E02 5.92E02 G.33E02 4. 59E02 3.02ED3 2.01ED3 1.02ED3 382E02 4. 11E03
PCA 2.20E04 3,MEDS F20ED 3H0ED4 1. 10ED4 1.80ED4 7.HOED3 BOMEDZ 4MEDZ
IcA 6.29E02 TALED2 BATED? 5.29E02 4. 11ED3 3.11E03 1.23E03 4,51E02 5.63E03
LA 3. 18E02 5. 11E02 1,13E03 4, 1RE02 8.3ED2 2 18E03 Q.81E02 4 92E02 BO2EN2
Fuzzy-rough MEMS .40 281 052 2 3.20EM 100801 4. 30E0 2300 2 T0EM
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All the results reported in Tables 7-9 also establish the fact
that the mRMR criterion based feature selection method in fuzzy
approximation spaces (fuzzy-rough mRMR) [20] improves the clas-
sification accuracy significantly over its crisp counterpart (classical
mRMR) [11].irrespective of the classifiers and data sets used. Qut of
total 27 cases, the fuzzy-rough mRMR method provides better accu-
racy than that of classical mEME in 25 cases, Only for Breast Cancer
1 data set, the classical mRMR performs better with respect to both
Cd.5 and K-NMN. Moreover, Table 10 reports the execution time of
different algorithms. The significantly lesser time of the proposed
algorithm is achieved due to its low computational complexity.

Hence, all the results reported in Tables 7-9 confirm that the
proposed fuzzy-rough MREMS method selects a set of features hav-
ing highest classification accuracy of the K-NM, VM and C4.5 in
most of the cases, irrespective of the data sets. Also, the pro-
posed method can potentially vield significantly better results than
the existing algorithms. The better performance of the proposed
method is achieved due to the fact that it provides an efficient way
to select a reduced set of features having maximum relevance and
significance.

5. Conclusion and future direction

The dimensionality reduction by attribute selection is one of the
important problems in pattern recognition, machine learning, and
data mining, particularly given the explosive growth of available
information. In this regard, the contribution of this paper is three
fold, namely,

1. development of a new feature selection method, integrating
judiciously the theory of fuzzy-rough sets and merits of the
MRMS criterion;

2. application of the proposed method in selecting discriminative
and significant features from high dimensional benchmark and
microarray gene expression data sers; and

3. compare the performance of the proposed method and some
existing methods using the predictive accuracy of three classi-
fiers, namely, nearest neighbor rule, decision tree, and support
vector machine,

The proposed method uses the concept of fuzzy-rough feature
relevance and significance for finding significant and relevant fea-
tures of real valued data sets. This formulation is geared towards
maximizing the utility of fuzzy-rough sets, feature selection, and
the MRMS criterion with respect to knowledge discovery tasks.
Through these investigations and experiments, the potential utility
of fuzzy-rough sets and the MRMS criterion for attribute selection
is demonstrated,

The results obtained on different benchmark and microarray
data sets demonstrate that a feature extraction technigue such
as PCA, ICA, or LDA may provide a reacher feature subset than
that obtained using a feature selection algorithm with a higher
cost. However, it is very difficult to decide whether to select a fea-
ture from original measurement space or extract a new feature by
transforming the existing features for a given data set. Hence, a
dimensionality reduction algorithm needs to be formulated in near
future that can simultaneously select or extract features depending
upon the criteria, integrating the merits of both feature selection
and extraction technigques,
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