


Corner is an important feature used in various image

analysis applications [12,13]. Detection of corners, using

classification based approach [14,15] and fuzzy reasoning

based method [16,17] both for color images [18] and gray

level images is an important research issue. Real life image

data are always imprecise due to inherent uncertainties that

may arise from the imaging process (such as defocusing,

noise, wide variations of illuminations, etc.). As a result

precise localization and detection of corners became difficult

under such imperfect situations. Fuzzy logic [19] can be used

for possible precise measurement with imprecise data

[20,21].

In this paper, we have proposed an algorithm to extract

significant gray level corner points based on fuzzy set

theoretic approach. The high curvature points located at the

discontinuities between different uniform intensity surfaces,

constitute the fuzzy corner set. The measure of cornerness

varies with fuzzy edge strength and gradient direction.

Different set of fuzzy corners are obtained using different

values of threshold on the fuzzy edge map. The uncertainties

in locating the corners points which may arise, due to

discretization, noise and other imaging defects, are handled

with fuzzy model. The robustness of the proposed algorithm

is experimentally verified using both simulated image

data and natural images, to justify the suitability of the

algorithm.

The paper is organized as follows: Section 2 briefly

describes the mathematical model used in this work. Section

3 describes the features extraction process. Section 4 describes

the fuzzy corner extraction process. Section 5 describes the

experimental results. Section 6 gives a conclusion.

2. Mathematical modeling of gray level corners

Image as fuzzy sets: an image X of size M � N, with L gray

levels can be considered as a fuzzy subset (A) in a space of

points X ¼ fxg with a continuum grade of membership. Where

each point in X can be characterized by a membership function

mAðxmnÞ. A ¼ fðmAðxmnÞÞ; xmngm ¼ 1; 2; � � �M; n ¼ 1; 2; � � �N
where 0 � mAðxmnÞ � 1:0.

This kind of image representation is useful to handle the

uncertainties arising out of gray level as well as spatial

digitization [22]. A fuzzy subset (A) is defined in terms of the

membership values between [0–1].

One of the most widely used mapping function to do

fuzzification for converting a digital image to corresponding

fuzzy subset A, is the standard S function, defined as

mAðxÞ ¼ Sðx; a; b; cÞ ¼

0; x � a
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with b ¼ ðaþ cÞ=2

Fig. 1 shows its graphical representation, where the

parameter b is the cross over point, i.e., Sðb; a; b; cÞ ¼ 0:5.
Similarly c is defined as the shoulder point at which

Sðc; a; b; cÞ ¼ 1:0 and a is the feet point i.e. Sða; a; b; cÞ ¼ 0:0.
fuzzy alpha cut: A fuzzy subset can be divided by suitable

thresholding of membership values around the range of interest.

The fuzzy alpha-cut, sa comprises all elements of X whose

degree of membership in S is greater or equal to a where

sa ¼ fx2X : mAðxÞ�ag (2)

where 0 � a � 1:0
Plateau top, plateau bottom: In an image, edges are the

transitions between two uniform intensity surfaces defined as

Plateaus [23]. Let S1 denote the set of all pixels in an image. The

pixels P;Q2 S1. By a plateau in S1, is meant a maximum

connected subset S p on which the intensity (I) has a constant

value. In other words S p 2 S1 is a Plateau if

(i) S p is connected. (ii) IðPÞ ¼ IðQÞ for all P;Q2 S p (iii)

IðPÞ 6¼ IðQÞ for all pair of neighboring points, i.e. P2 S p and

Q =2 S p, where P2 S1 belongs to one plateau.

A Plateau S pt is a top, if its gray value is a local maximum

i.e. IðPÞ� IðQÞ for all pairs of neighboring point i.e, P2 S p and

Q =2 S p. Similarly we call S pb a bottom, if its gray value is a local

minimum. The pixels in border region B (S pt, S pb) can be

defined as the points which are eight neighbors of at least one

element of S pt, S pb. The pixels are labeled as pixels of a Plateau

Top, Bottom and Border, considering 3� 3 neighborhood [24]

around each pixel.

3. Extraction of fuzzy edge map and characteristic local

properties

Gray level images are inherently fuzzy in nature. Even for

perfectly homogeneous objects the corresponding images will

have graded composition of gray levels due to imperfection of

imaging. The basic notion behind the proposed algorithm is

that, a digital image can be thought of as 2D plane, where there

are ridges or valleys [25,26]. This is true, when there are simply

connected sequence of pixels having gray tone intensity values

Fig. 1. S-type membership function.
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significantly higher (lower) in the sequence than the

neighboring pixels. Desired features can therefore be obtained

by extracting and assembling topographic characteristics of

intensity surfaces.

The basic assumption is that, corner points are high

curvature points and should lie on gray level edges. It should

have significant change in edge direction with linear arm

support of considerable length on both sides.

3.1. Feature extraction

The feature computation process consists of two phases. In

the first phase, the possible candidate edge pixels (Pc) are

extracted from the border regions between the uniform intensity

surfaces, as explained in the earlier section, which are defined

in terms of Plateau Top and Bottom. These are similar to ridges

and valleys of gray level images. The edge candidates (Pc),

which belong to the border regions are assigned gradient

membership mcðPÞ [27] based on their respective gradient

strength. A fuzzy edge set (ed) comprising of mcðPÞ for the

border points P2Pc is formed, as defined in (3). In the next

step, two membership functions (mfðPÞ and mbðPÞ) are

computed to estimate the fuzzy connectivity strength along a

path, in the forward and backward direction with respect to the

candidate pixel. The basic steps are explained in Fig. 2. The

detailed implementation of the steps are described in the

following subsections.

ed ¼ fðmcðPÞ;PcÞg (3)

3.2. Estimation of gradient strength mcðPÞ

The input image Iðm; nÞ is convolved with the Gaussian

function, to obtain the Gaussian smoothened image matrix

Ibðm; nÞ.
Ibðm; nÞ ¼ Iðm; nÞ�Gðm; nÞ (4)

Gðm; nÞ ¼ ð1=
ffiffiffi

2
p

psÞe�ðm2 þ n2Þ=2s2 where s effectively

determines the degree of smoothing.

Gaussian filtering, has been chosen to perform effective

smoothing of small distortions caused by noise and to obtain

blur boundaries. The size of the Gaussian smoothing filter is

fixed to 3� 3 pixels and value of s to 1.5.

The membershipmcðPÞ for the pixels P2Pc are estimated as

follows.

For every edge pixel Pð piÞ where pi is the gray value of

pixel (P), a 3� 3 window is considered as shown in Fig. 3. In

Fig. 3 the symbols represent the gray values at different

neighborhoods of P. The difference between (a1, a2), (c1, c2),

(b1, b2), (d1, d2) are taken as gray level differences in four

Fig. 2. Block diagram of the proposed algorithm.
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different directions. The ratio of gray label changes (Xr) are

computed from two mutually perpendicular set of pixel pairs

within the neighborhood. Considering the mutually perpendi-

cular pair (a1 pia2), (c1 pic2), the computed ratios are,

1þ ja1 � a2j=1þ jc1 � c2j, 1þ jc1 � c2j=1þ ja1 � a2j [27].

Similarly, (b1 pib2), (d1 pid2) are considered. The four values of

pixel contrast ratios (Xr) as obtained from the neighborhood of

each candidate edge pixel are shown in (5).

Xr ¼
�

1þ ja1 � a2j
1þ jc1 � c2j

;
1þ jc1 � c2j
1þ ja1 � a2j

;
1þ jb1 � b2j
1þ jd1 � d2j

;
1þ jd1 � d2j
1þ jb1 � b2j

�

(5)

In a window of eight neighborhood, an edge pixel will have

maximum gray level difference in a direction, perpendicular to

its true edge direction (f). The edge direction (f) should point

along the minimum difference direction [28]. The minimum

pixel contrast ratio (Xmr),

Xmr ¼ min fXrg (6)

is the parameter (x) used for computing the gradient

membership mcðPÞ with a S type function, as shown Eq. (1).

mcðPÞ is used to represent the uncertainties of edge strength and
location of true edge point.

The choice of membership function is problem dependent.

Here a monotonic type S function has been chosen for suitable

representation of the ambiguities of the set, computed from

pixel contrast ratios. We have computed the feet and the

shoulder point using max(Xmr) and min(Xmr) values of the

contrast ratios (Xmr), over which the membership mcðPÞ is

computed. The histogram plots of pixel contrast ratio are shown

in Fig. 6(a) and (b) for the images Fig. 5 (a) and (b) respectively.

The value of mcðPÞ determines the edge strength. Higher

values of gradient memberships, i.e. mcðPÞ� 0:5 correspond to
medium and strong edge points. Lower values of mcðPÞ
correspond to weak or noisy edge points.

The fuzzy gradient map (ed) as shown in (3) is obtained.

3.3. Estimation of connectivity strength mfðPÞ and mbðPÞ

The two membership values (mfðPÞ and mbðPÞ) are

computed on a selected subset of (ed) shown in (3) obtained

by thresholding (ed). The memberships mfðPÞ and mbðPÞ are

computed from the difference in edge directions between the

connected pixels within a fixed window. The actual computa-

tion of mfðPÞ and mbðPÞ are made as follows:

Let f ¼ ff1;f2; . . .fng represent the edge direction of a

sequence of pixels on an edge segment. The present approach,

deals with the changes in edge directions. Four relative (the

angle subtended between two successive pixels), directions are

considered in a 3� 3 window.

The directions (f) along the horizontal line i.e. (08 and 1808)

are labeled as (0), similarly along the vertical lines as (1) and

along the diagonal lines as ðþ1;�1Þ as shown in Fig. 3. As a

result, the edges along different directions may be labelled as

shown in (7).

Adf 2f0; 1;1;�1g (7)

The change of directions with respect to (f) between the

successive edge pixels may have values (fþ p=4), (f� p=4),
(fþ p=2), (f� p=2) in an eight neighborhood. However due

to blurring of the images, the sharp changes like (fþ p=2),
(f� p=2) between the successive pixels are converted to gentle
changes having values less than p=2. As a result, the changes at
a step of 458 are considered.

If the direction of the candidate pixel P is f, then ff ¼
fþ p=4 is considered as relative forward direction and fb ¼
f� p=4 is considered as the relative backward direction with

respect to f. A m� mwindow is centered around the selected

candidate edge pixels and the number of simply connected

edge pixels of (ed) which have directions ff andfb are counted.

If the label of f is (0) then, the labels ð1;�1Þ represents the
counts nf and nb respectively. Similarly if the label of f is (1),

the labels (1; 0) represent the counts nf and nb respectively and
so on.

This count is expected to vary with the sharpness of the

curvature type. The values (mfðPÞ, mbðPÞ) are represented with
the form of membership function,

mfðPÞ ¼ K�exp ð�xÞ (8)

where x ¼ 1
nf
,

Similarly mb is defined by

mbðPÞ ¼ K�exp ð�xÞ (9)

Fig. 3. 3� 3 neighborhood of a pixel. Fig. 4. Determination of cornerness.
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where x ¼ 1=nb, K is a constant multiplier. It is so selected

that the value of mfðPÞ or mbðPÞ should lie in between 0 and 1.0
from the finite counts of nf and nb of the image.

Each candidate edge pixel (P) selected for cornerness

testing, is thus represented by a three-dimensional feature

vector Fi where,

Fi ¼ ½mcðPÞ;mfðPÞ;mbðPÞ�. Detection of possible fuzzy

corners from the input edge map (ed) will be discussed in the

next section.

4. Multilevel fuzzy corner extraction

The fuzzy edge map (ed) is represented as set of points

fðmcðPÞ;PcÞg. In the initial stage, a suitable threshold value of

gradient membership, has to be decided to select a subset Eda of

ed, and only those points are used for computation of, mfðPÞ,
mbðPÞ for detection of fuzzy corners.

4.1. Membership transformation

Any natural image consists of different homogeneous

regions, where the shape of each region is characterized by

its bounding lines. But in many practical situations the

boundaries are so faint that it becomes difficult to distinguish

between two regions. Moreover due to noise and non uniform

illumination, spurious edges may also appear. It is also difficult

to discriminate between spurious edges and weak edges. Under

such situation, the gradient information (both edge strength,

and direction information) may be required to cut of where

mcðPÞ is very small. To locate points from significant portions

on the image, a contrast transformation may be used as a

preprocessing step. The extraction of probable edge candidates,

is achieved by thresholding through non-linear transformation

of membership values mcðPÞ such that, the points having values
greater than 0.5 are stretched and those below 0.5 are squeezed.

Edf ¼ T 0ðedÞ (10)

A pixel contrast transformation operation [22] is represented

in (11)

mdðPÞ ¼ 2� mcðPÞ2; 0 � mcðPÞ � 0:5
1� 2� ð1� mcðPÞÞ2; 0:5 � mcðPÞ � 1:0

�

(11)

The results before and after transformation of membership

values are shown in Fig. 7 (a)–(c). As seen from Fig. 7(a),(b)

the number of insignificant candidate points are reduced at the

same threshold value. Thresholding the transformed edge map

(Edf ¼ fmdðPÞ;Pg) above different membership values may be

obtained by using proper (a-cuts) [22] as mentioned in section

2. As a result, we obtain the edge maps Eda at different levels

Fig. 5. (a)Original image of house. (b) Image having prominent curvature junctions.

Fig. 6. (a) Pixel contrast histogram of: Fig. 5(a). (b) Pixel contrast histogram of Fig. 5(b).
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from Edf , as shown in (12).

Eda ¼ fP2Edf : mdðPÞ�ag (12)

where 0 � a � 1:0 The candidates of Eda can be represented

by the local features Fif ¼ ½mdðPÞ;mfðPÞ;mbðPÞ�.
By such thresholding of Edf , multilevel fuzzy edge maps

may be generated, where the pixels may be segregated as

(strong, medium, weak) edge pixels based on their gradient

membership values mdðPÞ as shown in Fig. 10 (b)–(d). If the

local contrast of a region is very poor, then mdðPÞ values of

different edge points are very close to each other. Ambiguity in

locating curvature points in these regions may increase due to

close proximity of values of different points, as seen in the

bottom rectangle of Fig. 10(b). On the other hand, the

membership values of different points are widely separated

above the cross over points (mdðPÞ� 0:5), where the local

contrast is better resulting in less ambiguity.

In the transformed set, points having (mdðPÞ� 0:5) will

include edge points with higher and medium strength. Whereas

those having values (mdðPÞ� 0:0) may select lot of spurious

edge points along with high and medium type of curvature

points.

Fig. 7. Fuzzy edge map: (a) (mcðPÞ� 0:4). (b) (mdðPÞ� 0:4) after membership transformation. (c) (mdðPÞ� 0:9).

Fig. 8. Image of house: (a) underexposed, (b) overexposed.

Fig. 9. Histogram plots of image of house: (a) underexposed, (b) overexposed.
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Thus a proper choice of threshold (mdðPÞ) selection is

necessary, below which the variations are considered to be

noise.

4.2. Selection of threshold on membership value

The gradient membership value mdðPÞ used for thresholding
the edge map, is decided from the pixel contrast ratio

histogram.

The histogram of contrast ratio gives an estimate of global

description of the appearance of an image.

In general, the choice of threshold is made as follows:

A higher threshold value, typically mdðPÞ� 0:8 is chosen, to
reduce the false acceptance rate, if the nature of the contrast

histogram is as follows: (i) The contrast histogram occupies

most of the histogram levels, which are in contiguous locations.

(ii) The number of occurrences for each (Xmr) value is quite

close and covers the majority of the total dynamic range. This is

seen from the histogram plots of Figs. 5(a) and 8(a), (b).

As we are concerned with the dynamic range, and not the

absolute gray scale values, such thresholding can be applied for

almost all natural images, even undergone varying imaging

conditions like overexposed, underexposed, blurred etc. The

contrast histogram plot for Fig. 8(a) and (b) are shown in

Fig. 9(a) and (b).

On the other hand a lower threshold value of mdðPÞ,
typically mdðPÞ> 0:0 is chosen, if the histogram has the

following properties. (i) Sparsely distributed contrast levels. (ii)

Having widely different occurrences for different (Xmr) values

(iii) Does not cover majority of the dynamic range. Such cases

may arise for nearly binary images as seen in, Fig. 5(b) and

Fig. 19. In such cases transformation of mcðPÞ to mdðPÞ, does
not affect the results much, as the candidate weak edges are less

in number.

This has been tested over number of images and the strategy

described is found to be satisfactory.

4.3. Estimation of local shape parameters

Once the suitable threshold value of mdðPÞ is chosen, the

next task is to categorize the edge pixels based on the local

properties estimated from mfðPÞ and mbðPÞ. The selected edge

candidates constitute the points of Eda for which the member-

ship values mfðPÞ, mbðPÞ are computed. The properties of

mfðPÞ, mbðPÞ are used to examine local shape parameters,

which are defined as straightness and cornerness. Properties of

mfðPÞ and mbðPÞ for any of the selected points (P) on the edge

map is shown in Table 1.

Straightness: This property is determined by comparing

pixels translated along the direction of edge. It is expected that a

pixel translated in the direction of straight edge will be

connected to pixels of same direction. Hence mfðPÞ and

mbðPÞ’ 0:0.
Cornerness: This property is determined from comparing

pixels having reflexive symmetry. The pixels are expected to be

reflected from one arm to the other on both sides of the

curvature junction within the region of evaluation, as shown in

Fig. 4.

The points of Eda as shown in Eq. (12) having both mfðPÞ
and mbðPÞ equal to zero can be filtered out as the non corner

pixels. As a result the interesting regions constituting a group of

curvature points of the fuzzy edge image can be separated. We

attempt to approximate this region with a quantitative measure

by exploiting the properties of mfðPÞ and mbðPÞ.
The pixels in the proximity of the curvature junction as

shown in Fig. 4 can be categorized from the following rules, (i)

The points with mfðPÞ high and mbðPÞ low constitute the points

on the left side of the junction point. We designate these points

as Pi jf , (as shown in Fig. 4) on forward arm and assign

membership mfðPÞ � mbðPÞ. This difference is expected to

vary with the sharpness of curvature. The points of Pi jf

represent a fuzzy subset as mfram.

mframðPÞ ¼ mfðPÞ � mbðPÞ (13)

(ii) The points with mbðPÞ high and mfðPÞ low constitute the

points on the right side of the junction point. We designate these

points as Pi jb, (as shown in Fig. 4) on backward arm and assign

membership mb- mf . The points of Pi jb represent a fuzzy set

mbram.

mbramðPÞ ¼ mbðPÞ � mfðPÞ (14)

Fig. 10. (a) Original image. (b) Edge image for (mdðPÞ> 0:0). (c) (mdðPÞ� 0:6). (d) (mdð pÞ� 0:9). Points above threshold are plotted as crisp edge points.

Table 1

Fuzzy cornerness measure

mfðPÞ mbðPÞ Cornerness Straightness Location

High Low High Low Forward arm

High High High Low Near curvature junction

Low High High Low Backward arm

Low Low Low High Straight edge
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(iii) The points very near to the junction is expected to have

high or medium values of mfðPÞ and mbðPÞ.
Having obtained the two fuzzy sets, mfram and mbram, a third

fuzzy subset mcen which is surrounded by both mfram and mbram

lie approximately on the axis of symmetry. This region

constitute the ambiguous corners. The cluster of such points (*)

represented as mcen are shown in Figs. 11(a), 12(a), 13(a) and

14(a) respectively. The points belonging to mcen are those

points, having other points with mframðPÞ> 0 and mbramðPÞ> 0

in the neighborhood of fixed window size.

The extracted curvature points may be of different sharpness

type (sharp, medium, weak). The characteristics of sharp

curvature points will be confined within a small region but for

that of medium and weak type the region will be larger. In view

of the above facts, we use a measure Th that controls the shape

and size of the extracted mcen.

Fig. 11. (a) Curvature points (*), (mdðPÞ> 0:0 and Th ¼ 0:1). (b) Representative point of each cluster.

Fig. 12. (a) Curvature points (*), (mdðPÞ> 0:0 and Th=0.2). (b) Representative points of each cluster.

Fig. 13. (a) Curvature points (*), (mdðPÞ> 0:0Th=0.3). (b) Representative points of each cluster.
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In order to define a quantitative measure of the region,

constituting of points of mcen, we compute the sum total of

differences for all the pairs of mfram and mbram which fall within

the region of evaluation, a nxn window. This value is subtracted

from a large value ymax (kept fixed at 2.0, found experimentally

better) to make it increase with sharpness.

Th ¼ ymax �
X

j¼n=2

i¼�n=2

X

j¼n=2

i¼�n=2

mfram � mbram (15)

The representative points i.e., the cluster center of each

localized region (mcen) is represented by Ci j whose coordinate

is equal to the average value of the co-ordinates of the n points

of each cluster as shown in Figs. 11(b), 12(b), 13(b) and 14(b).

Ci j ¼ ½
P

x j=n;
P

y j=n�.
At fixed value of mdðPÞ the value of Th is experimentally

varied from (0.1-0.3) to generate corners of different

sharpness.

Computational complexity: The analysis of the computa-

tional complexity (worst case) involved in different operations

for an image of size M �M and with window neighborhood

N � N, is explained as follows: (1) Identification of border

regions require M2N2 operations. (2) Computation of pixel

contrast ratio involves lM2N2 operations (where 0< l< 1:0).
(3) Assignment of mcðPÞ involves lM2 operations. (4)

Membership transformation involves lM2 operations. (5)

Fig. 14. (a) Curvature points (*), (mdðPÞ> 0:6 and Th =0.1). (b) Representative point of each cluster.

Fig. 15. Corner points (a) Our detector (mdðPÞ> 0:0Th=0.3). (b) Harris detector (c) SUSAN.

Fig. 16. Corner points (a) Our detector (mdðPÞ� 0:9 and Th=0.2). (b) Harris detector (c) SUSAN.
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Thresholding involves lM2 operations. (6) Computation of mf

and mb involves lM2N2 operations. (7) Grouping of pixels

based on fuzzy rules involves lM2 operations. (8) Computation

of Th involves lM
2N2 operations. The total operation is of the

order of O (M2N2).

5. Experimental results

We have examined the performance of our detector on

various type of images including images which have undergone

image alterations like blurring, illumination change, noise etc.

Image as shown in Fig. 10(a) contains objects of different

shapes with varying illumination. The procedure involves

extraction of edge map. The edge map of Fig. 10(a) are

thresholded above different membership values as shown in

Fig. 10(b)–(d) for (mdðPÞ� 0:0), (mdðPÞ� 0:6), (mdðPÞ� 0:9),
respectively. The points above the threshold values are

represented as dark edge pixels. It is to be noted that the

internal structure of the rectangle (represented as dark region)

shown in Fig. 10(b) could not be extracted properly due to poor

Fig. 17. Corner points from our detector (a) blurred image (mdðPÞ� 0:9 and Th=0.2. (b) noisy image.

Fig. 18. Corner points under illumination change: (a) Overexposed (mdðPÞ� 0:9 and Th=0.3). (b) Underexposed case (mdðPÞ� 0:9 and Th=0.3).

Fig. 19. Corner points (a) Our detector(mdðPÞ> 0:0 and Th=0.2). (b) Harris detector. (c) SUSAN.
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contrast between the two regions. In such cases, the extraction

of the structure could not be done properly as the gradient value

of the edge pixels are very low and the threshold is

(mdðPÞ� 0:0). At a higher threshold value of mdðPÞ, stronger
edge pointsmainly representing the boundary points can easily

be separated as shown in Fig. 10(d). The curvature points of

various regions are depicted by symbol ‘*’ as shown in Figs.

11(a), 12(a), 13(a) and 14(a). The representative point from

each cluster is shown in Figs. 11(b), 12(b), 13(b) and 14(b). The

different type of curvature points are obtained by varying Th

and mdðPÞ and shown in Figs. 11(b), 12(b) and 13(b). The

results of our algorithm are comparable to that of most

popularly used corner detectors like Harris and SUSAN

detector and are shown in Figs. 15 and 16. The performance of

different corner detectors varies with the type of the image and

to obtain the best results, several parameters need to be

adjusted for almost all detectors. We have tried to compare our

results with the best results obtained from each detector with

the parameter values as suggested by authors. In our algorithm

better results are obtained by keeping the threshold ofmdðPÞ at
a lower value when there are lesser number of gray level

variations e.g., Fig. 5(b). On the other hand when there are

large variations of distinct gray values as that of Fig. 5(a),

higher threshold value ofmdðPÞ is chosen to reduce the number

weak and noisy edge points. Such results are shown in

Figs. 16–18. It is seen from Fig. 15(a)–(c) that the corner points

obtained by our method shown in Fig. 15(a) is quite

comparable to that of Harris shown in Fig. 15(b) and SUSAN

detector in Fig. 15(c). However SUSAN is able to extract

corners from very low contrast area. The results on the house

image with threshold value (mdðPÞ� 0:9 and Th= 0.2) for our

algorithm, for Harris and SUSAN method are shown in

Fig. 16(a)–(c), respectively. It is seen from Fig. 16 that the

corner points obtained by our method shown in Fig. 16(a) is

comparable to that of Harris in Fig. 16(b) and SUSAN in

Fig. 16(c). Our result is closer to that of SUSAN with some

more details of curvature information that exists in different

regions of the house image. The results obtained under

different imaging conditions are shown from Figs. 17 and 18. It

is to be noted that our proposed detector is able to extract most

of significant structural corner points under varying imaging

conditions. This is due to the fact that the slope of the fuzzy

property plane is determined from the dynamic range.

Although the gray level contrast information is reduced in

the over exposed case in Fig. 18, but due to additional contrast

intensification, significant edge pixels are selected above

threshold for cornerness detection. Even for nearly binary

images our algorithm works satisfactorily as seen from

Fig. 19(a)–(c).

6. Conclusion

A fuzzy set theoretic approach for detection of corners is

proposed in this paper. The proposed algorithm does not

require computation of chain codes or complex differential

geometric operators. Experiments have been performed on

various types of images to illustrate the efficiency of

our algorithm. The algorithm performs reasonably well

under different imaging conditions. However we intend to

improve the algorithm, so that the parameters may be

selected adaptively for thresholding. Significant features

computed from these dominant high curvature fuzzy points

can be used directly for indexing an image for image

retrieval purpose.
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