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Neurofuzzy Classification and Rule Generation of
Modes of Radiowave Propagation
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Abstrace—This paper describes, in a neurofuzzy framework,
a method for the classification of different modes of radiowave
propagation, followed by generation of linguistic rules justifving
a decision. Weight decay during neural learning helps in imposing
a structure on the network, resulting in the extraction of logical
rules. Use of linguistic terms at the input enables better human in-
terpretation of the inferred rules. The effectiveness of the system is
demonstrated on radiosonde data of four different seasons in India.

Index Terms—Classification, neurofuzzy approach, rule genera-
tion, soft computing.

I INTRODUCTION

ROPOSFHERIC radiowave propagation 15 one of the
T important areas in the field of wireless communica-
tions. Radiorefractivity ¥ {T, £, ¢, %) and the radiorefractivity
eradient AN are the key parameters o estimate the mode
of radiowave propagation, where T, I, ¢, and L denote the
lemperature, pressure, vapor pressure, and height, respectively
iof the topospheric region). The radiorefractivity gradient
A% can be divided into four basic intervals defined as
iy = AN = —40 8 — unis/km, 2) —40 = AN =
=75 N —units/km, 3) =73 = AN » =157 N — units/km, and
AN < 1T A umtskm.

If the estimated AN is lying in interval 1, the mode of ra-
diowave propagation 15 sawd o be subrefracted. Under this mode
of propagation, the signal propagating 1o the mecewver expen-
ences a greater koss and sometimes becomes oo small 1o use.
The mode of radiowave propagation is said 1o be normal if AN
lies in interval 2. In the presence of normal refractive condi-
tions, a radiowave travels between a pair of transmitting and re-
ceiving antennas with moderate path loss. On the other hand, if
AN lies in interval 3 or 4, the mode of radiowave propagation
15 termed as superrefraction or ducting, respectively. On the oc-
currence of superrefraction or ducting, the radiowave between a
pair of transmitting and receiving antennas propagate with least
path loss, which, in wrn, improves the reliability and the perfor-
mance of the system.

Antificial neural networks (ANNs) attempt o replicate the
computational power (low-level arithmetic processing ability)
of biological neural networks and, thereby, hopefully endow
machines with some of the (higher level) cognitive abilities that
biological organisms possess (due in part, perhaps, w their low-
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level computational prowess). However, an mmpediment o a
more widespread acceptance of ANNs is the absence of a capa-
bility toexplain to the user, in a form comprehensible to humans,
how the network arrives at a particular decision. Recently, there
has been widespread activity ammed at redressing this silwation
by extracting the embedded knowledge in trained ANNs i the
form of symbolic rules [1]-[3]. This serves to identify the at-
tributes that, either individually or in combmation, are the most
significant determinants of the decision or classification.

The connection weights of the rained network are used for
extracting refined rles for the problem domain. This helps
i minimizing human mteraction and associated inherent bias
during the phase of knowledge-base formation and also reduces
the possibility of generating contradictory rules. The extracted
rules help in alleviating the knowledge acquisition bottleneck,
refining the initial domain knowledge, and providing reasoning
and explanation facilities. Fuzzy neural networks [1], used for
the same purpose, can also handle uncertainty at various stages.
Rules extracted from such networks are more namral and can
mvolve lmguistic terms in the antecedent andfor consequent
clauses.

The objective of this paper is o design a neurofuzzy deci-
ston-making system, in a soft computing paradigm, for classi-
fication of different modes of radiowave propagation. Rules are
extracted to justfy a deciswon. The proposed system s able 1o
exploit the parallelism, self-learning, and fault wlerance char-
aclerstics of artificial neural network models while utilizing
the uncertainty modeling capability of fuzzy sets. Soft com-
puting is a consortium of methodologies that works synergel-
ically and provides, in one form or another, flexible informa-
tion processing capability for handling real-life ambiguous sit-
vations [4]. Its aim 1s o exploit the wlerance for imprecision,
uncertainty, approximate reasoning, and partial truth in order o
achieve tractabality, mbustness, and low-cost solutions. There
are ongoing efforts w inegrate arificial neural networks with
fuzey set theory, rough set theory, genetic algorthms, and other
methodologies in soft computing paradigm [1].

In this investigation, we have used a fuezy mululayer
perception (MLFP) [5] to leam the relationship between the
input parameters 4, e, b, f o s and T, oand the output class
AN Here T., vy, and N, are the lemperature, vapor pressure,
and height at the reference level (the height with respect to
which the higher level is subrefractive, normal, superrefractive,
or ducting). The model helps us in predicting the mode of
radiowave propagation from the measure of ', &, & of the
tropospheric region at a particular height N Studies have been
made using different network topologies. Links are pruned
usmg weight decay. The learming rate 15 gradually decreased.
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Extensive results are presented for various numbers of hidden
layers and nodes, using different sizes of raining sets for the
four major seasons. The tained network is used for subsequent
rule generation.

Section 11 provides a bref review on radio climatology. The
furzy MLP, used here, is described in Secton W1 for classifi-
cation and mule generation. The results on radiosonde data over
India for the four major seasons are given in Section 1V, Sec-
ton vV concludes this paper

II. RaDi CLIMATOLOGY: AN OVERVIEW

A. Background

Research on radiochmatology solely depends upon the aval-
ability of meteorological observations on emperature '}, pres-
sure {1, vapor pressure (e}, and various other related parame-
ters. Radiosonde, instrumented tower, and threaded kytoon ' are
the standard in-situ technigues used 1o obtain measurements for
these parameters. The availability of these data or observations
helps the research in the area of radiowave propagation, which
is one of the important fields of wireless communications.

To facilitate the research in radioclimatology and radiowave
propagation, Kulsrestha and Chattegjee [6]-{9] studied the dis-
tribution of surface mdiorefractvity N, and the radiorefractivity
at 850 and 700 mb levels based on five years of data collected
from 36 surface stations and 12 radiosonde stations situated over
India. Srvastava [ 10] studied the refractivity in the lowest 1 km
over India in 1968, During the course of these works, the height
resolution was restricted o 1 km in refractivity profiles. In 1974,
the height resolution was improved by Majumder by taking re-
fractivity at surface and at 500-m altitude [11].

Prasad [12] has deduced the radio refractive index profiles
from radiosonde data collected from 32 stations twice a day
(0000 GMT and 1200 GMT) for a pedod of five years. He has
also studied the radioclimatology of some selected regions over
India by taking simultaneous observations from kyloon, air-
bome microwave refractometer, and radar [ 12 ], Measurement of
radiosonde data over the eastern coastal beltof India reveals that
this region involves significant diumal, monthly, and seasonal
changes, which in tum affect the performance and reliability of
different communication systems operating in the higher fre-
quency ranges. Keeping this in mind, Choudhury efal. analyzed
the radiosonde data over Calcutla to estimalte the percentage oc-
currence of different radiorefractivity gradients during different
months and seasons over this region [13], [14].

Apart from this, many scientists have analyzed the radiosonde
data and tried 1o apply the results direetly to estimate the useful
parameters and factors of radiowave propagation. Rogers [15]
designed a useful expedment to study the effects of variability
of atmospheric radiorefractivity on propagation estimates. The
outcome of his results revealed that, for over-the-honzon over-
water electromagnetic propagation calculations at very high and
ultrahigh frequencies in the southem Califomia coastal region,
the assumption of hordzontal homogeneity leads 1o little more

'Here a kytoon-shaped halloon is not al lowed to rise freely but the height is
controlled by a nylon cord attached with the balloon. Using this technigue, one
can make observations up to a height of 2 km.
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error than the described minimum error. Here minimum ermor
implies the root-mean-square error for estimating the propaga-
tion factor. [t was observed that estimates based upon range-de-
pendent refractive structures provided substantially less error
than estimates based upon homogeneous refractive structures
only if they were sampled at intervals of two hours or less.
Vasseur [ 16] measured and analyezed one year s radiosonde data
in Belgium. He suggested a new method o estimale the tro-
pospheric scintillation on satellite links. Fruitful research work
in the area of mdioclimatology and radiowave propagation is
being perdformed also in Japan with rapid progress. In this con-
nection, Manabe and Furuhama have published a very useful
review work [17].

B. Tropospheric Radiorvefractivity and Its Gradient
The tropospheric radiorefmctivity at a particular height {h)
can be expressed as

¥ =TTh= 3.75%1 nﬁ%
an A0
MOl i W (1
= (P2 )

where 118 the atmosphenc pressure in mb, ¢ 15 the water vapor
pressure in mb, and s the absolute temperature in Kelvin, On
the right-hand side of (1), the first term is called the drv term and
the other the wet term [ 18], This expression of radiore fractivity
is valid up to 100 GHz, with an emor less than (0.3%. Likewise,
the mdiorefractivity of the reference level can be writlen as

o el o e
N, T 8T x L 2)
where the subscript + denotes the reference level.
After the estimation of % and V., its gradient AN can be
calculated as
i M=y
AN = ; (3)
b=l
where & is the radiorefractivity at higher level, &, is the m-
diorefractivity at reference level, I is the height of the higher
level, and fe. is the height of the reference level.

III. Fuzzy MLP: CLASSIFICATION AND RULE GENERATION

The fuzzy MLP model [ 3] incorporates fuzziness at the input
and output levels of the MLP and is capable of handling exact
inumerical) andfor inexact (linguistic) forms of input data. Any
input feature value is described in terms of some combination
of membership values in the linguistic property sets fow (L),
medinm (M), and figh (H). Class membership values |;.u,} of
patterns are represented at the output layer of the fuzey MLP.
During truning, the weights are updated by backpropagating
errors with mespect o these membership values such that the
contribution of uncerain vectors is automatically reduced. A
schematic diagram depicting the whole procedure s provided in
Fig. 1. The various phases of the algorithm are described below.
Rules are generated from the trained network.
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A three-layered feed-forward MLP s used. The output of a
neuron in any layer (&) other than the input layer [f.l.’ =il
ZIVEn 4%

. 1
o= — — (4)
& | —exp(— 3.4 11.':ff !

where y:l' ~! is the state of the ith neuron in the preceding (%' —
lith layer and 'n'L':;‘j__l 15 the weight of the connection from the
ithneuron in layer &' — | 1o the Jthneuron in layer &' For nodes
in the inpul layer, yy Lurr.i_spunds o the jllh component ol the

: Ry S S ook
input vector. Note that o= 3o '

A, Input Vector

An n-dimensional pattern Fs = [F, Fo, .o, Pl 15 repre-
sented as a In-dimensional vector
— i e — 00 N
F-!: = ||u'.'|.n.':l: Foai .\F{__:. L] #'hig]:ff':,: i kfi',' | == |J:_rj TR -'.'1"_‘-':.”|
(51

where g indicates the membership functon of the come-
sponding lingwmstic 7-sets low, medinm, and high along each
feature axis and 47, ...,y refer o the activations of the 3n
neurons in the imput layer.

When the input feature 15 numerical, we use the 5 -fuzzy sels
(in the one dimensional form), with range [0,1] represented as

2 (l —_ l'l'l'-:'l_-"|)_
TR e A = Fle onn2
[Fire, Al | 2 [\ |l'.'-:_'; J|) . fori s ||Fy e

1 otherwise

il R

for g

()
where Af 2= 01} 18 the radius of the w-function with 2 as the central
point. This is shownin Fig. 2. Note that features m hingustic and
sel forms can also be handled o this framework [3].

Hence, in trying to express an input F, with linguistic prop-
erties, one effectively divides the dynamic range of each feature
into three overlapping partitions, as i Fig. 3. The centers and
radit of the 7 functions along each feature axis are determined
automatically from the distribution of the waining patterns.

B. QOutput Representation

Let the n-dimensional vectors o, = [e'.u_.,,1 i ..-'.-,,.,,] and v, =
Th1a oo Ui | denote the mean and standard deviation, respec-
tively, of the numerical training data for the kth class ¢i. The
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weighted distance of the training pattem F; from the th class
e 15 delined as

= I_',. — Mg :
Nk = Z [Tw (7

ji—_

where F;; 15 the value of the jth component of the ith patlern

poinl.
The membership of the dth pattem m class &, Iying in the
range [0.1], 15 defined as [19]

where positive constants §; and f. are the denominational and

el Fyl = (8)

exponential fuzey generators controlling the amount of fuzzi-
ness in the class membership set and & 2 J1.....f] for an
l-class problem with { output nodes.

C. Rule Generation

In general, the primary inpul o a connectiomst ule genera-
tion algorithm is a representation of the trained ANN, in lerms
of its nodes and links, and sometimes the data set. One inter-
prets one or more hidden and output units into rules, which may
later be combined and simplified o arrive at a more comprehen-
sible rule set. These rules can also provide new insights into the
application domain. The use of ANN helps in 1) incorporating
parallelism and 2) tackling optimization problems in the data
domain. Fuezy neural networks [1] can be used for the same
purpose and can also handle uncenainty at vanous stages.

The fuzzy MLP is trained using bac kpropagation and the con-
nection weights pruned with weight decay. The tamed network
is next analyzed for rule generation. The strong paths from the
output nodes (classes) o the iput (features), 1.e., those paths
having large magnitude, are extracted. We consider both posi-
tive and negative link weights i the process. The antecedents

of the rules are in terms of the linguistic values at the input to
which the path can be traced.

Algonthms for rule genemtion from neural networks mainly
fall into two categore s—pedagogical and decompositional [3].
Our algorthm for rule extraction [20], [21] can be categorized
as decompositional. It is described below.

1) Compute the following quantities:

FPAdean mean of all positive weights, I hrewy
mean of all positive weights less than/?* W san,
i hreay = mean of all weights greater than £ 3 eaoe.
Similarly caleulate ¥ Theos) and XTI hvesa for negative
welghtls.

2y For each hidden and output unit:

(a) For all weights greater than Ffhree, search for
positive rules only, and for all weights less than
N Ve ga search for negated rules only by Subser
mithod.

ib) Search for combinations of positive weights
above FA{car and negative weights greater than
N THeresy that exceed the bias. Similardy search for
negative weights less than N A cain and positive
weights below 27 hresy o generate rules.

The Subser method [22] conducts a breadth first search for
all the hidden and output nodes over the mput hinks. The algo-
rithm starts by determining whether any sets containing a single
link are sufficient to guarantee that the bias is exceeded. If yes,
then these sels are rewntlen as rules i disjunctive normal form.
The search proceeds by increasing the size of the subsets until
all possible subsets have been explored. Finally, the algorithm
removes subsumed and overy general rules.

Let us now explain our algorithm with a simple example.
We consider weights having value greater than i foress
as swrong connections [plotted as thick lines for a sample
network, as shown in Figo 4a)] and weights having value
between FAdeen and P oress as moderate links (plotted as
normal lines in the figure). We obtained T ersg) = 81,93,
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{h)

Fig. 4. {a) Positive and {b) negative connectivity of fuzzy MLP for
Fost-Monsoon data

Pdfenn L6LIS, and D lores: 220025 Similady caleu-
late X T hres), M Moare, and N Throxg for negative weights.
The comesponding network (representing only the negative
links) is provided in Fig. 4(b), with 5T hiresy — &1L,
NPMean = 16204, and N hresy, = 270416,

IV, RESULTS

The radiosonde data consist of a set of 1440 patterns obtaned
from the database of the Indian Meteorological Department,

Caleutta. There are four seasons: Post-Monsoon, Winter, Pre-
Monseon, and Monsoon, cach contributing 360 patlern poinls.
The seven input features correspond o emperature (T, pres-
sure { F1, vapor pressure (), height (& temperature at ref-
erence level (T, vapor pressure at reference level (e, and
height of the reference level (%), The four intervals for A
are mapped o three output classes, clubbmg intervals 3, 4 1o
class 3 only. These classes refer 1o subrefraction, normal refrac-
tion, and superrefraction and ducting, and are denoted as 1, 2,
3, respectively, in the mesulis. The iput features are split into
21 components in the linguistic space of (5). Cross-validation
of results 15 made with atmosphenc science experts.

Vanous three-layered networks were used with different
numbers of hidden nodes and trmining sets. The tmming sel size
«% refers to random, class-wise selection of &% trining data
from the entire dataset. The remaining 100 2% data constitute
the test set in each case. Different random initializations were
made, and consistent results were obtained for classification
and rule generation.

Tables 1-1V  provide the classification results for the
Post-Monsoon, Winter, Pre-Monsoon, and Monsoon  data,
respectively, for @ S 60T and hidden nodes 2, 3, 4, 5,
6. The mean square emor refers o the squared error between
the desired and computed outputs at the output layer of the
network, averaged over the test set under consideraton. Sets of
refined rules extracted from the network, considering only the
strong and moderate links, are also presented.

Fig. 4 depicts the positive and negative connectivity of a
pruned fuzey MLP with five hidden nodes and 60% and 70%
training set, respectively, for Post-Monsoon data. Extracted
rules are as follows,

* Forclass | (subrefractive):

Positive: 10T 18 medinm, 1215 low or medinm, .18 low,
M is medium or high, ¢ is medium, I, s low;
Negative: If I is not high, « is nol medium or high.

* For class 2 (normal-refmactive):

Positive: Il T s fow or medium, I 1s low or medium, T,
15 fowy, ho1s medium, o 18 high, o 18 high;
Negative: Il » 18 nol medinm or high.

+ For class 3 (superrelmactive):

Positive: 11 P 1s fow, ¢, 18 medinm, 5, 18 fow.

The validity of the extracted rules can be cross-examined on
the basis of experimental result obtamed from the analysis of
radiosonde data as well as on the basis of mathematical ver-
ification of the well-established relations of refractivity and its
eradient [(1)—(3)]. The expression of refractivity implies that the
radiore fractivity is directly proportional Lo pressure I and vapor
pressure o, and inversely proportional to temperature T and its
square term 2 1t also shows that the vapor pressure + con-
tributes very largely to radiorefractivity, as it is multiplied by
a very high numencal value. Mormeover, the expression for m-
diorefractivity gradient [(3)] depicts that the condition of subre-
fraction will be fulfilled when the rmdiorefractivity gradient A0
15 less negative or positive. To satisly this condition, mathemati-
cally the radiorefractivity at reference level 2, must be slightly
ereater or smaller than that of radiorefmactivity at higher level 5.
Similarly, for normal-refraction, &, must be moderately greater
than % . On the other hand, for superrefraction and ducting, %,
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TABLE 1
BEDGNITION SCORES WITH Fuzzy MLP FoR PosT-Monsoon Dara
Training | MNo. of training set testing set man
et hidden class class Beuare
size nodes 1 2 3 nat 1 2 3 net EITDE
2 GE6T 94.83 | 6154 | 8521 | 40,00 | 84,72 | 4902 | 71.94 | 0.0529
3 TOET 0655 | 65,38 | 4757 | 43.64 | BG.90 | 4310 | T3A3 | 0.07H2
0% 4 BS.E9 2914 TG.92 | 9408 | 5RTH [ BE.S0 [ ATOR | THE2 | (L0492
5 96.30 | 10000 | To.H2 | BEEG | 5455 | BY.TT | 4002 | TE42 | 0.0568
& 100,00 | 10000 | T3.08 | 9586 | 5818 | B7.34 | 50.%8 | YV.OL | 00314
2 5152 | 0640 | 61.20 | 23.74 | 40.00 | BO.96 54.90 | T6.42 | 0.0873
3 54.55 87.12 | 8065 | BY6E | 4000 | BE21 | BRTR | THAZ § [OT4E
B0%% 4 Ta.76 99.28 | 67.74 | o0.64 | 5455 | 91.27 | 5450 | 79.70 | 0.0589
& a0.91 M0R.00 4 7419 [ 2453 | B3.64 | B3.01 | 568G | 8249 | D.0385
& QE9T | 100.00 | TO9T [ 95.07 | BT.ET | HO.52 | 5490 | BO40 | 00356
2 | B3.49 TE43 | 60,23 | 7920 | T9.22 | 63,28 | 5395 [ FLAS | D.1042
3 §3.49 §3.73 | T6.92 | 7440 | 76.62 | 53.79 | 62.50 | 65.07 | 01280
% 4 91.74 020 | SA0A [ BH.BD | B3OZ | H00 | 6423 | TEET | (.0688
o TE.32 05,16 | 83,53 | 92,41 f 61.82 | BY.TV | TOMBO [ 850.90 | 0.0581
& 89,47 09,35 | 43.33 | 95.36 | 60.03 | 90.39 | BO.GT | &3.28 | 0.M35
TABLE 1
BRECOGNITION SCORES WITH Fuzzy MLP FOR WinNTER DATA

Training | Mo, of fraining yet {sling 8ol THEAT
BEG hirtden class - clage .Hqua,rc
siER najes 1 2 3 et E i 3 ned. Erir
2 B3.I0 | §3.12 | 55.56 | 8153 | 67.88 | #9.33 | ROO0 [ 67.31 | O.1017

3 0295 | G371 | TT.TH | B1T2 | TLAD [ TEGD . g5.56 | TO85 | 00817

S0 4 WIFT | B2D21 1 YTTR | 5200 | TETZ | 62,00 | 6550 | 6926 | Q0824
a 9206 | 04.81 § TT.TA | 92.9% | Ti.B2 | GS.ET [ G111 | TLAZ | Q0820

& 98,50 | 9T.40 | 83.8% | 9745 | 7730 | 7467 [ 6667 | T5.40 | 00323

2 B7.06 | 7326 | 60.00 | BL2% | BO.5% | G413 | 5AAE | 7217 | 0.0010

3 94,17 | 9259 | 0000 wesl | TRT ; 0S8 [ 61,11 | 72,48 | 0047

A05E 4 05,20 | 96,74 | T0.00 | 9465 | B4.kT § TT.E3 | 6111 | 79.61 | 0.0444
5 05,82 | Q565 | TOO0 | 9372 § TU.RG | TI.03 | 3880 | T411 | OJMS0

G AT.EG | 9T.AS | BS00 | 95.TD | B4.17 | 80.92 | E6.6T | BLGG | .0G7D

a TET7 | G7.29 | 2500 | 69.27 | v7.o0 | 6405 | 2041 6523 | 01163

& HAHD [ BEAE | SN0 | 8532 ! BOGS | TH.S2 | 5254 | FG.TD [ O.[MER

%5 4 HrS1 [ BTG5 | TSO0 | BB.53 § B0.58 | TH.T4 | TOE | TRG1 | 0.0B9G
i 85,95 | 94.39 : B3.33 | 94.50 | 82.73 | Toa | sBA2 | V061 | 00474

i 97.93 § 9720 | 8333 | 9479 | MMM | B1.03 | TO.RD | 83.83 | 0.033%

must be significantly greater than &, so that AN may become
more and more negative.

The extracted positve rule for Post-Monsoon season (class
1) shows that the subrefmctive condinon prevails when wmper-
ature ' athigher level 1s mediom, pressure £ s low or medium,
the wemperature at reference level T, is low, the vapor pressure
at reference level e, 15 mediom, the height of the higher level
i is mediom or high, and the height of the reference level 1. is
loww. The analyeed mdiosonde data for the Post-Monsoon season

were thomughly scrutinized, and it was observed that the oc-
currence of this type of combination of atmosphenc parameters
leads o formation of subrefractive gradients for the majority of
cases. On the other hand, theoretically, this type of combination
suggests that the radiore fractivity at the higher level v owall be
medium, whereas the radiorefractivity at the reference level .
will be moderately high (becavse e, 18 medium and 75 15 low).
Therefore, the tenm & — & in(3) will be a moderately negative
term and the term & A, will be medium or high (because & is
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TABLE 1l
RECOGNITION SCORES WTH Fuzzy MLP For Pre-Monsoon DA
Training | No. of training set . testing et e
et hidden clasg rlass BOuare
Eize noddes 1 2 3 net L 2 3 e CLror
2 #4.62 33.15 G786 | Bo.4T ¢ 7225 | TLY2 | 53.57 | 60,30 [ 0.0730
3 50,74 G452 6420 [ 8771 | ¥6.32 | T4.45 | 41.07 | 62.58 | 0.00666
509 4 9744 93.63 6786 | 93.30 | TR.02 | TE.ER | 41.07 | FLES | QL0500
L) g7.44 | 10000 | T5.00 94;9? 20,52 | T9.31 | 48.21 | v4.93 | 0.0408
& 96.15 08.63 TRHY | 8441 | #0652 | T3.10 | &1.79 | 72,96 | 0.0108
2 B2.58 82.95 Gd.64 | BO.GO | 7532 | T3.10 | 5000 | TO.42 | 0.0933
3 2R.30 a1 670 | BE.61 | YAAL | T5.AT | BT.14 | T4.37 | 00740
0% 4 33.62 8977 TE.ITIE 80,30 | BRYT | Th.EG | GBO6 | TEO6 | 00639
5 945.74 9318 | 63.64 | 89.77 | B5.06 | 80.00 | 5170 | 775 | 0.0503
[ OT.BT -} 10000 | a0 | o581 | 842 | 8207 | 5357 | 7859 ) 0.0374
@ H2.57 7d3.53 69,23 | 7680 | BOAZ2 | GR.2E | BOT1 | T2.39 | 0.1050
3 85.99 BT.25 74,36 | BEOD | &312 | el f 6250 | TES D.0852
TO% 1 91.74 a0.20p 8'2.05. - BO.G0 | B3.12 | BO.OD | 6L | TEAT | (L.068S .
5 817 95.10 THANZ | BE60 | BE46 | 30.00 | 53.93 | S0.56 | D.0475
& 06,33 93.14 87.18 | 93,60 | 87.01 | 731 | 6607 | 056 [ 0.0518
TABLE 1V
RECOOMITION SCORES WiTH Fuzzy MLP For Monsoon Dara
Training t No. of Eraining set testing sat imEan
seL hidden class claszs SOpLANe
Eize nodes 1 i 3 nat 1 2 3 net eTTOT
2 7500 5G.70 T2.73 | 92,11 | 48,04 | 8400 | 5238 | Vr4da | 0.0643
3 91.67 93.99 72.73 | 95.61 ; 60.00 | B7.78 | 5233 ¢ 3342 | 0,031
50% 4 ghas | oaoo | 7o | wara | eano | mee7 | a7.14 | m142 | o.od08
) T5.00 536,70 63.64 | 91.32 | 52,00 | 86.67 | 38.10 | 75,32 [ 0.0604
Li] 91.67 | 100,00 | 63.44 | 95.61 | 64.00 { 83,89 | 38.10 |} BL.42 | D.0449
2 5333 02.66 61.54 | 8540 | 3200 | 85.74 | s0.00 | 7743 | 0.0762
4 T4.33 96,23 TH92 { 91.97 | 4R00  93.37 | 7692 | 8461 | 0.0373
0% 4 A0.00 97.25 61.54 | 91.87 | 56.00 | 95.03 | 40.00 [ 85.684 ] 0.0363
4 6367 00.53 69,23 | 86,13 | 4500 | 33.40 | 50.00 | BO.53 _ D.0G24
i1 B0 iR G9.23 | 8978 | 5600 { 90.06 | S0.00 | 8274 | D.D634
2 47.06 95.09 66,67 | 88,12 | 40.00 _ 93.92 1 6000 | B4.95 | [.0635
) 3 Fr35 9922 BG.67 | 36.25 | 6000 | 95.58 | 55.00 [ BEQ5 | DO419
TOSE, 4 B35 |- 0%.44 | BE.6T | 0562 | 60.00 | 03.92 | 65.00 _ £7.61 | 0.0400
5 ) 64.71 96.09 8000 § 9125 | 52.00 § 9171 | 5000 | 83.63 | 00535
& 7ihsg | oosss | o7aaz | oorss | oo ! oadr | sonn | 5496 | 00526

medium or high and [ s low). On dividing, this contributes to
a less negative value for AN, usually lving in the subrefmctive
range.

This positive rule s also well supporied by the negative rule,
which suggests that in Post-Monsoon season the subrefmctive
condition will not occur when the vapor pressure < at the higher
level 15 not medium or high, ve s 18 low. Now il s s low, then
N will be low and &% — &, will be more negative, which prac-
tcally indicates the occurrence of supemelmacton or ducting.

In support of this, an investgation on analyzed radiosonde data
for this season also shows that if the vapor pressure gradient
15 negative, 1.e., the vapor pressure decreases with height, then
the probability of formaton of superrelractive gradient 1s very
high. Likewise, the mest of the generated rules are venfied for
this season as well as for the other three. We do not go into ther
details here because of space constraimts. It is observed that there
exisls a very good agreement between the generated rules and
the recorded radiosonde observations.
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Fig. 5 {a) Positive and (b} negative connectivity of fuzey MLP for Winrerdata.
Fig. 5 depicts the posiive and negative connectivity of a

prunéd fuzzy MLP with five and three lidden nodes and 50%  Fig. 6. Positive connectivity of fuzzy MLP for {a) Pre-Monsoon and (h)

and 60% training set, respectively, for Winter data. Sample Monsoon duta.

extracted rules are as follows,

= For class 1 (subrefractive): Fig. 6(a) depicts the connectivity of a pruned fuzzy MLP with
Positive: If T is low, P is low or medium, k, is high, f,  three hidden nodes and 70% traming set for Pre-Monsoon data.
is medinm or high, v, is low or medium. Positive rules extracted from this tmined network are as follows.
* Forclass 2 (nomal-refractive): * For class 1 (subrefractive):
Positive: 1 I is medium, f is high, ¢, s medium; I T is fow, ¢ 18 fowy, I is low, by is high.
Negative: If F' is nol medivm or high, f is not fow, '} * For class 2 (normal-refmctive):
15 nol fowy 15 nol fow; F,. 15 nol medinm. I T is fow, £, 18 fowy I8 fowg ¢ 18 medinm.
* Forclass 3 (supemelmctive): * For class 3 (superrefmactive):
Positive: 18T is high, T" is high, ¢ is medium or high, T is low, I is medinm, e is low or medium, Fiis high,

is fow;, T, is low or medium. ey 18 high, fe. is low.
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Fig. 6(b) depicts the connectivity of a pruned fuzzy MLP
with four hidden nodes and 70% taining set for Monsoon data.
Sample positive rules extracted from this rained network are as
follows,

* Forclass 1 (subrefractive):
If 1" 1s meditom, 17 15 medinm, T, 15 fow, O 15 low or
medium, ¢, 15 medinm.
* Forclass 2 (normal-refractive):
11 is fow or mediton, T, is high, F is low or medium,
& 18 medium or high.

V. CONCLUSION

We have described a method of linguistic mle generation
for categorizing the modes of rmdiowave propagation in a neu-
rofuzzy framework. The fuzey MLP used here learns the re-
lationship between the input parameters T, 2, ¢, I and the
output class AN, Studies have been made using different net-
work topologies. The extracted rules are used to justfy inferred
decisions. These have been verified with the mdiosonde obser-
vations recorded over Caleutta during four different seasons. [t
has been found that there exists a good agreement between the
generated rules and recorded observations.

The use of the fuzzy MLP enables one o estimate the refrac-
tive condition of the higher level { N in the experiments, even
in the absence of £ of (2). The practical utility of this aspect is
that the robusiness inherent in neural net architecture is able to
handle missing data, possibly caused by malfunctioning of ra-
diosonde equipments.

It is concluded that said neurofuzzy approach, mvolving rule
generation, is useful in assessing the radiorefractive condition
of the tropospheric boundary layer. This enables the speculation
of radiowave signal sitwation at the receiver’s site. The extracted
knowledge can be used o set up ground-based radio communi-
cation link over aregion. The resultant model will also be advan-
tageous Lo researchers working in remote sensing, atmospheric
science, and various other related fields.
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