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Abstract— A new scheme of knowledge-based classification
and rule generation using a fuzzy multilayer perceptron (ML)
is proposed. Knowledge collected from a data set is initially
encoded among the connection weights in terms of class o priori
prohabilities. This encoding also includes incorporation of hidden
nodes corresponding to both the pattern classes and their comple-
mentary regions. The network architecture, in terms of both links
and nodes, is then refined during training. Node growing and link
pruning are also resorted to. Rules are generated from the trained
network using the input, output, and connection weights in order
to justify any decisionis) reached. Negative rules corresponding
to a pattern not helonging to a class can also be obtained. These
are useful for inferencing in ambiguous cases. Results on real
life and synthetic data demonstrate that the speed of learning
and classification performance of the proposed scheme are better
than that obtained with the fuzzy and conventional versions of
the MLP (involving no initial knowledge encoding). Both convex
and concave decision regions are considered in the process.

Index Terms—Classification, fuzzy MLP, knowledge-based net-
works, rule generation.

I. INTRODUCTION

NOWLEDGE-BASED networks [1], [2] constitute a
Kspu_'iul class of artificial neural networks (ANN's) [3],
[4] that consider crude domain knowledge w generte the
initial network architecture, which s later refined in the
presence of training data. This process helps in edwing the
searching space and tme while the network tmees the optimal
solution. Node growing and link pruning are also made in
order to generate the optimal network architecture.

Connectiomst expert systems [3], [6] use the set of con-
nection weights of a trained neural net for encoding the
knowledge base for the problem under consideration. These
models are vsoally suitable in data-nch environment. When a
furzy neural net consttutes the knowledge base, we call the
model a neuro-fuzezy expert system [7]. This accommodates
the merits of neuro-furzey computing, viz., parallelism, fault
tolerance, adaptivity, and uncerainly managemenl, in expert
system design. Recently, there have been some altempls in
improving the perdformance of connectionist expert syslems
using knowledge-based networks. Such a model has the ca-
pability of outperforming a standard MLP as well as other
related algonthms.

Some related works in this area include the model by
Gallant [5], dealing with sacmwphagal problems, that uses
crisp inputs/outputs and a hinear discnminant network (with
no hidden nodes) tmined by the simple Pocket Algorithm. Yin
and Liang [8] mmcrementally built a dynamic knowledge base
capable of both acquiring new knowledge as well as releaming
existing information. Fu [1] wsed the inital domain knowledge
(in terms of rules) o generte the network wpology, while the
links were weighted o maintan the semantics. Towell and
Shavhk [2] mapped problem-specific “domain theories™ into
layered neural networks and then refined this reformulated
knowledge vsing backpropagaton. Machado and Rocha [9]
used a connectionist knowledge base involving fuzzy numbers
at the input layer, fuzey “and™ al the hidden layers, and fuzzy
“or” al the output layer.

In this article we consider a new idea of knowledge en-
coding among the connection weights of a fuzey MLP [10].
The methodology involves development of a technigue for
generating an appropriate architecre of the fuzey MLP
[10] in terms of hidden nodes and links. To demonstrate its
significance an application o pattern classification has been
provided, as an example. The model is capable of generating
both positive (indicating the belongingness of a pattern o
a class) and megative rules (ndicating not belongingness
of a pattem to a class) in linguistic form o justify any
decision reached. This is found to be useful for inferencing
i ambiguous cases. Note that, the rule generation procedures
described in this article are different from that repored in
[11]. The model is capable of handling input in numerical,
linguistic, and set fonms, and can tackle uncertainty due
o overlapping classes. The knowledge encoding procedure,
unlike most other methods [1], [2], mvolves a nonbinary
welghting mechanism.

It is found that the classification performance improves
appreciably with the encoding of the initial knowledge in the
network architecture. The proposed network model converges
much earlier and hence more meaningful rles are generated
at this stage as compared 1o the other models. A briel de-
scription of the fuzey MLP used is provided in Section 1. In
Secuon I we introduce the knowledge encoding methodology
that makes it more efficient. The algorithms for rule generation
are provided in Section IV, The maodel s implemented on
synthetic, and real-life speech and medical data (in Section V)
for both classification and rule generation. Iis perfformance is
also compared with that of the conventional fuzzy versions of
the MLP and fuzzy min—max neural network [12]. The paper
15 concluded in Secuon VL
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II. THE Fuzzy MLF MODEL

In this section we describe the fuzzy MLP [10] used. The

output of a neuron in any layer (A4 1) other than the input
layer 15 given as

fhly 1

i =
1+ exp (_Zyéhfu_uj.':_‘))

*

(1)

where y;h" is the state of the ¢th neuron in the preceding Hth
layer and -u.*__r:;'?] is the weight of the connection from the ith
neuron in layer i) to the fth neuron in layer {l—1). For nodes
in the mput layer, y;*-l * corresponds o the jth component of
the mput vector. The mean square ermor in oulpul veclors 1s
minimized by the backpropagation algonthm wsing a gradient
descent with a gradual decrease of the gain factor.

A, Input Vector
An p-dimensional pattern & = [Fop, Fo, oo, Fin] 18 rep-
resented as a dn-dimensional vector [13]

“‘1‘5 = [l“'].v:.l\'r (7 :I r "‘.\; ;':l .II"I".'.'.'."L!]IJ.IJJ[F:' _:-{'Fi] .

Il £ (F)- s Mgl B (F, :'J
l' [y i i |;I'r;|]

Y R (2)

where the po values indicate the membership functions of the
comresponding linguistic w-sets [14], [10] along each feature
axis. The input can be in numeric, linguistic or set form and
can have modifiers very, mowe or less {mol), or nor attached
to it as described in [13]. We ensure that any feature value
along the jth axis for pattern I; is assigned membership value
combinations in the cormesponding  three-dimensional (3-D)
linguistic space of (2) in such a way that at least one of
'.'.i-||:...\.:pi_l;|I:__I’1f-‘:'1{.y!.._._._,,,:]i.|,.|,||;,l-'_:_i‘:'.{I'-‘;_:I OF fghi o i) s greater
than (1.5, This heuristic ensures that each pattem point belongs
positively to at keast one of the linguiste sets low, medinm, or
high along each feature axis.

B. Outpt Representation
Consider an [-class problem domain such that we have !
nodes in the output layer. The desired output (o, € [0,1]) of
the kth output node for the éth inpul pattern, is defined as [14]
I

o
g (2
+(M)

where ug(F;) is the membership value of the ith pattern in
class €7, 2 is the weighted distance of the waining pattern
I from Cy. and the positive constants [y and [, are the
denominational and exponential fuzey generators controlling
the amount of fuzziness in this class-membership set. They
influence the amount of overlapping among the output classes.
Note that, here we have used a (nonlinguistic) definition of the
output nodes which indicates the degree of belongingness of
a pattemn to a class. However, this definition may be suit-
ably modified in other application areas o include linguistic
definitions.

e = pepl B = (3)
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1. KNOWLEDGE-BASED CLASSIFIC ATION

In this section, we formulate 8 methodology for encoding
a priovi initial knowledge in the fuzey MLP. Our concept is
based on the fact that if a classifier is initally provided with
some knowledge from the data set the resuling searching
space is reduced thereby leading 10 a more efficient learning.
The architecture of the network may become simpler doe 1o
the inherent reduction of the redundancy among the connection
weights. The network topology is then refined vsing the train-
ing data. Scope for growing hidden nodes and pruning links,
when necessary (as determined by the network performance),
enables the generation of a near optimal network architecture
with improved classification performance.

A. Enowledge Encoding
Let an interval [F), , F;, | denote the mnge of feature Fj
covered by class . Then we denote the membership value
of the interval as pi[F},. F.]) = p (between #) and #)
and compute it as [13]
pibetween Iy and I}
= {p{greater than £ 0+ piless than #; ‘]1-"'2 i)

ax!

where
wigreater than £ 1= (plk5 112 0 F, < gy
={pi* 0 F  otherwise (5)
and

pefless than By ) = [pl 5, 2 f Fie Z Cpeop

= {IrJ.fP_'I;E:l}z otherwise. ()
Here cppp, denotes ¢, ¢; - and ¢, for each of the comespond-
ing three overlapping fuzzy sets low, medinm, and high as in
[10]. The output membership for the comresponding class O
is found wsing (3). Note that, for the computation of z;, [14]
of (3), F;; s replaced by the mean of the interval [F, . F, ]
of the jth feature.

We have also considered the imtervals in which a class s
not included. The complement of the interval [F; , I, ] of the
feature F% is the region where the class (), does not lic and s
defined as [, I;.|* (where 5% denotes the complement of .5).
The linguistic membership values for [ . 17,17 1s denoted by
pl[F s F ) = g (not between F;) and F;, ) and is caleulated
as

pinot between £ and £ )
= max{p{less than £ 1, pigreater than #5,1} (7)
since not between £ and 7, — less than &5 OR greater
than £}, .

Let the linguistic membership  values for class €
in the interval [#7.£.], as caleulated by (4)-6). be
n ([ Fp Fp ) gons (| Fyy i) prae (5 Fy 3} Similarly
for the complement of the interval, using (7), we have

UCA TP AP ORP U W B TH TR i B

A fuzzy MLP with only one hidden layer is considered,
taking two hidden nodes corresponding o [#; . £.] and its
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complement, respectively. Links are introduced between the
mput nodes and the corresponding nodes i the hidden layer

HE [l Er o by o peallEy Bl 2 056
where 4 ¢ {L, M. H}. The weight -u:;‘:j': i between the
k.., node of the hidden layer (the hidden node correspond-
ing to the interval [, 1;] for elass %) and joim ©
{first{ 1.}, second{ M}, third{ )} 1th node of the input layer
comresponding to featre I is set by

J

i
W G = TR (8)
where p;, is the a priori probability of class €7, and ¢ is
a small random number. This hidden node 15 designated as
positive node. A second hidden node &, is considered for the
complement case and 15 ermed a negative node. ILs connection
weights are imitialized as

- I'Uj e = '.K]- —I_.Ik:;l 4+ e,

Mo,

(%

Note that the small random number £ 15 considered 1o destroy
any symmetry among the weights. Thus for an [-class problem
domain we have 21 nodes in the first hidden layer. In our
algonthm we have considered the following two cases.

= Al connections between these 21 hidden nodes and all

nodes in the iput layer are possible. The other weights
are mitially set as small random numbers.

* Only those selected connection weights nitialized by

(=9 are allowed.

It 15 o be mentoned that the method described above
can suitably handle convex pattem classes only. In case of
concave classes we consider multiple intervals for a feature
L comesponding to the various convex partitions that may be
gq.:m:ruu:d to approximate the given concave decision region.
This also holds for the complement of the region in I in
which a particular class €y, is not included. Hence, in such
cases we introduce hidden nodes, positive and negative, for
each of the intervals with connections being established by (8)
and (9) for the cases of a class belonging and not belonging
o a region, respectively, such that we get muluple hidden
nodes for each of the two cases. In this connection it is o
be noted that a concave class may also be subdivided into
several convex regions as in [15].

Let there be (fpoe + ko) hidden nodes, where k.. =
B, ke, and Ko Y. k.. generated for class Of
such that Fpee = 1 and Epee = 1. Now connections are
established between fith output node (for class €7,.) and only
the comesponding [R‘l,m .Im_«. hidden nodes. We assume that
if any feature value (for class ) is outside some interval o,
the total input received by the comesponding hidden node
15 2ero and this thereby produces an output g;;‘:i': 0.5 due 1o
the sigmoid nonlinearity of (1).

The connecton weight wi,.'-,l between the fith outpul node
and the £,th hidden node is caleulated from a series of
equations generated as below. For an interval ¢ as input for

1 : . ra
class €y, the expression for outpul yﬁ_‘z of the &th output node
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Fi + €,
L1-Pel+€3

lowr medium high
—_— Ff =
Fig. 1. An example to demonstrate knowledge encoding.
15 given by
12 sl
iy = fL 5. W f: -+ Z (1.5 -‘J‘M” (107

1

where f{-] is the sigmoid function as in (1) and the hidden
nodes k. comrespond to the intervals not represented by the
convex partition . Thus for a particular class 5 we have as
many equations as the number of intervals (including not) used
for approximating any concave andfor convex decision region
. ThLFLh} we can uniquely compute each of the connection
welghls 'I'I‘H For (corresponding to each hidden node k. and
class ) pair).

The network architeciure, so encoded, is then refined by
training it on the pattern set supplied as input. In case of
“all connections”™ between input and hidden layers, all the link
weights are trained. In case of “selected connections” only the
selected hink weights are tramed, while the other connections
are kept clamped at zero. If the network achieves satisfaciory
performance, the classifier design is complete. Otherwise, we
resort o node growing or hink pruning.

B. An Example

Consider the network depicted in Fig. 1. Let the output node
Ir corresponding o a class ¢, be connected o two hidden
nodes £, ' and F.:“.“ via connection weights H'H
Let class €% lie in the interval [F; ., F ] of mpul feature .F-'
Then the weights between the mput and the hidden layer are
initially set from (8) and (9) as

(1
and hJ

IR _
'“’k.\,j. =i +er
)
LT T €2
and
{0 . .
we g = =p) o

In the case of the network with aff connections the other
weights between the mput and the hidden layers (eg.,
oy [ iF}
e sl
values, On th uthr hand, in the case of the network with

selected connections, these are not considered at all.

) oare initalized by small mndom
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Substituting (107 in (1), we have

1
yi¥ = . : T (11)
1t expl=(p! wh! 105wk )

where yij‘" is the output of the fth output node and yﬂj" is that
of the hidden node, coresponding 0 the presented interval,
connected 1o the Rth output node. From (11) we have

(2
i
1-y

Gy L)

WL e nld
uy, P +l.].:.-r.!.l*_k‘_“ In (12)

Similarly, considering the complement-interval [, I7,]° of
the feature F;, we can wrile

1
1_3"'*:?2}: a TSR (13)
| —:?x]ﬁ{—{i].ﬁi.l,ljck’]h!‘ +y§.:|" wy }
Therefore
1 T
s 13 (1) —
”"'”"".'::1.!:'“!, + y";r,j" 1.:?}:.’“:_ =1In .—z; (14)

The outputs y}_l"] and .r,r;;l} are caleulated vsmg (1) with
L w

appropriale input values. Then from (12) and (14) we can

il

[ (13
evaluate “’H«r. and EUTH

C. Pruning

A large number of connection weights in a network ofien
results in redundancy, leading to the problem of just mem-
orfzing the patterns. In such cases pruning of less important
links andfor hidden nodes is incorporated in order o get a
near optimal network archilecture and thereby enhance the
generalization capability. There exists various algorithms for
pruning [16], [17] ANN's. Here we have mcorporaled link
pruning of the knowledge-based network in a slightly different
Wiy,

A connection weight is pruned if its contribution toward
the network output is least significant during the presentation
of the training set. Therefore, the link -ur__r;irj in layer (R} is
pruned if

Z *.'J;_'I*-i-"':.I,r\';hJ = 1!.“1.1: Z w.lf;z? ,Etj (15}
» i
where the summation 15 taken over all the patlems poin the
training set and the minimom s computed over the indices
fz. 1.

When a network with large number of connection weights
results in poor classification performance after a certain num-
ber of epochs, links between layers (h — 1} and (%), for cach
ifel, need w be selected for pruning by (15). The resulting
network is retrained for a few more epochs and this process
is continued tll we get a satisfaclory recognition score.

Note that, we do not resort o node pruning as the number of
hidden nodes are mitially encoded with the domain knowledgze
and are, therefore, not redundant. During refinement by train-
ing, it is the growth of extra links that leads o redundancy.
Hence it is our objective to prune a few such redundant links
to improve the generalization capability of the network.
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D. Growing of Hidden Nodes

If after a cerain number of epochs (experimentally deter-
mined) the classifier still does not recognize a certain class
5 well and the network size is not oo large, we resor o
adding a hidden node (instead of pruning) o our knowledge-
based model. Connection weights are established between this
new node and all the classes. Links are also inroduced from
all mput nodes to this newly added node. Now tmining is
allowed on these new connection weights for a few epochs
(again empincally set) wsing only those samples which are
in class C% while keeping all the other links frozen. Then
all the hinks are retrmmed with the entire tmming set and the
process of adding, freezing, and retraining are continued, until
all the classes are reasonably well recogmized. Note that, other
approaches for growing of nodes in ANN's may be found in
[18] and [19].

IV, RULE GEMNERATION

The trained knowledge-based network is wsed for rule
generation in if-then form in order to justify any decision
reached. These rules describe the extent w which a test pattern
belongs or does not belong o one of the classes in terms of
antecedent and consequent clavses provided in natral form.
We use two rule-generation strategies as descobed below. The
algorithms are, however, different from that reported in [11].

Method (1) Treating the network as a black-box and us-
g the traiming set mput (mn numeric and/or
linguistic forms) and network output (with con-
fidence factor) o generate the antecedent and
consequent parts.

Method (n) Backtracking along maximal weighted paths
using the wained net and utilizing its input
and output activations (with confidence factor)
for obtaining the antecedent and consequent
clauses.

A. Using Numeric and/or Linguistic Inputs—Method (i)

In this method we use an exhavstive set of numeric and/or
linguistic inputs along with their hedges at the input for
antecedent clauses (if parts). We have a total of 9" pattems
(comresponding 1o very, mof, and not for each of linguistic
values fow, medium, and high of each of the features) for a data
set with n featres. These patiems constitute the antecedent
part of the rules. In the case of numeric patterns, the distance
between the pth pattemm and each of the linguistic pattern
viectors are calculated. The linguistic pattern closest wo the pth
pattern determines the antecedent pan of the rule [11].

To generate the consequent part of the rule, we use a
measwre which reflects the amount of difficulty in ardving
at a decision by mimmizing the ambiguity in the computed
outpul vector. A confidence factor (CF) is defined [13] as

I
e L], ¢ 1 ey i2
CF= 5 [l phos = ;Zl{:umm -y}

B0=CF<1 (16)
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20 2
1].|.e1\r:I e {'r,.'_jl W

the output vector yr‘;:' [by fl}lE, and Finage indicates the number
of occurrences of 1 mﬂ_\ in y“ . Mote that CF takes care of the
fact that the difficulty in assigning a paricular pattern class
de-L,ndh not only on the highest entry m the output H_ﬂ_lur

) . . .
where e 15 the jth component in

ymu but also on its differences from the other entries i,r

It is seen that the higher the value of CF, the lower is IhL
difficulty in deciding a class and hence greater is the degree
of certainty of the output decision. Based on the value of CF,
the system makes the following decisions while ELanlmg the

= II,"111 :::-c such
We

consequent clause (then part) of the rule. Let ;™
that the pattern under considermtion belongs o class €.
have
1if (0.8 < CF, < 1.0} then very likely class €%, and
there 15 no second choice;
2y if (0.6 = CFy < 0.8 then likely class Oy, and there is
second choice;
3 il (0l < CFy < 0.6} then mol likely class O, and there
is second choice;
4 if (0.1 £ CFg < (04) then not unlikely class €. and
there 15 no second choice;
5) if (CF; < (1) then unable to recognize class ¢, and
there 15 no second choice.
To obtain a second chowe comesponding 1o a pattern class
(. (say), we Imd the confidence factor CFy, for the second
highest entry v,rj- I in the output vector using (16). There may
be some cases where there are multiple entries with the highest
value g,lfl‘;?;'}x i the output vector. In that case, there will not
be a second choice of pattemn class. Instead, the form of the
consequent will be “likefly class O or C57 where the output
values corresponding 1o classes ), and 7 both have the
highest value yﬁzx.
Identical rules, if any, are discarded from the generated rule
set.

B. Backtracking Along Trained Connection
Weights—Method (i)

An input patiermn P, from the training set is presented to
the input of the trained network and its output computed. The
consequent part of the corresponding §~then rule 15 generated
by (16) as described in Section 1V-A. To find the antecedent
clauses of the rule, we backirack from the output layer to the
input through the maximal weighted links. The path from node
F in the output layer to node {4 in the input layer through node
4 in the hidden layer is maximal if

*.u,' J “\ + 1:

y" = ?nrnc‘lLﬂ’.‘11|.'lJl'i‘i'?J T "'” rraid s J.Er-lll} (17}

provided that 1,.":1: = 0L, 'n)':ﬂ:':-'fﬂﬁ and the maximum 15
computed over th index ri. Here the path length from rmdL

& in the output layer to node j in the hidden laver is w ‘,LL i
and not |L£ ! as defined by Mitra and Pal [11] in an earlier
approach. Besides, the CF of (16) is also different and in
cerlain ways betier than the belief used there. We consider

only one node ¢y comesponding o the three linguistc values
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of each feature &; so that
oy fn K U}
e TIHX LT (0}

T (18
Feartey Hoilat i Fiiin ::'

where A and B correspond to low (L), medium (M) or high
{H). The 3-D linguistic pattern vector fow, medinm or high
with or without hedges [comresponding Lo the linguistic feature
£, computed by (18)], which 1s closest to the relevant 3-D
part of pattem FP, 15 selected as the antecedent clause [11].
This is done for all input features to which a path may be found
by (17). The complete if part of the rule is found by ANDing
the clauses comresponding o each of the featres, eg.,

If ) s mol A and I s not A and
- and I, is very A

1) Negative Rules: I may sometmes happen that we are
unable to classify a west pattern directly with the help of the
positive rules (conceming its belongimgness o a class) derived
by any of the above two methods. In such cases, we proceed
by discarding some classes which are unlikely o contan the
pattern, and thereby armve at the class(es) o which the pattern
possibly belongs. In other words, in the absence of positive
information regarding the belongingness of pattern #, 1o class
5, we use the complementary information about the pattern
£, not belonging w class €. To handle such siwations, we
have generated negarive rules with the consequent part of the
form not in class Cre by backtracking from the output layer
through the trained connection weights. Note that, for positive
rubes we traverse the hidden node F;{,P while for negative rules
we backirack along the hidden node &,

Let an input pattern 7, from the training set be presented
to the input layer of the trained network such that the output
of the node in the output layer Lurmp-undmg to the class
€ 18 minimum, ie., y;‘f: = m1]‘|,|g-[|'j|: '}, Therefore, we are
certain that the pattern is (possibly) not included in the class
. Hence, the consequent part of the corresponding rule
becomes not in class .. The antecedent part of the mle is
obtained by backtracking from the output node &' through the
maximal path wsing (17) with the mestnctions that now we
consider the absolute values of the individual product ems.
The comresponding rule, so obtained, is of the form

If 1 dand -

then the pattern is not in class €,

is mol and {1, is very -l

MNote that the approach i [11] did not consider such negative
rukes. F 1

It 15 worth mentoning that the above rule generation Lech-
nigques can also handle the situations where the input 15 given
in set form. the feature information F; of
a lest pattern 1s neither linguistic nor numeric, bul may be
available as 1) F; = Fy . some lower bound; 2) F; <0 F)
some upper bound; or 3) in some interval [, I,| such that
5 lies between p7 and £ In these cases, the linguistic
v.iluu T, mm’uun I:rgf: Lurrup-undmg to the mmput given in
the set form and hedges are evaluated from (4)—(6). Then the
ruke with this antecedent is picked vp, and we ke a decision
on the basis of the comesponding consequent part regarding
its class (as explained earlier).

In other words,
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Fig. 2. An example to demonstrate positive and negasive rule genemtion
using method (ii).

2) An example: Consider a  knowledge-based  network
(Model AN) given in Fig. 2 demonstrating the rule generation
technigue using method (ii). We have considered the feature
£ for the antecedent clause, Only the classes € and (03 with
maxmmum and minimum outputs, respectively (on presenting
a patlern at the input layer), have been considered for the
generation of positive and negative rules. The hidden nodes
I and 2 comespond o two convex segments of the region
represented by the class ), and 3 comresponds o the region
complement to class 7). Similady, for the class -, we have
considered the hidden node 4 corresponding o the region of
the class ., and 5 and 6 comrespond to the region other than
class (7. Thus, nodes 1 and 2, and 4 represent the positive
nodes for classes 7 and -, respectively. Similarly, the
nodes 3, 5, and 6 denote the negarive nodes for classes O
and (7., respectively.

A pattern with linguistic values low( L) = 0L6. medium( A4}
= {13, and high{ H) = 0.2 of feature #; is presented to the
input layer of the network. Assume that the activations of the
outpul nodes corresponding to the classes ), and €7 are 0.9
and 0.1, respectively. Therefore, backtracking starts from the
output node comresponding o the class €y, and searches for
the maximal path through the hidden nodes 1 and 2 only (if
the activations of these nodes are at least (0.5) for positive rule
generation. For the negative rule generation, it starts from the
output node corresponding o the class Oy and searches for
the maximal path through the hidden nodes 5 and 6 only (if the
outputs of these nodes are at keast 0.5). The links with weights
as shown in the figure are obtained during raining. For clarity
of the figure, we have not considered the links from hidden
node 3 to L. M, and A comesponding to the feature I as we
do not require these inks for the generation of positive Tule.
Similarly, the hinks from the hidden node 4 w the input nodes
Lo M, and H are not shown.

We denote the path length [as explained by (17)] from
the hidden node 5 to the mput node ¢ by pulh__&?", and that
from the output node & to the hidden node 7 by pulhifl-':.
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The path kength from the output node & to the inpul node
i via hidden node j is denoted by pathg .. Therefore, from

Fig. 2 we find the following path lengths: p.'.llhilf = 0.7 *
0.6 = 0.42, path}y, = 0.8+ 0.8 = 0.6 path}) = 0.39 and

[ w i
path; ¢y, = (L3G. Note that, puLh“} and path,; have not been

considered as the activation of the input node H is less than
(0.5, The total inputs received by the hidden nodes 1 and 2
are found to be 1.08 and 1.0, respectively. Therefore, the
activations of these nodes are y}_“ = [L75 and 'y'«_(,l': = 073,
respectively by (1). The path lengths between the nodes in
the output layer and the hidden layer are pulh}'_ﬁ" = .1} and
p;.'ill'J:‘__'zJ = &.-1. The total path lengths are found to be pathy,,, =
943 pathy ., = 964, path,,;, = &7 path,,,, = 596
Hence, the maximal path from the output node comresponding
to the class €% is obtined as the path via the hidden node
1 to the input node M (the selected path consists of the
links joiming the nodes indicated by solid cwcles in Fig. 2).
The antecedent clavse corresponding o the fealure b5 s
“Ey is mol medivm,” and is obtained by finding the closest
match of the 3-D vector comesponding to the feature I, to
the respective linguistic pattem (with'without hedges). The
consequent part of the rule is very fikely cfass €, as obtained
from (16).

For the generation of negative rule, we compute the follow-

ing path lengths: pathl)! = 1045 pathly, = 0.2, pahl} =
(139, pathly, — (1.38. The total inputs received by the hidden

nodes 5 and 6 are 0079 and 0.81, respectively. 'I'hi:l:l:ﬁ}n:, the
corresponding activations ard y.f;l': = L6649 and yé-L" = (L0
Thus, the path lengths between the nodes in the output layer
and the hidden layer are pulh;_.‘; = 9,32 and pulh:i;g_; = 10,35
The total path lengths are path,.., = 997 path,..,, =
484, pathy,.. — LT, pathy.. o,
mal path from the output node corresponding o the class Cy.
15 obtained as the path via the hidden node 6 w the mmput
node £ (the path consisting of the links joiming the nodes
indicated by circles with dots inside in Fig. 2). Therefore,
the corresponding antecedent clause, “F; is mol fow,” of the
negative rule 15 obtamed as in the earhier case. Thus, the
negative rule is: If Iy is mol low then the pattern is not in
class .

10L.73. Hence, the maxi-



1344

[EEE TRAMSACTIONS ON MEURAL NETWORKS, VOL. 8, NO. &, NOVEMBER 1997

Wi -
s 1ZE  FRESUENET OF OICUHIMEES
aed- (L !
[
700- e
| |la a QI,I' 3w
BCOF v
;
a g 'a;:'.l
L] -
'-:;5:'3_ Illluqa[\":lc'DE::
.I.:"- ! fon @ 9 oca
'|_ -"'_u._"‘--\.\_\_\_\_-\-
Loop /"’{ua _JD_G—}jfg
LA Il--'-""|
nor Ll oW U
200 . . . ; : ;
[=1H] aca 1220 1550 1860 2100 2400 2700
I':2 inHz

Fig. 4. Vowel data

V. EXPERIMENTAL RESULTS

In this section we compare the classification and rule gen-
eration performance of the proposed knowledge-based model
with that of the conventional and fuzey versions of the
MLP [10], [11], and the fuzzy min—-max neural network [12]
both on synthetic and real-hife (speech and medical) data.
In all the cases the data sets have been divided into two
subsets—itraining and testing. The synthetic daw Patl (Fig. 3)
contains two input features, two pattem classes, and consists
of 557 pattern points. As the class structures ame concave, we
have found approximately (by inspecting the feature space)
the set of intervals of the features where each of the pattern
classes he (or do not he). The networks are trmned with 105
of the orginal data while the remaining 90% data constitutes
the test sel.

The speech data Vowel deals with 871 Indian Telugu vowel
sounds. These were utiered o a consonant-vowel-consonant
context by three male speakers in the age group of 30 1o
35 years. The data consists of three features: &), I, and Iy
comresponding to the first, second, and third vowel formant
frequencies obtained through spectrum analysis of the speech
data. Fig. 4 provides the plot in the £} — &% plane for ease of
depiction. The data contains six vowel classes—d, a, 1, u, e, 0
represented as 1, 2,03, 4, 5, and 6 in the sequel. The training
set contains 10% of the onginal data set.

The medical data Hepato, consisting of nine input features
and four pattern classes, deals with varous Hepatobiliary
disorders [20] of 336 patient cases. The input features are the
results of different biochemical tests, viz, glutamic oxalacetic
transaminate (GOT, Kammen unit), glutame pyruvie lransam-
mase (GPT, Kamen unit), lactate dehydrase (LDH. /1),
gamma glutamyl transpeptidase (GGT, mu/ml), blood urea
nirogen (BUN, mg/dl), mean corpuscular volume of red blood
cell (MCY, 1), mean corpuscular hemoglobin (MCH, pg), total
bilirubin (TBil, mg/dl) and creatinine (CRTNN, mg/dl). The

hepatobiliary disorders aleoholie iver damage (ALD), pnmary
hepatoma (PH), hiver cirthosis (LC) and cholelithiasis (C),
constitute the four output classes. In this case, 30% of the
original data set comprises the sraining set while the remaining
T0% data forms the fesr set. In the case of the medical data
we have assumed the pattern classes o be convex as it 1S
otherwise very difficult 1o visualize the exact nature of the
nine-dimensional feature space.

It is found that the knowledge-based model converges o
a good solution with a very small number of training epochs
(iterations) in all the four cases. Note that, we have used the
following four knowledge-based models designated as follows:

all connections with not:  Model AN
all connections without not:  Model A
selected connections with not: Model SN
selected connections without not: Model S,

Results are compared with those of the fuzey MLP ({Model
Fi. the conventional MLP (Model C), and the fueey min-max
network (Model FMM) [12]. The number of links required in
each case is appropriately indicated (in parenthesis after the
name of the corresponding model) in the tables. The variables
fooand fo of (3) were set at 5.0 and 1.0, respectively [10],
for the speech and medical data. For the synthetic data we use
iy € {0, 1} and hence fg and f. are not required.

A. Classification

Table 1 depicts the result obtained with Patl data. A total
of six intervals (1e., six hidden nodes) for the two features
are found to be sufficient to characterize the classes if we do
not consider the intervals in which any of the classes is not
included [(4-06) only|. This 1s termed as the withowt not case.
Otherwise, il we consider both the intervals of the features in
which a class iy included and is not inclwded, we require a



MITRA e of: KNOWLEDGE-BASED FUZZY MLP

TABLE 1
PERFORMANCE OF DIFFERENT MoDELS 0N Patl DaTa
Wirdel (lass Searel F:)
_Tﬁ-mr; : ":.l'mling
AN (52) i wog | Llooo
2 0.0 0.0
Overall | 83.61 | 82.47
S 7 O R 060 1000
2 oo | 1o
Orvesall | THLD 1
5M (< 82 i W00 | LM
1 w000 | 100.0
Oversll | 1008 | 1000
5 (< 47) 1 WA Tnen
2 1.0 . (1]
Ovezall Sd K247
i 1000 | 1000
FMM {813 2 1000 | 8408
Overall | 1000 . 97.21
1 1000 | 1060
FMM (48) | 2 RE5G | AR50
TOverall | 5273 | o104

total of ten intervals (i.e., len hidden nodes). This is called the
with not case. It is observed that models A and SN give 100%
recognition score in just 600 epochs. The other models (AN
and 5) have not been able o recognize class 2 at this siage.
In model AN, perhaps the large number of interconnections
encode too much redundant information thereby not enabling
the classifier 1o recognize class 2. On the other hand, model §
prowvides poor result probably due to under-mformation. The
pedformance of C and F is the same as that of AN and S.
That is why we have not included the results for C and F in
Table 1.

We have resorted o pruning of links in models AN, F and
growing of hidden nodes in cases of models 8, F, C. 1t is
found that afier only 100 epochs of growing the model SN
provides overall recognition score of 100% on the training set
and 99.8% on the test set. This demonstrates a remarkable
improvement in perfformance. Hidden nodes were also added
to models C and F at the same stage but the performance is
found 1w be poor (0% recognition for class 2) in case of Patl
data. Pruning model AN resulted in 100% recognition scores
for both the training and test sets. The links were pruned from
600 epochs at intervals of ten epochs, up to 750 epochs, and
then the network was trained until 900 ¢pochs. Although model
F could now recognize around 20% patterns from class 2, this
wis considerably less than that by model AN,

Table 11 shows the resulls obtained with Vowel data. Since
all the classes in the feature space are convex, we use wo
hidden nodes for each of the classes. Hence only with not
models have been considered and we require a total of 12
hidden nodes for this data set. The resulis demonstrate that
model AN pgives acceptably good performance in just 200
epochs whereas model SN cannot do the same due o under-
information. Note that, the vowel classes are overlapping
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TABLE 1l
PERFORMANCE OF [DNFFERENT MobELs oN Vowel Data
Muodel Cless Seore %)
.'f:.e;:.niug [ ':ﬁ-'.ir.-;
4286 27.6%
2 57.a S6.42
AN (138] 3 n4.12 87.7
1 1060 BEAS
5o 05 | 652
fi o 03,83
Overall | 0030 | 7263
: fo e
a i sz
SK= 138 ) G412 704
A 1000 2235
30, a0 | 6843
& 1 G441 5381
Overall | 8235 7379
1 | maz :owrr
b2 0o | s0as
|1 604 | 98
FMM (5043 4 SGHT a6
il ah0 G257
fi BEED 53,50
Overall U1.TH Tz
S G 7143 | 7538
2 5100 11.95
K] AT 7410
FMM (193] |+ 33331 | 4338
3 . G654 E3.58
i} 44.44 A5
Overall | 36.47 | 366

and fuzzy, thereby generating furzy outpul class membership
values that require storage of more information than in case
of crisp class membership values. Perhaps this accounts for
the better perfformance of model AN (with more connections ).
Models C and F were unable to recognize classes 1, 2, and 4,
and fared the worst (overall recognition score during training
and testing being 4235 and 39.19% for the model C, and
5529 and 52.93% for the model F). As before, their details
are not mentioned in the table o restict the size of the
article.

As model AN perdormed reasonably well for all classes
initially {before growing), the incorporation of additional hid-
den nodes did not mprove the mesults in this case. However,
when model SN was augmented for class 1 it was found that
after 350 epochs the model could recognize 14.29% of class 1
during raiming and 1.54% during testing. The overall scores
rose 0 8353 and 74.17% for the training and testing sets,
respectively. The results are depicted in Table I11.

Table 1V demonstrates the classification performance for the
medical data Hepato where classes 1,2, 3, and 4 correspond to
the four disease classes ALD PH, L and O, respectively.
Note that here we do not know a priori the shape of the
pattern classes in the nine-dimensional feature space. We have
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TABLE M1
EFFECT OF ADDING HIDDEN MODE ON THE PERFORMANCE OF
THE Varous KNowLERGE-Basen MoDeLs o Vowel Dara

Menlei | Class, Srareid;
Trnivig  Teating
1 42.20 2305
1 RER I e
K] vig 12 70N
AN 4 1070 VI i
30 wmlp | s
2 O I T A
Chverall A% a6l
= & ow o appy B opey
3 A | Asa
3 4,12 w2 6
N N L) 5456
3 A3 fiff. 154
L AR NN
_'(':u:c:ai'_ ] BY a1 " 'ERE;

assumed that the classes are convex, so that only eight hidden
nodes are used corresponding o the four classes. As in the
case of Vowel, only the knowledge-based models AN and SN
have been used. Smee we have approxmmated the structunes of
the classes as convex, model SN which uses only those hnks
that are encoded with the initial knowledge performs rather
poordy. Perhaps it would require more nodes and links than
were available under our assumption. However, model AN,
which is allowed 1o grow extra links, is found to have solved
this problem. lis performance is considerably betier than that
of models SN and F i just 500 epochs (Table 1'V). Note that,
the model C, being unable to recogniee classes 1, 3, and 415
not included in the table.

Tables 1, 11, and IV also show the classification perfformance
of the fuzzy min-max neural network (model FMM) [12] on
the three data sets. In this model, the number of links can be
varned by allenng some of the parameters. Here we show the
results for two different configurations viz., 1) providing mol
the same overmall recognition score (on the mining sels) as
the proposed model and 2) providing mol the same number
of links as the proposed model. Note that, the model A for
Patl (Table 1), and model AN for both Vowel (Table 11) and
Hepaio (Table 1V) have been compared for this purpose, as
they perform the best It is clear that the model FMM requires
more links than the proposed model w get mol the same
overall recognition score. Similady, with mol the same number
of links the model FMM performs poorer for all the data
sels.

Figs. 5 and 6 depet the vanaton of mean sguare error
with the number of sweeps for pattern sets Patl and Vowel,
respectively. In the case of Patl we demonstrate the behavior
of the two better knowledge-based models A and SN only,
for ease of explanation. It is observed that model C has the
worst performance. Model A (for Patl) and model AN (for
Vowel) behave the best 1t is found that Model SN is better than
Maodel F in the beginning and converges o a good solution
very fast (in about 600 sweeps in Fig. 5) for Patl while Model

[EEE TRAMSACTIONS ON MEURAL NETWORKS, VOL. 8, NO. &, NOVEMBER 1997

TABLE IV
PERFORMANCE OF DNFRERENT MobELs oy Hepato Dara
i el Clasa . F%cu:.\r(‘[-‘.'{-_]- B
Tr_ait.f.n:,r Testing
. x 41.1% AT.8G
2600 2 .37 B4.00
3 9 70 2.0
. alas | wesr
Crvesrall A4.7a Gl 4%
o 1 6..76 | 52.4d
AN (26" 5 s401 ¢ T7AD
5 5946 4d68
b uloLe 5675
“Querell | vnaT | 8631
T T Ll 0.0
SK (< E3E) r 2 950 | tan.o
3 0.0 0o
4 0.0 0.0
Gl | 3270 4400
i 04T 3293
p: amat o B0
Fa ooas) | a5Es | 2
) a6 5542
Overall ' 76,10 | 3078
) 1 as no
3 100.0 100,10
FRIM (236 3 18.02 0.4
i 00 0.0
Overall | &3G2 | &h16

F mequires about twice to thrice this ume o reach the same
level of performance. In contrast, for Vowel data, Model F
surpasses model SN at around 500 sweeps (as seen from
Fig. 6). However, Model ANGA s always the best perhaps
due to the presence of less redundancy (than Model F) along
with more knowledge (than Model 5N). Note that, Tables [
and 11 depict the performance of the knowledge-based models
at 60 sweeps (epochs), respectively. This accounts for the
relatively poor performance of Model F at thas stage, whereas
it fares better with bomger traming me (as 15 evident from
the figures).

B. Rule Generation

Tables ¥V and VI compare the rules generated for Patl
and Vowel data, respectively, by the methods described in
Sectuon IV wsimg the proposed knowledge encoded networks
and the fuzzy MLP [10]. The mles generated on the various
models are not identical due o the different amounts of
redundancy inherent in them and the difference in the encoding
of their network architectures. Method (i) ofien produces
different results (as compared o method (i) where only the
mput and output of the neural net are considered) because here
the traned connection weight magmtudes are utilized dunng
the tracmg of the maximal weighted paths, thereby using the
encoded and refined domain knowledge along with the test
case feature values.
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1) Negative Rules: Let us consider the tramed connection

welghts -u.:_'t.}.J

. of the knowledge-based network in the case
of Patl w explain the generation of negative rules. It is
mleresting o note that the weights -.'1.:;‘_]_;‘_1\ connecting £,
nodes o the hidden layer with the uurrusp:f)nding kth output
node are found to be negative, whereas those connecting k.,
nodes are positive for each of the classes €. Therefore,
when a pattern belonging o class % 15 presented o the

input layer of the network, the output produced by the T,
hidden nodes is greater than those by K, hidden nodes
(or sometmes comparable i magmitude when the weights

il
MWy :

the output produced by the &/, nodes is always found to
be greater than those by &, nodes. The hidden nodes 1,
2.3, and 4 correspond o the mtervals o which class 1
belongs, while node 5 refers to the interval in which class

(L :
and wyy’  are also comparable). Bul i such cases,
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TABLE ¥
RuLEs OBTAINED BY [DNFFERENT MoDeELs For Patl
Muoded Antecedent Consequent
Methad (i) Method (i)
F low and likely class 1 but very likely class 1
A £ tgh unahle to recognize class 2
Fp mol medium and mol likely class 2 but |i]i‘(‘[]:" class 2 bt
Fy mol medium unable to recognize class 1 | wuable Lo recognize class |
Fy low and very likely class 1 g very likely class 1
8N F, high
Fy mol medium and likely class 2 but very likely class 2
£ maol medium unable to rocognize class 1
£y low and very likely class 1 very likely class 1
F Fy high
F mol medium and likely class 2 hut likely class 2 but
Fy mol medium unable to recognize class 1 unahle ta recognize class 1

I does not he. The cormesponding connection weights are
8.241502, 13.473 857, 13286455, 8.405 158, 16488053, and
16458573, respecuvely. Simlady, hidden nodes 6 and 7
comespond o the ntervals w which class 2 belongs, while
the hidden nodes 8, 9, and 10 are indicative of the region
where class 2 15 not immcluded. Their connection weights
are —43. 487 919, —9.280226, — 14061 239, and —9.116443,
respectively, Considering this, we backtrack along &) nodes
while determining a rule about a pattern not belonging 1o class
(' and generate that path having the maximal value for the
magnitude of the product term {as explained in Section 1V-B.
for negative rules).

Two sample regative rules obtaned by method (1) using
the AN and F models for Vowel data are provided below.

Using model AN:

If £ is mol low and £ s mediom and £5 is very low then
the pattern 15 not i class 4.

If I is very high and o is mol medium and % is very
medium then the pattem s not i class 3;

Using model F:

If I} is high and F% s medium and I is high then the
patlem 15 not i class 4.

If #£% is very high and £, is mol medium and £ is very
medium then the pattem s not in class 3.

It is seen that negative rules offer an useful solution in
cases where no suitable positive rule can be found. Nowe
that, model F does not have E,, or £, nodes encoded in
s structure. We have provided the negative mles in this
case by just backtracking along the maximal magnitude paths
from the class producing the minimal output. The rules for
model £ are provided as an extension to the approach of
[11] while also enabling us o make a comparative study.
Similarly, a sample regative rule generated by method (1)
with the AN and F models for the medical data Hepalo is
provided below.

Using model AN:

If #) is low and £ is low and £ is very mediom and £ is
low and F3 is low and Fj; is medium and £~ is mol medium
and Iy is low and [T is very medium then the pattern is not
i class 1

Using model F:

If £7 is low and F; is low and Fy s very medium and F)
15 low and I 15 mol medium and I 15 mediom and 5 is
mol medium and £ 15 mol low and F5 s overy mediom then
the pattern 15 not m class 1.

VI, CONCLUSIONS AND DISCUSSION

A new methodology of knowledge encoding among the
connection weights of a fuzey MLP [10] is described. This
enables the network to perform classification and rile gener-
ation more efficiently. It involves development of a technigue
for generaling an appropriate architecture of the fuzzy MLP
[10] in terms of hidden nodes and links. Node growing and
link pruning are used w enhance performance. It is found that
the knowledge-based classification leads to better result than
those of the conventional and fuzey versions of the MLP [ 10],
[11], and the fuzzy min-max neural network [12].

During leaming an MLP searches for the set of weighis
that corresponds o some local minima. There may be a large
number of such minimum values corresponding o various
good solutions. The knowledge-based network mmitially con-
siders these weights so as o be near one such good solution.
As a result, the searching space gets reduced and leaming
becomes faster. Note that, unlike the other methods [1], [2]. the
proposed knowledge encoding techmque involves nonbinary
weighting mechanism based on the domain knowledge of a
data set. The incorporation of fuzziness at various levels also
helps the model to efficiently handle uncerain and ambiguous
information both at the input and the output.

Conventional and fuzzy versions of the MLP consider
empidcally  determined fixed architecre, whereas the
knowledge-based model automatically  determines it. The
fuzey min—-max network [12] generates hidden nodes from
some empircally determined parmmeter values. It is observed
that this network requires larger number of links than
the proposed model o geperate mol the same mecognition
SCOTe.

Our model is capable of generating both positive and neg-
ative rules in linguistic form to justify any decision reached.
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TABLE W1
RULES OBTAINED BY THE KNOWLEDGE-BASED avD Fuzzy MLP ror Yowd
Maodel l Antecedent E Conseguent
Method (i} Method (i)
Fi medimm, very likely class 6 very likely class 4
Fy low and
Fa low
Fy low, very likely class 3 very likely class 3
Fz high and
F: mol mnedium
AN F1 low, not unlikely class 6 mol likely class & bul
F; low and unable 1o recognize class 4
F5 high
Fi high, mol likely clase 1 but not unlikely class 1
i F3 medium and ¢ unable to recognize class 2
Fy very low
F; very high, mal likely class 2 bat mo] likely claes 2 but
i low and unable Lo recognize class 5 | unable (o recogmize class 5
F3 very medium
Fi high. likely class 5 bt very likely class 5
F; high and unakble (o recognize class 3
Fy mediom |
Fi medium, very likely class 6 very likely class 4
F; low and
3 low
Fy low, likely class & but likelw class 3 but
Fy high and not unlikely class 3 unable to recognize class &
Fy mel medium
F F; low, maol likely class 6 but mol likely class 6 but
F: low and unable to recognize class 4 | unable to recognize class 4
F3 high
F1 high. likely class 1 but likely class 1 but
F3 medium and | wnable (o recognize ¢lass 2 | unable to recognize class 2
Fa very low
F very high, mol likely class 2 but mal likely class 2 hut
Fy low and unable Lo recognize class 1 naot unlikely class 1
F3 very medium
Fy high, likely class 5 but very likely class 5
F; high and unable to recognize class 3
F3 medium
These rules are found 1o be useful for inferencing in ambiguous [2] G. G. Towell and 1. W. Shavlik, “Enowledze-based artificial neural
cases, Note that, the rule generation algorithms described in netwaorks,” Artificial Intell., vol. W), pp. 119-165, 1994,
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: i T o [5] 5. L Gallant, “"Connectionist expert systems,” Conmn. Avsoc Compis-
redundant knowledge-based model yields better rules much ing Machinery, vol. 31, pp. 152-160, 1988
earlier. The concept of negative rules has been introduced [6] — ., Newral-Network Leaming and Expert Svstems.  Cambridge,
handle sitnati Tisra. 3 i i hek ; Ma: MIT Press, 1994,
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