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Abstract—The present article is a novel attempt in providing an
exhaustive survey of neuro-fuzzy rule generation algorithms. Rule
generation from artificial neural networks is gaining in popularity
in recent times due to its capability of providing some insight to
the user about the symbolic knowledge embedded within the net-
work. Fuzzy sets are an aid in providing this information in a more
human comprehensible or natural form, and can handle uncer-
tainties at various levels. The neuro—fuzzy approach, symbiotically
combining the merits of connectionist and fuzzy approaches, con-
stitutes a key component of soft computing at this stage. To date,
there has been no detailed and integrated categorization of the var-
ious neuro-fuzzy models used for rule generation. We propose to
bring these together under a unified soft computing framework.
Moreover, we include both rule extraction and rule refinement in
the broader perspective of rule generation. Rules learned and gen-
erated for fuzzy reasoning and fuzzy control are alo considered
from this wider viewpoint. Models are grouped on the basis of their
level of neuro—fuzzy synthesis. Use of other soft computing tools
like genetic algorithms and rough sets are emphasized. Rule gen-
eration from fuzzy knowledge-based networks, which initially en-
code some crude domain knowledge, are found to result in more
refined rules. Finally, real-life application to medical diagnosis is
provided.

Index Terms—Knowledge-hased networks, neuro-fuzzy com-
puting, rule extraction, rule generation, soft computing.

I INTRODUCTION

ETIFICIAL neural networks (CANNs) attempt o replicate

the compuiational power (low-level anthmetic processing
ability) of biological neural networks and, thereby, hopefully
endow machines with some of the (higher-level) cognitive abil-
ities that brological orgamems possess (due in part, perhaps, 1o
their low-kevel computatnonal prowess). However, an impedi-
ment o a more widespread acceptance of ANN's is the absence
of a capability to explain to the wser, in 8 human-comprehensible
form, how the network amrives at a paticular decision. Neither
can one say sométhing about the frowledge encoded within the
Blackbox. Recently, there has been widespread activity aimed at
redressing this situation by extracting the embedded knowledge
in trained ANN's in the form of symbolic rles [1]-[9]. This
serves 0 identify the attributes that, either individually or in a
combination, are the most significant determinants of the deci-
sion or classification. Often an ANN solution with good gen-
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eralization does not necessarily imply involvement of hidden
units with distinet meaning. Hence any individual unit cannot
essentially be associated with a single concept or feature of the
problem domain. This is typical of connectionist approaches,
where all information is stored in a distributed manoer among
the neurons and therr associated connectivily.

Generally, ANN's consider a fixed wpology of neurons
connecled by links in a predefined manner. These connec-
ton weights are wsoally imtahized by small random values.
Knowledge-based networks [ 10], [11] constitute a special class
of ANN's that consider crude domain knowledge 1o generate
the initial network architecture, which s later refined in the
presence of tmining data. Recently, there have been some
attempts in improving the efficiency of neural computation
by wsing knowledge-based nets. This helps in reducing the
searching space and tme while the network traces the optimal
solution. In such situations, one can extract cawsal factors
and functional dependencies from the data domain for initial
encoding of the ANN [5], [12] and later extract refined rules
from the trained network.

Andrews et al. [6] have provided a classification scheme for
connectonist rule extracuon algorithms. They ke mo consid-
eration

+ expressive power of the rules: 1) propositional or Boolean
logic, i.e., crisp or nonfuzzy, and 2) nonconventional logic,
i.e., probabilistic or fuzey;
translucency of view taken in the algorithm about the
underlying ANN umts: 1) decompositional approach
imore analytical), where each internal element of the
transparent network 15 examined and 2y pedagogical
or Blackbox approach, where one observes only the
mput—output behavior of the opague network;
extent to which the underlying ANN mcorporales special-
teed training regimes, Le., portability;
quality of the rules: 1) accuracy, i.e., generalization Lo test
cases; 2) fidelity, i.e., whether they can mimic the behavior
of the ANN from which they were generated; 3) consis-
tency, 1.e., whether they prodoce the same classification
of test instances over different raining instances; and 4)
comprehensibility, in terms of the size of the rule set and
the number of antecedents per rule;

+ algorithmic complexity of the wchnigue.

Taha and Ghosh [13] have considered addiional issues
related 1o rule extraction. These include the granularity of
explanation, modifiability, theory refinement capability (1o
handle incompleteness, inconsistency, andfor inaccuracy of
mnitial domam knowledge), stability/robustness o corruption in
data/knowledge, and scalability for large datases/rulebases.

-

-

-
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Unfortunately, most of the available literature on rule gener-
ation do not provide such rigomuos assessment on therr pros and
cons. There is also g preponderance of specific purpose tech-
nigues, that are designed o work with a particular ANN archi-
tecture. This limits the scope of comparng the various tech-
niques in a single framework. Unless specified otherwise, all
methods surveyed i this article will deal with the analytical or
decompositional approach.

Both fuzey systems and ANN's are soft computing ap-
proaches o modeling expert behavior The goal 15 o mimic
the actions of an expert who solves complex problems. In
other words, instead of investgating the problem in detail,
one observes how an expert successfully tackles the problem
and obtains knowledge by instruction and/or learning [14]. A
learning process can be part of knowledge acquisition. In the
ahsence of an expert or sufficient time or data, one can resort
to reinforcement learning instead of supervised learning. 1f one
has knowledge expressed as hnguistic rules, one can build a
fuzzy system. On the other hand, if one has data or can learn
from a simulation or the real task, ANN's are more appropriate.
The merits of both neural and fuzey systems can be integrated
in a neuro—fuzzy approach [4]. The focus of this article will be
on neuro—fuzzy rle generation.

The term mile generation encompasses both rule extraction
and mle refinement. Note that rmle extraction here refers
o extracting knowledze from the ANN, vsimg the network
parameters in the process. Rule refinement, on the other hand,
pertains 1o extracting refined knowledge from the ANN that
was initialized using crude domain knowledge. Rules learned
and interpolated for fuzzy reasoning and fuzzy control can
also be considered under rule generation. I covers, ina wider
sense, the extraction of domain knowledge (say, for the initial
encoding of an ANN) using nonconnectionist wools like fuzzy
sets and mough sets. Unlike Tickle et al. [5], [6] who deal with
rule extraction for nonfuzey connectionist models (using propo-
sitional logic) only, we provide here a broader and exhaustive
survey of neuro—fuzzy mle generation. Both feedforward and
recurrent neural networks are considered. Although the focus s
on neuro-fuzey models, we also briefly deal with other fuzey,
neural, genete algonthms, and rough set-based approaches 1o
rule generation. We concentrate on categorizing the different
neuro—fuzzy approaches, based on their level of inlegration, in
a unified soft compuring framework.

In general, the primary inpul o 4 connectiomst rule genera-
tion algorithm is a representation of the trained ANN, in lerms
of its nodes and links, and sometimes the data set. One inter-
pres one or more hidden and output units into rules, which may
later be combined and simplified to arrive al a more compre-
hensible rule set. These rukes can also provide new msights into
the application domain. The use of ANN helps in 1) incorpo-
ratmg parallelism and 2) tackling optimization problems in the
data domain. The models are usoally suitable in data-rich envi-
ronments and seem o be capable of overcoming the problem of
the knowledge acgquisition bottleneck faced by knowledge en-
gineers while designing the knowledge base of taditional ex-
pert systems. The wained link weights and node activation of
the ANN are used to automatically generate the rules, either for
later use in a traditional expert system, refining the initial do-
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main knowledge, or providing justification/explanation in the
case of an inferred decision. This automates and also speeds up
the knowledge acquisition process. Such models help in min-
imizing human interaction and associated mberent bias dunng
the phase of knowledge base formation and also reduce the pos-
sibility of generating contradictory rules. Fuzzy neural networks
[4] can be used for the same purpose, and can also handle un-
certainly ab various stages.

The present article is the first of its kind o provide a detailed
calegorization of neuro—fuzzy rule generation algorithms based
on their level of synthesis. Section 11 provides an overview of
neuro—fuzzy hybridization, which i1s the oldest and most well-
known methodology in soft computing. An exhaustive survey
of rule generation in the fuzey, neural, and neuro—fuzey frame-
work 15 presented in Section 1, along with some hybndization
involving genetic algorithms. This is followed in Section 1V by
a survey of rule generation in knowledge-based networks using
neuro—fuzzy hybrdization, rough sets and genetic algorithms.
Section V provides a case study of a neuro—fuzey rule genera-
ton algorithm with application o medical diagnosis. Section VI
concludes the article.

1. NEURO-FUZZY AND SOFT COMPUTING
This section focuses on different aspects of neuro—fuzey com-
puting, keeping in mind the rich literature currently available in
this field. Finally, the concept of soft computing is introduced.

A. Need for Newro—Fuzzy Integration

Both neural networks and fueey systems are dynamic, parallel
processing systems that estimate input—output functions. They
estimate a funcuon without any mathematical model and feam
[from experience with sample data. A fuzzy system adaptively in-
fers and modifies its fuzey associations from representative nu-
merical samples. Neural networks, on the otherhand, can Sindly
generate and refine fuzzy rules from raining data [ 15]. Fuzey sets
are considered to be advantageous in the logical field, and in han-
dling higher order processing easily. The higher flexibility is a
characteristic feature of neural nets produced by learning and,
hence, this suits data-driven processing better [ 16]. Hayashi and
Buckley [17] proved that 1) any rule-based fuzey system may
be approximated by a neural net and 2) any newural net (feedfor-
ward, multilayered) may be approximated by a rule-based fuzey
system. This kind of equivalence between fuzzy rule-based sys-
tems and neural networks 15 also studied in [ 18]-[21]. Jang and
Sun [22] have shown that fuzey systems are functionally equiva-
lent o a class of radial basis function { RBF) networks, based on
the similarity between the local receptive fields of the network
and the membership functions of the fuzzy system.

Fuzzy systems can be broadly categorzed into two fami-
lies. The first includes linguistic models based on collections of
IF-THEN rules, whose antecedents and consequents utilize fuzey
values. It uses fuzzy reasoning and the system behavior can be
desenbed in namral terms. The Mamdani model [23] falls in
this group. The knowledge 15 represented as

B Ifw_is Al and wzis AL - -

and x, 18 ;1:...;: then 3" is H' (1)
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where £'{i = 1. 2, ... {} denotes the ith fuzzy ruke, 7;{j =
1, 2, ---, n) is the input, %* is the output of the fuzzy mle J¢°,
and A}, AY, oo AL BYR =1, 2 .- 1) are fuzzy member-
ship functions usually associated with linguistic terms.

The second category, based on Sugeno-type systems [24],
uses a rle structure that has fuzey antecedent and fimctional
consequent parts. This can be viewed as the expansion of piece-
wise linear partition represented as

Bl s :‘ii and =y 18 _4.‘-; .-
then 4"

and i, 1% .—'L:,,

'\I & . '\I .
Uy g e — (2)

The approach approximates a nonlinear system with acombina-
tion of several linear systems, by decomposing the whole input
space into several parial fuzezy spaces and representing each
output space with a linear equation. Such models are capable of
representing both gualitative and guantitative information and
allow relatively easier application of powerful learning tech-
niques for their identification from data. They are capable of ap-
proximating any continuous real-valued function on a compact
set to any degree of accuracy [25]. This type of knowledge rep-
resentation does not allow the output variables to be described
in linguistc werms and the parmeter oplimization 15 camied out
ieratively using a nonlinear optimization method.

However, there is g tradeoff between readability and preci-
sion. If one is interested in a more precise solution, then one
15 usually not so bothered about its inguistic iterpretabality.
Sugeno-lype systems are more suitable in such cases. Other-
wise, the choice s for Mamdani-type systems. Two primary
tasks of fuzzy modeling are structure identification and param-
eter adjustment. The first determines the inpul—outpul space par-
tition, antecedent and consequent vardables of IF-THEN rules,
number of such rules, and inital positions of membership func-
tions. The second identifies a feasible set of parameters under
the given structure.

Neural networks, like fuzey sysiems, are excellent at devel-
oping human-made systems that can pedform information pro-
cessing in g manner similar to our brain. In fact, the concept
of ANNs was inspired by biological newral networks (BNN's),
which are inherently nonlinear, highly parallel, robust and fault
tolerant. A BNN is capable of 1) adapting its synaptic weights
to changes in the surrounding environment; 2) easily handling
imprecise, fuzzy, noisy, and probabilistic information; and 3)
generalizing o unknown tasks. ANNS attempt 1o mimic these
characteristics, often using principles from nervous systems Lo
solve complex problems in an efficient manner. Fuezy logic is
capable of modeling vagueness, handling uncertainty, and sup-
porting human-lype réasoning.

A neural network 15 widely regarded as a black box that re-
veals little about its predictions. Extraction of rules from neural
nets enables humans o understand this prediction process inoa
better manner. Rules are g form of knowledge that human ex-
perts can easily verify, transmit, and expand. Representing rules
in natwral form aids in enhancing their comprehensibility for
humans. This aspect is suitably handled vsing fuzzy set-theo-
relic concepls.

The melation between neural networks and hingustic knowl-
edge is bidirectional [26]. Therefore 1) neural network-based
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classification systems can be rained by numerical data and lin-
guistic knowledge and 2) fuzey rule-based classification sys-
tems can be designed by linguistic knowledge and fuzezy rules
extracted from neural networks.

Fueey logic and neural systems have wvery conlrasting
application requirements. For example, fuzzy systems are
appropriate if sufficient expert knowledge aboul the process is
available, while neural systems are useful if sufficient process
data are available or measurable. Both approaches  buld
nonlinear systems based on bounded continuous vanables, the
difference being that neural systems are treated in a numeric
quantitative manner, whereas furzy systems are treated in a
symbolic gualitative manner. Fuzzy systems, however, exhibil
both symbolic and numeric features. For example, when treated
as collections of objects encapsulated by linguistic labels
they lend themselves to symbolic processing via rule-based
operations, while by referring 1o the definitions of the linguistic
labels their membership functions are also suitable for numeric
processing. Therefore, the integration of neural and fuzey
systems leads to a symbiotic relationship in which fuzey
systems provide a powerful framework for expert knowledge
representation, while neural networks provide learning capa-
bilities and exceptional suitability for computationally efficient
hardware implementations. The significance of this integration
becomes even more apparent by considering their dispanties.
Neural networks do not provide a strong scheme for knowledge
representation, while fuzzy logic controllers do nol possess
capabilities for automated keaming.

Newro-fuzzy computing [4]. [25], [27-[31], which 15 a judi-
cious integration of the merits of neural and fuzzy approaches,
enables one to build more intelligent decision-making systems.
This incorporates the generic advantages of adificial neural
networks like massive parallelism, robustness, and leaming
in data-rich environments into the system. The modeling of
mmprecise and qualitative knowledge as well as the ransmis-
sion of uncerainty are possible through the use of fuzzy logic.
Besides these generc advantages, the neuro—fuzzy approach
also provides the comresponding application specific merits.

B. Different Newro—Fuzzy Hybridizations

Neuro-fuzzy hybridizaton [4], [27], [31] is done broadly
i bwo ways: g neural network equipped with the capability
of handling fuzey information [emed fuzzy-newral network
(FNN)| and a fuzey system augmented by neural networks to
enhance some of ils characteristics like flexibility, speed, and
adaptability [termed newral-fuzzy svstem (NFS)|.

Inan FNN, cither the input signals andfor connection weights
and/or the outputs are fuzzy subsets or a set of membership
values o fuezy sets, eg., [7]. [32]-[34]. Usuvally, hnguistic
values such as fow, medium, and high, or fuzzy numbers or
intervals are used to model these. Neural networks with fuzey
neurons are also termed FNN as they are capable of processing
fuzey information.

A peural-fuzzy system (NFS), on the other hand, is designed
to realize the process of furzy reasoning, where the connec-
tion weights of the network correspond to the parameters of
fuzey reasoning, e.g., [14], [35]-[40]. Using the backpropaga-
tion-type learning algorithms, the NFS can identify fuzzy rules
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and leam membership functions of the fuzzy reasoning. Usually
for an NFS, it is easy 1o establish a one-to-one correspondence
between the network and the fuzzy system. In other words,
the NFS architecture has distinel nodes for antecedent clauses,
conjunction operators, and consequent clauses. A fuzzy control
syslem can also be termed as an NFS. There can be, of course,
another blackbox-type NFS where a multilayer network 1s used

o determmine the imput—output relation epresented by a fuzzy

system. For such a system the network structure has no such

relation Lo the architecture of the fuzzy reasoning system.

An NFS should be able to learm Iinguistic rules and/or mem-
bership functions, or optimize existing ones. There are three
possibilities [14]: 1) the system starts without rules, and cre-
ates new rules until the learning problem is solved. Creation of
a new rule is triggered by a training pattern which is not suffi-
ciently covered by the current rulebase; 2) the system starts with
all rules that can be created due to the partitioning of the vari-
ables and deletes insufficient rules from the rulebase based on
an evaluation of their performance; 3) the system stas with a
rulebase with a fixed number of rules. During leaming, rules are
replaced by an oplimizalion process.

The state of the art for the different technigues of judiciously
combining neuro—fuzzy concepts involves synthesis al various
levels. In general, these methodologies can be broadly catego-
rized as follows [41]. Note that categories | and 3-5 relate o
FNN's, while category 2 refers o NFS.

1) Incorporating fuzziness into the neural net framework:
furzifying the input data, assigning fuzzy labels to the
raining samples, possibly fuzzifying the learning proce-
dure, and obtaining neural network outpuls in terms of
fuzzy sets [7], [8], [33], [34], [42].

2) Designing neural networks guided by fuzey logic for-
malism: designing neural networks 1o implement fuzey
logic and fuzzy decision-making, and to realize mem-
bership functions representing fuzey sets [14], [35]-[40],
[43]{46].

3) Changing the basic characteristics of the neurons: neu-
rons are designed o perdonm various operations used in
fuzzy set theory (like fuzzy union, inlersection, aggrega-
tion) instead of the standard multiplication and addition
operations [47-[51].

4) Using measures of fuzziness as the error or instability of a
network: the fuzziness or uncertainty measures of a fuzey
sel are used w model the error or instability or energy
function of the neural network-based system [32].

5) Making the individual neurons fuzey: the input and output
of the neurons are fuzey sets and the activity of the net-
works involving the fuzey neurons is also a fuzey process
[32].

There are other kinds of categorizations for peuro—fuzey
models reported in literature [14], [53]. Buckley and Hayashi
[53] have classified fuzzified peural networks as follows.
Networks can possess 1) real number inputs, fuzey outputs, and
fuzzy weights; 2) fuzey inputs, fuzzy outputs, and real number
weights; 3) fuezy inputs, fuzey outputs, and fuzey weights.
Hayashi er al [49] fuzzified the delia mule for multilayer
perceptron (MLP) using fuzzy numbers at the input, output,
and weight levels. Bul there were problems with the stopping

rule. Ishibuchi et al. [34] meorporated mangular or trapezoidal
fuzey number weights, thereby increasing the complexity of
the algordthm. Some of these problems have been overcome
by Feuring et af in [535]. All these fuzzy neural networks
can, however, be grouped under categories | and 3 of our
neuro—fuzzy integration methodology.

Nauck er al. [14] deal mainly with neuro—fuzzy control and
suggest the following: 1) a cooperative system where the ANN
and fuzzy system work independently of each other; the combi-
nation lies in determining certain parameters of a fuzzy system
by an ANN and 2} a fivbrid nenro—fuzzy system which imple-
ments a fuzzy system with an ANN; here one generates a ho-
mogeneous entity which cannot be divided into a fuzzy system
or an ANN. In our lwenminology, both these combinations can be
termed as an NFS under category 2 of the neuro—fuzzy integra-
Lion.

C. Soft Computing

In traditional hard computing, the prime desiderata are pre-
cisiom, certainty, and rigor By contrast, in sofl computing the
principal notion 15 that precision and certanty carry a cost and
that computation, reasoning, and decision-making should ex-
ploit { wherever possible) the tolerance for imprecision, uncer-
tainty, approximate reasoning, and parial truth for obtaining
loww-cost solutons. This keads wo the emarkable human ability
of understanding distoried speech, deciphering sloppy hand-
writing, comprehending the nuances of natural language, sum-
marizing lext, recognizing and classifying images, driving a ve-
hicle in dense traffic and, more generally, making rational de-
cisions in an environment of uncertainty and imprecision. The
challenge, then, 15 o exploit the tolerance for imprecision by
devising methods of computation that lead o an acceptable so-
{ution at low cost. This, in essence, is the guiding principle of
soft computing [56].

Soft computing is a consorium of methodologies that
works synergetically and provides in one form or another
flexible information processing capability for handling real
life ambiguous situations. [ts aim is o exploit the tolerance
for imprecision, uncerlainly, approximale reasoning, and
partial truth in order to achieve tractability, robusiness, and
loww-cost solutions. The guiding principle 1s o devise methods
of computation that lead o an acceptlable solution at low cost
by secking for an approximate solution o an imprecisely/pre-
cisely formulated problem. The neuro—fuzey approach, which
provides flexible information processing capability by devising
methodologies and algorithms on a massively parallel system
for representation and recognition of real-life ambiguous
situations forms, at this juncture, a key component of soft
computing.

We can have approaches that exploit the benefis of all three
soft computation wols, viz. fuzzy logic, ANNs and genetic al-
gorithms (GA's), for mule generation. GA’s [37] have found var-
ious applications in fields like pattern recognition, image pro-
cessing and neural networks. In the area of ANN's, they have
been used in determining the optimal set of connection weights
as well as the optimal wpology of layered neural networks. A
fuzey reasoning system can be implemented using a multilayer
network, where the free parameters of the system can be learned
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using GA's. Similady, the parameters of an FNN can also be
learned using GA's. Such systems are lermed newro—fuzzy-ge-
netic [S8-[63]. It may be mentioned in this connection that
computational intelfigence [30], [64] is also a field related to ar-
tificial intelligence that uses soft computing wols like ANN's,
fuzey systems, and GA's in order to build intelligent systems
with the capability of rule generation.

The theory of rough sets [63] has recently emerged as another
major mathematical tool for managing uncertainty that arises
from granularity in the domain of discourse, i.e., from the indis-
cernibility between objects in a set. The intention 15 Lo approx-
imate a rough (imprecise) concepl in the domain of discourse
by a pair of exact concepts, called the lower and upper approxi-
mations. These exact concepls are determined by an indiscemni-
Bifity relation on the domain, which, in tum, may be induced
by a given set of attributes ascribed o the objects of the do-
main. The lower approximation is the set of objects definitely
belonging o the vague concepl, whereas the upper approximi-
tion is the set of objects possibly belonging o the same. These
approximations are used o define the notions of discemnibility
matrices, discermibility functions, veducts, and dependency fac-
tors, all of which play a fundamental role in the reduction of
knowledge.

Hybrdizations for rle generation, exploiting the char-
acteristics of rough sets, include the rough-newro [66],
rough-newro—fuzzy [12], [67], mough-neuro-genetic [68], and
rough-newro—fuzzy genetic [69] approaches. The primary role
of rough sets here is in managing uncertainly and extracting
domain knowledge.

III. RULE GENERATION

Here we review the different fuzey, neural and neuro—fuzey
models for rule generation, inferencing, and querying, along
with their salient features. Sections 111-A and U1-B cover the
fuzey and neural approaches, respectively. This is followed in
Sections [-C-11-E by different neuro—fuzzy approaches, indi-
cating three Ly pes of hybndization as mentioned m Section [1-B.
Incorporation of GA's is also referred to in Sections 111-A-1,
HI-B-2, and I1I-D4 under fuzzy-genetic, newro-genetic and
nenro—fuzoy-genetic hybndization.

Let us first explain the significance of querying and rule gen-
eration, by refermring o medical decision making. The models
are generally capable of dealing with nonavailability of data,
and can enquire the user for additional data when necessary. In
the medical domain, for instance, data may be missing for var-
ious reasons; for example, some examinations can be risky for
the patient or contraindications can exist, an urgent diagnostic
decision may need o be made and some very informative but
prolonged test results may have to be excluded from the feature
sel, or approprate technical equipment may not be available.
In such cases, the network can query the user for additional in-
formation only when it is particulady necessary 1o infer a de-
cision. Again, one realizes that the final responsibility for any
diagnostic decision always has to be accepted by the medical
practitioner. So the physician may want 1o verify the justifica-
ton behind the decision reached, based on personal expertise.
This requires the system o be able to explain its mode of rea-
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soning for any inferred decision or recommendation, preferably
in rule form, to convinee the user that is reasoning is correct.

A. Fuzzy Models

First of all, let us touch upon some of the approaches in
fuzey inferencing and rule generation before embarking on
connectionist models. In the fuzey classification rule described
by Ishibuchi er af. [70], the partioning is uniform, ie., the
regions continue to be split untl a sufficiently high cerainty
of the rule, generated by each region, is achieved. Ishibuchi e
al. extended this work later [71] by using an idea of sequential
partitioning of the feature space into fuzey subspaces until a
predetermined stopping critedon is satisfied and studied its
application for solving varous pattem classification problems.

Wang and Mendel [72] developed a slightly different method
for creating a fuzzy mlebase, made up of a combination of rules
generated from numercal examples and linguisic rules sup-
plicd by human expens. The mput and output domain spaces
are divided into a number of linguistic subspaces. Human in-
tervention is sought o assign degrees 1o the rules and conflicts
are resolved by selecting those rules yielding the maximum of
a computed measure corresponding Lo each hinguistic subspace.

Rovatti and Guerreri [73] have attempted to identify the
correct rule structure of a fuzzy system when the larget
mput—output  behavior 15 sampled at mndom  points. The
assumption that a role can either be mcluded or excluded
from the rule set is relaxed, and degrees of membership are
cxploited to achieve good approximation results. Defuzzifi-
cation methodologies are then used o extract well-behaving
crisp rule sets. Symbolic minimization is carried oul to obtain a
compact structure that captures the high-level characteristics of
the target behavior. For other details, one may refer 1o standard
literature [ 74}-[76].

1) With Genetic Algovithms: A fuzzy model, containing
a large number of F-THEN rules, is liable o encounter the
risk of overfiring and, hence, poor generalization. The strong
searching capacity of GA’s has been utilized in fizy-genetic
hybridizatnon o cicumvent this problem by [77] 1) deter-
mining membership functions with a fixed number of fuzey
rules [78], [79]; 2) finding fuzzy rules with known membership
functions [80]; and 3) finding both membership functions and
fuzey rules simultaneously [77], [81], [82].

Ishibuchi er af. [82] select a small number of significant fuzey
IF-THEN rules to construct a compact and efficient fuzzy classi-
fication system. GA’s are used to solve this combinatorial opti-
mization problem, with an objective function for simultaneously
maximizing the number of correctly classified pattems and min-
imizing the number of fuzey rules.

Wang and Yen [77] have designed a hybnd algorithm that
uses GA's for extracting important fuzzy rules from a given rule-
base W construct a parsimonious fuzzy model with a high gen-
eralization ability. The parameters of the model are estimated
using the Kalman filter.

B. Newral Models
Here we first consider the layered connectionist models by

Gallant [1] and Saitw and Nakano [83] used for rule generation
in the medical domain. The inputs and outputs consist of crisp
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vanables i all cases. Generally the symptoms are represented
by the input nodes while the diseases and possible treatments
correspond Lo the mtermediate and/or output nodes. The mul-
tlayer network described by Saito and Nakano [83] has been
applied to the detection of headache. A patient responds to a
questionnaire regarding the perceived symptoms and these con-
stitute the mput o the network.

The model by Gallant [1], dealing with sacmwphagal prob-
lems, uses a hinear discnminant network (with no hidden nodes)
that is trained by the simple pocket algorithm. The absence of
the hidden nodes and nonlinearity limits the utility of the system
in modeling complex decision surfaces. Dependency informa-
tion regarding the variables in the form of an adjacency matrix
15 provided by the expert. Every inpul variable = 15 approxi-
mated by three Boolean variables o, wh, o5, Cell activation is
discrete, taking on values |1, 1, or (), corresponding o log-
ical values of true, false, or unknown. Each cell computes its
new activation 4 as a linear discriminant function.

In [83], the systiem supplies the doctor with information
regarding possible diagnoses on the basis of its output node
values. Relation factors, estimating the swength of the relation-
ship between symptomis) and disease(s), are extracted from the
network. Rules are generated from the changes in levels of input
and output units; the connection weights are not involved in
the process. Hence, this 1s a pedagogical approach. The search
space is constrained by avoiding meaningless combination of
inputs (symptoms) and reswicting the maximum number of
coincident symptoms o be considered. The rules are then used
to allow patients o confirm the symptoms initially provided
by them to the system, in order w eliminate noise from the
answers., Nevertheless, the number of rules extracted for a
relatively simple problem domain 1s exceedingly large [6].

Gallant's model [1] incorporates inferencing and forward
chaining, confidence estimation, backward chaining, and ex-
planation of conclusions by IF-THEN rules. In order o generale
arule, the attributes with greater inference strength (magnitude
of connection weights) are selected and a conjunction of
the more significant premises is formed to justify the output
concepl. Here the wser can also be querned o supplement
incomplete input information. During question generation, the
system selects the unknown output variable whose confidence
15 maximum. Then it backtracks along the connection weights
to find an unknown input variable, whose value is queried
from the user. Rules are generated by traversing the trained
connection weights as follows.

1y List all inputs that are known and have contributed o the

ultimate positivity of a discriminant.

2) Arrange the list by decreasing absolute value of the

weights.

3y Generate claoses for an IF=THEN tule from this ordered

list

Ishikawa [84] demonsirates the raining of a network using
strictural feaming with forgetting. An examination of the re-
sultant simplified and nonredundant network architecture leads
Lo easy extracton of rules. The posiove weights are reduced
and negative weights increased using a decay factor. A total
of 8124 samples of mushrooms, with 22 attributes each, have
been studied for the two-class (edible or poisonous) problem.

The method selects two or four most relevant attibutes. For the
two-altribute case, odor and spore pnnt color were found o be
important. A sample of the antecedent part of an extracted rule
for edible mushroom is (almond OR anise OR none) AND (spore
print color # green). Duch et al [85] modified this algorithm
by constraning the weights o 1, 1, or 0. This 15 supposed
to result in the extraction of mles with more logical interpreta-
tion. They have also used a generalization of RBF networks for
interpreting node functions as rules.

Fu [86], [87] has developed CENet, whose activation func-
tion is based on the cenainty factor (CF) model of expert sys-
tems. The CF model s a scheme for evidential reasoning in
which a CF s assigned (o a concept according to evidence ob-
served. By mapping a CF model into an ANN, one can use
the neural leaming mechanism to help revise the former [87].
An analysis of the computational complexity of accurately dis-
covering domain rules from a limited number of instances is
provided. Rules can be confirming (positive) or disconftrming
(negative). A rule’s premise is limited 1o a conjunction of at-
tributes. The presence of multiple rules with the same conclu-
sion represents disjunction. Rules can be interpreted by an exact
or inexact inference engine. In the latter case, a rule has o
be attached with a number indicating the degree of belief in
the conclusion given the premise and an attribute can also be
assigned a weight. The activation function lies in the interval
[—1, 1]. and the positive and negative inputs are combined sep-
arately. The output is implicitly quantizable in classification do-
mains. The rule space is shrunk using pruning, resulting in a fea-
sible complete search. Successive rule extraction is performed
to circumvent the problem of generating rules from insufficient
tramnmg data. In each learning cyele, some rules are learned
and those positive instances, which can be explained by these
rules, are removed. This eyele repeats until no more new rules
can be further learned. Validation is performed on the test in-
stances o determing the comrect generalization capability. Per-
formance of the model is compared with the decision tree-based
rule generator C4.5 [88], KBANN by Towell and Shavlik [3],
[11] (described in Section IV-A), and cascade ARTMAP by Tan
[B9] (Secuon IV-B). The decision tree approach (as m C4.5) 15
termed monothetic as it considers the utility of individual at-
tributes one at a tme, and may miss the case when multple at-
tributes are weakly predictive separately but become strongly
predictive in combination. This problem can be overcome in
neural approaches, also termed polvthetic, like CFNet where
multiple attributes are considered simultancously [87]. Another
advantage of CFNet is that it requires no initial domain knowl-
edge and yet can perform reasonably well as compared to some
knowledge-based networks [3], [11]. [89]. Note that the knowl-
edge-based model by Fu [ 10] (Section IV-A) s unable to extract
most rules from a very large ANN and ofien generates only ap-
proximate rules. CEFNet [86] overcomes some of the limitations
of [10].

Setiono [90] has used a pruned network for extracting com-
pact, meaningful rules, in terms of hidden unit activation. The
activation are clustered into discrete values, and a process of
splitting of hidden units and creation of new subnetwork is re-
peated until each hidden unit has only a small number of inputs
connected Lo il A penally Lrm augments i Cross-Cnlropy ermr



function, that is minimized to encourage weight decay and re-
move redundant weights, NeuroRule [90] can extract reasonably
compact rule sets with high predictive accuracy. Unlike other al-
gonthms [3], [10], this method does not require the activation
values o be zero or one. The exponential complexity associated
with the extraction of rules in scarch-based methods [ 10], [83]
15 avorded here. The accuracy and number of rules generated
are better than those obtaned by C4.5 [88]. Setiono and Leow
[91] have recently developed a fast method for extracting rules
from trained feedforwand networks, that avoids the substantial
overhead associated with pruning and retraining [90] while pre-
serving the size and predictive accuracy of the rules. The al-
gorithm uses information gain to identify relevant hidden units,
and employs C4.5 10 build adecision tree in terms of their activa-
tion values. Setiono has also reported [92] the extraction of A4 of
& rules from a trained feedforward network whose weights and
inputs are restricted to values in {—1, 1}, The rules are claimed
to possess desirable gualities like accuracy, simplicity and fi-
delity.

Setiono and Liu [93] describe the exwaction of oblique
decision rules, corresponding to parition of the attribule space
by hyperplanes that are not necessanly axis-parallel. This s
claimed 1o result in the extraction of compact rules, with high
predicive accuracy, from the trmined network. The network
is pruned and node activation discretized, followed by rule
generation. The work is extended in Ref. [94] o generale
obligue decision trees that can readily be translated into a
sel of rules. Since an obligue decision tree classifies pattems
based on linear combinations of input attributes, the rules are
more compact than that generated by an univariate tree over
the same domain. Companson 15 provided with other decision
tree-based approaches, hke C4.5 [B8] and CART [95]. The
compactness of these oblique rules 15 said o resull in better
ruke comprehensibility and consistency.

Taha and Ghosh [13] have estracted rules along with cer-
tainty factors from trained feedforward networks. Input features
are discretized and a linear programming problem is fomulated
and solved. A greedy rule evaluation mechanism s used to order
the extracted rules on the basis of three performance measures,
viz., soundness, completeness, and false-alarm. A method of in-
tegrating the output decisions of both the extracted rulebase and
the corresponding trained network is described, with a goal of
improving the overall perfformance of the system. Comparison
15 provided with “NevuroRule™ [90] and C4.5 [88].

Krshnan er al [96] sort and order the input weights of a
neuron, and prune the search space o determine those combi-
nations of inputs that make the neuron active. This is used for
rule generation from feedforward networks. Maire [97] back-
propagates unions of polyhedra to design a new rule extraction
technigue. The fidelity of these rules is claimed to be very high.

1) With Recurrent Networks: Ombin and Lee Giles [98] use
tramed discrete-time recurrent neural networks w0 comectly
classify sirings of a regular language. Feedforward networks
generally do not have the computational capabilities 1o rep-
resent recursive rules when the depth of the recursion is not
known a priori. Such rules can, however, be conveniently
represented by recumrent networks. Rules defining the learned
erammar can be extracted from networks in the form of deter-
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Fig. 1. Meuml network implementing furey classifier.

ministic finite-state automata (DFA’s) by applying clustenng
algorithms in the output space of recurment slale neurons.
Starting from a defined nitial network state that represents the
rool of the search space, the algorithm searches the equally
partitioned output space of &% stale neurons in a breadth-first
mannéer. A heuristic 15 used o choose among the consistent
DFA’s that model, that best approximates the learned regular
grammar. Here the granularity of the underlying ANN within
the DFA-extraction technique is at the level of ensembles of
neurons, rather than individual neurons. Hence, the approach
15 not strictly decompositional. This s termed a compaositional
approach [5]. The extracted rules demonstrate high accuracy
and fidelity and the algorthm is portable.

Vahed and Omlin [99] use a polynomial-time, symbolic
learning algorithm to infer DEA’s solely based on observa-
tion of a wained network’s input—output behavior. This is a
pedagogical approach and produces a mimimal representation
of the DFA. The clustering phase required in other recurrent
net-based approaches [98] 1s eliminated, thereby increasing the
fidelity of the extracted knowledge.

Chen et al. [100] have designed a recurrent network, that
adapts from an analog phase to a discrete phase, for rule ex-
traction. A modified objective function is used to accomplish
the discretization process and logie lkeaming. It is clamed that
the network has significant advantage over other recurrent net-
based approaches.

2) With Genetic Algorithms: Here we present rule genera-
ton methodologies in newre-genetic hybridization. Fukumi and
Akamatsu [ 101 | have used an evolutionary algorithm for gener-
ating a compact neural network. Concepts of random optimiza-
tion search and deterministic mutation are utilized for this pur-
pose. This is followed by extraction of rules from the network.

Maeda and De Figuliredo [ 102] have designed a novel system
for rule extraction of regulator control problems. The system
employs ahybrid genetic search and reinforcement learning that
requires neither supervision nor a reference model. The rules
constitute a rule-based/table lookup structure captunng contmol
actons. The extracted rules are clamed w be betier than that
generated by a neural controller trmned with backpropagation.

C. Incorporvating Fuzziness in Newral Net Framework

This is category 1 of the neuro—fuzzy hybridization described
in Section 1-B. A basic block diagrum illustrating the process
15 provided in Fig. 1 [41].

As an illustration of the characteristics of layvered fuzey
neural networks for inferencing and rule generation, the
models by Hayasha [103], [104], and Hudson et al. [105] are
described first. A distributed single-laver pereption-based
model traned with the pocker algorithm has been used [103],
[ 104] for diagnosing fie patobiliary divorders. All contradictory
tramming data are excloded, as these cannot be tackled by the
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model. The input layer consists of fuzezy and csp cell groups
while the output is modeled only by fuzzy cell groups. The
crisp cell groups are represented by nr cells taking on two
values in {{+1. +1.---. +1), (=1 =L, ---. =11}, Fuzzy
cell groups, on the other hand, wse binary sre-dimensional
vectors, cach taking on values in {1, 1}, Linguistic relative
importance terms such as wvery important
important are allowed i oeach proposition; linguistic uth
values like completely true, true, possibly true, unknown,
possibly false, false, and completely false are also assigned by
the domam experts, depending on the output values. Provision
is kept, using different linguistic truth values, for modeling the
belonging of a pattern to more than one class. Extraction of
furzy IF-THEN production rules is possible using a top—down
traversal involving analysis of the node activation, bias and the
associated link weights.

Hudson et al. [ 105] used a feedforward network for detecting
carcinoma of the fung. The mput nodes represent the data values
for signs, symptoms, and test results (may be continuous or dis-
crete) while the imteractive nodes account for the interactions
that may oceur between these parameters. Information is ex-
tracted directly from the accumulated data and then combined
with a rule-based system incorporaling approximale reasoning
technigues. The leaming method is an adaptation of the poten-
tial function approach o pattem recognition and 15 vsed o de-
termine the weighting factors as well as the relative strengths of
rules for the two-class problem.

The fuzzy MLP [7] and fuzzy Kohonen network [8] are also
used for linguistic rle generation and inferencing. Note that
these models extend the concept of Gallant’s method (which is
derived for a perceptron) [ 1] to an MLP and a Kohonen network,
by incorporating fuzzy set theoretic concepts al varous levels.
Here the input, besides being in quantitative, linguistic, or set
forms, or & combination of these, can also be missing. The com-
ponents of the input vector consist of membership values o the
overdapping partitions of linguistic properties fow, medium, and
high corresponding 1o each input feature. This provides scope
for incorporating linguistic information in both the training and
testing phases of the said models and increases their robust-
ness in lackling imprecise or uncertain input specifications. An
r-dimensional feature space is decomposed into 3" overap-
ping subregions corresponding W the three primary properties
fow, medinm, and high. Although there is an associated increase
in dimension and cost, one has to offset this with the specific
gains achieved. The scheme enables the models w utilize mone
local information of the featre space and is found to be suitable
in handlimg overlapping regions and highly nonlmear decision
boundanes. Output decision 15 provided in terms of class mem-
bership values. The contribution of ambiguous or uncertain vec-
tors Lo the weight correction 15 automatically reduced.

The connection weights of the trained network constimte the
knowledge base for the problem under consideration. When par-
tial imformation aboutl a test pattern s presented at the input, the
model either infers its category or queries the user for relevant
information in the order of their relative importance (decided
from the leamed connection weights). I asked by the user, the
network is capable of justifying its decision in rule form (rele-
vanl W a presented pattern) with the antecedent and consequent
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Fig. 2. Meuml network implementing fuzey logic.

parts produced in nguistic and natural terms. The antecedent
clauses are derved from the trained network by backiracking
along maximum-weighted paths (through active nodes), whereas
the consequent part 15 generated using a certainty measure. The
effectiveness of the algorthms is demonstrated on vowel, syn-
thetic, and medical data. An application of the fuzzy MLP o
medical diagnosis [42] is described in detaal in Section V.
Wang er af. [106] have used a fuzzy logic rule-based system
to first determine a good feature set for the recognition of Es-
cherichia coli (M157:H7, a cause of serious health problems.
Fuzzy membership functions are defined for each term set of
each linguistic variable in the mules. The human inspired fea-
tures of this reduced rule set are then incorporated in a multiple
neural network fusion approach. The fuzzy integral is utilized
in the fusion of the networks trained with different feature sets.

D, Designing Newral Net by Fuzzy Logic Formalism

Fig. 2 provides a block diagram [41 ], explanmg the pnnciple
behind this form of hybrdization (category 2, Section 11-B). It
encompasses both fuzey reasoning and fuzey control, where
some IF-THEN rukes are mitially leamed using tmuning data
andfor expert knowledge. Rules can later be generated (inter-
polated) for different input conditions. Integration with GA's
is also considered briefly.

1) For Fuzzy Reasoning: The MLP-based approach o
fuzey reasoning reported by Keller and Tahani [33] falls under
this category. It receives the possibility distributions of the an-
tecedent clavses at the mpul, uses a hidden layer 1o gencrale an
internal representation of the relationship, and finally produces
the possibility distribution of the consequent at the output. The
model is expected to function as an inference engine with each
small subnetwork leaming the functional input—output relation-
ship of a rule. Trapezoidal possibility distributions, sampled at
discrete points, are used o represent fuzzy linguistic terms and
modifiers. The network is supposed o be able 1o extrapolate o
other inputs (for a rule) following modus ponens. Conjunctive
antecedent clavses are also modeled using separale groups
of hidden nodes for each clause. Keller er af. [36] explicitly
encode each rule in the structure of the network. A measure of
disagreement between the mput possibility distribution and the
antecedent clause distnbution 15 used at the clawse-checking
and combination layers to determine the uncenainty in the con-
sequent part of the fired rule. Theoretical properties of various
combination schemes are also ivestigated. Pal er all [107]
have reported an extension Lo this algorthm for computing an
optimal value of v, the importance of the various antecedent
clauses, which are supplied subjectively in Ref. [36]. The same
membership values with more gquantization levels are vsed at
the antecedent and consequent levels. An improved network
architecture is also proposed. This is extended in Ref. [108] by
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using neural learning to find an optimal relation representing a
selof fuzezy composidonal rules of inference.

Ishibuchi et af. [45], on the other hand, vse mterval vectors
to represent fuzey input and output in an MLP. A backpropaga-
tion algorithm is applied on a cost function defined by c-level
sets of actual and target fuzzy outputs, using the principles of
interval arthmetic. Different fuzzy IF-THEN rules are interpo-
lated from a few sample rules (used during training). lshibuchi
et al. [54], [ 109] have also reported leaming methods of neural
networks for utilizing expert knowledge represented by fuzey
IF-THEN rules. Both numere and linguistic inpuls are mepri-
sented in terms of fuzzy numbers and intervals, which can be
learned by the fuzey pewral network model. Here the connec-
tion weights are also modeled as fuzzy numbers represented by
cr-level sets. A generalization of this scheme for representing a
fuzey weight of any shape is reported in [ 110]. However, the use
of interval arithmetic operations causes the computations 1o be
complex and dme-consuming. Since fuzzy numbers are prop-
agated through the whole network, the computation time and
required memory capacities are 20" imes of those in the tradi-
tional neural networks of comparable size, where &' represents
the number of quantized membership grades.

The newural network-based fuzzy reasoning scheme by Takagi
and Hayashi [44] is capable of learning the membership func-
tion of the F part and determining the amount of control in
the THEN part of the inference rules. The input data are clus-
tered to find the best number of partitions coresponding to the
number of inference rukes applicable 1o the reasoning problem,
with a single neural net block modeling one rule. The opimum
number of cycles required is determined to avoid overleaming
and the minimal number of input variables selected for infer-
ring the control values. Takagi efal. [37] analyzed the identifica-
tion error o improve the performance of the structured network
based on fuzzy inference rules. The number of clusters deter-
mine the comesponding THEN parts 1o be added. The approach
by Takagi et al. has been adapted in Japanese neuro—fuzey con-
sumer prodocts [ 111]. Note that Mitra and Kuncheva [ 112] have
developed a scheme 1o augment the IF parts of the relevant rules
for the required pattern classification problem.

Nie [46] has developed a general and systematic approach for
constructing a multivariable fuzzy model from numercal data
using a self-organizing counterpropagation network. Both super-
vised and unsupervised algonthms are vsed. Knowledge can be
extracied from the data in the form of a setof rules. This rulebase
is then utilized by a fuzzy reasoning model. Moreover, an online
adaptive fuzzy model updates the rulebase (in terms of connec-
ton weights jinresponse to the incommg data. The mode] clanms
a simple structure, fast learning speed, and good modeling accu-
racy. Chen and Xi [ 113] have developed an adaptive fuzzy infer-
ence system based on competitive learning. The inpul space s
partitioned into local regions (clusters) and their decision bound-
ariesdetermined. Fuzey rules cormesponding o each local region
are then leamed. A self-organizing learning algorithm has been
used by Cai and Kwan [114] for designing a fuzzy inference net-
work. The number of inference rules and their membership func-
tions are automatically determined from the data during training.
Leaming speed is claimed o be fast. No prdor information is re-
quired from experts while designing the system.
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2) For Fuzzy Controf: Wang and Mendel [38] represent a
fuzey system by a series of fuzey basis functions, which are
algebraic superposition of membership functions. Each such
basis function corresponds to one fuzzy logic rule. An orthog-
onal least squares learming algorithm s utilized o determine the
significant fuzzy logic rules (structure learning ) and associated
parameters { parameter leaming) from the inpul—output training
pairs. However, orthogonalization may lead o the production of
incomprehensible and complex rules. Since a linguistic fuzzy
IF-THEN rule from human experts can be directly interpreted,
the fuzzy basis function network provides a framework for com-
bining both numerical and linguistic information in a uniform
MIEANNET.

Cho and Wang [115] describe an RBF-based adaptive fuzey
syslem Lo extract IF-THEN rules from sample data through
learning. Different consequence lypes such as constant,
first-order linear function, and fuzzy vanable are modeled,
thereby enabling the network o handle arbitrary fuzzy infer-
ence schemes. Neither 15 there an imitial roulebase, nor does
one need o specily in advance the number of rules required 1o
be identified by the system. Fuzzy rules are generated, as and
when needed, by recruiting basis function units.

Shann and Fu [116] have designed a layered network for
learning rules of fuzzy control systems. The network is pruned
to delete redundant rules and generate a concise fuzzy rulebase.
The network developed by Honkawa et all [117] 15 based on the
truth space approach for automatic acquisition of fuzzy mles.
The fuzzy varables in the consequent are labeled according
to their linguistic truth values represented as fuzzy sets. Bas-
tian [118] has inroduced defuzzification weights to the over-
lapping areas of the consequent o control the linearity/nonlin-
earity at the transition between fuzzy logic les. These weights
are learned by a feedforward ANN. This can also be categorized
as a cooperative neuro—luzey system according 1o the method-
ology of Nauck et al

ANFIS by Jang [39] implements a Sugeno-like fuzey system
[24] in a five-layer network structure. Backpropagation is used
to learn the antecedent membership functions, while least mean
squares algorithm determines the coefficients of the linear
combinations in the consequent of the rule. Here the min and
max functions in the fuzey system are replaced by differentiable
functions. The rulebase must be known in advance, as ANFIS
adjusts only the membership functions of the antecedent and
consequent parameters. ANFLS can be easily implemented by
flexible neural network simulators, and hence is attractive for
application purposes. However, the leaming algorithm being
computationally expensive it is important o have an efficient
implementation. Moreover, it is difficult for the model w handle
high-dimensional problems, as this leads o a large number
of input partitions, rules, and, hence, consequent paramelers.
The structure of ANFIS ensures that each linguistic term is
represented by only one Tuzzy sel.

The neuro—fuzzy model designed by Chak et al [119] can lo-
cale its rules and optimize their membership functions by com-
petitive learning and Kalman filter algorithm. The key feature is
that a high-dimensional fuzzy system can be implemented with
fewer rules than that required by a conventional Sugeno-type
model. This 15 because the mput space partitions are unevenly
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distributed. The network can be implemented inreal tme. Juang
and Lin [120] have developed a seli-constructing neural fuzzy
inference network with on-ling leaming ability. Initially there
are no rules, but they are created and adapted as learning pro-
ceeds via simullaneous structure and parameter identification.
The input space is partitioned in a flexible way, using clustering,
toidentily the antecedents. The consequent 1s generated mitially
by clustering, followed by incremental leaming using a pro-
jection-based correlation measure. Linear transformations are
learned for each input variable, enabling the network to model
fewer mules with higher accuracy. Kuo and Cohen [121] use
a self-organizing and self-adjusting fuzzy model for manufac-
turing process control. The inputs and outputs are partiioned by
Kohonen's feature mapping and the premise and consequence
parameters are updated using backpropagation. The training pa-
rameters are dynamically updated vsing fuzey models, leading
to an acceleration in speed of learning. The self-organizing stage
determines the initdal position and shape of each membership
function at the antecedent and the control action at the conse-
quent. Backpropagaton is then vsed to tune these pammelers.

GARIC by Berenji and Khedkar [40] uses a differentiable soft
minimun function to implement a fuzzy controller. A complex
supervised lkeaming procedure 15 used. All the models based on
Sugeno-lype syslems are somelmes nol as easy o nterpretl,
as are Mamdani-type fuezy systems. They are therelone mone
suited o applications where interpretation is nol as important as
performance. Initialization using prior knowledge is also not as
easy as compared to models implementing Mamdani-type fuzzy
systems. Berenpi and Khedkar later developed a new architec-
ture 1o control dynamic systems [122]. This model s capable
of starting with approximate prior knowledge, which is refined
using reinforcement learning.

Nauck ef al. [14], [123] have developed NEFCON, NEF-
CLASS, and NEFPROX using a generic fuzzy perceplron Lo
model Mamdani-type [23] newro—fuzzy systems. The authors
observe that a neuro—fuzzy system should be easy w implement,
handle and understand. Fuzey systems are designed o exploit
the tolerance for imprecision, and hence should not concen-
trate on generating the exact solution. Reinforcement learning
is found to be more suitable than supervised learning for han-
dling control problems. The leaming procedure uses a fuzzy
error, and can operate both on fuzzy sets and rules. The system
is claimed w0 be simple and highly interpretable. This is suit-
able in providing support o users during decision-making. Un-
like the ANFIS model, NEFPROX offers a method of structure
learning. The knowledge base of the fuzey sysiem is implicitly
given by the network structure. The input units assume the task
of the fuzzification interface, the inference logic is represented
by the propagation functions, and the output unit is the defuzzi-
fication interface. The incremental rule learning algorithm can
create a mlebase from scrawch by adding rule after rule or can
also operate on prior knowledge.

Reinforcement learning has also been used by Jouffe [ 124] 1o
tune online the consequent part of fuzzy inference systems. The
only information available for learning is the sysiem feedback,
which describes in erms of reward and punishment the task the
fuzzy agent has to realize. At each time step, the agent receives
a reinforcement signal according o the last action it has per-

formed in the previous state. The problem involves optimizing
not only the direct reinforcement, but also the total amount of
reinforcement the agent can receive in the future.

3) With Recurrent Networks: Most neuro—fuzzy models
reported so fardeal with static input—output relationships. They
are unable to process temporal inpul sequences of arbitrary
length, Recurrent neural networks have the ability o store
information over indefinite periods of time, can develop hidden
states through learning, and are thus potentially useful for
representing recursive hinguistic rules. They are particulardy
well-suited for problem domains where incomplete or contra-
dictory prior knowledge 1s available. In such cases, knowledge
revision or refinement is also possible using recumrent nets.
In fuzzy regular grammars, there is no question whether a
production rule 15 applied; all applicable production rules are
executed to some degree. For a given fuzzy grammar, there
exists a fuzey automaton. Fuzzy finite-state automata {FEA's)
can model dynamic processes whose current state depends
on the current input and previous states. Unlike deterministic
finite-state automata (DEA's), FFA’s are not in one particular
state. Here each state is occupied o some degree defined by a
membership function. Presently, FFA's are gaining significance
as synthesis wools for g variety of problems. Based on their
earlier design on encoding DFA's in discrete-time second-order
recurrent neural networks [98], Omlin er af. have constructed
an augmented recurrent network that encodes an FEA and rec-
ognizes a given fuzezy regular language with arbitrary accuracy
[125]. The encoding methodology is empideally verfied using
randomly generated FEA's. As in [98], this approach of rule
extraction can also be calegonized as compositional.

Zhang and Morris [126] use a recurrent neuro—fuzey network
to build long-term prediction models for nonlinear processes.
FProcess knowledge 1s used o imtally partution the process op-
eration into several local fuzezy operating regions and set up
the initial fuzzification layer weights. Membership functions of
fuzey operating regions are refined through training, enabling
the local models o learn. The global model output 15 obtaimed
by center of gravity defuzzification involving the local models.

4) With Genetic Algorithms: A newro—fuzzy-genetic hy-
bridezation has been reported by Yupu ef all [539]. GA’s are used
to search optimal fuzzy rules and membership functions for the
neuro—fuzey system. A priovi knowledge from the designer is
combined with the leaming ability of the network to design
an optimal fuzzy controller. This self-learning system uses the
control performance index as the fitness function of the GA
while searching for the network parameters.

Farag et al. [60] present a neuro—fuzzy system capable of han-
dling both quantitative and qualitative knowledge. The keaming
involves first finding the initial parameters of the membership
functions of the fuzzy model with Kohonen's self-organizing
feature map algorithm. This is followed by the extraction of
linguistic fuzey rules. A multiresolutional dynamic GA is then
used for optimized tuning of membership functions.

Ishibuchi et al. [62] use GA's for selecting a small number
of significant linguistic rules from a large number of extracted
rules. As in [B2] (Section HI-ALL), the objective 15 1o maximize
the number of correctly classified patierns while minimizing the
number of selected rules.



Meural
Fuzzy . Mm‘ __ Eoor Fuzzy
Sets o Implementing Sels
CONNECIIVEs

Fig. 3. Mewral network implementing fuzzy connectives,

Wang and Archer [127] have inroduced wltrafizzy sets for
modeling decision-making under conflict, using a modified ver-
sion of backpropagation. In case of uliafuzey sets, the mem-
bership function takes on fuezy values. Ultrafuezy interval of
certainty factor is modeled as the consequent of a rule. Two
fuzey membership functions termed as participation and mod-
eration functions, falling in the ultrafuzzy interval, are devel-
oped based on the well-known plawsibifire and belief functions
[128]. The concept of plausibility and belief functions is used to
construct conflict measures, which help in explaining the com-
promise phenomena observed in decision-making. This fuzey
decision-making model s capable of cumulating human knowl-
edge and is claimed to be vseful for maintaining consistency
while making decisions. &

Chow erafl. [ 129] have introduced an interesting neuro—fuzzy
method for enforcing heuristic constraints on membership func-
tions, while extracting knowledge in the form of rules from lim-
ited information. In such cases, there is generally no ideal rule-
base, which can be vsed to vahdate the extracted rules. More-
over, using outpul ermor measures 1o validate extracted mules is
not sufficient as extracted knowledge may not make heuristic
sense. This model ensures that the final membership functions
conform o a priort heuristic knowledge, reduces the domain of
search, and improves convergence speed.

E. Changing Basic Characteristics of Newrons

This pertains w category 3 of neuro—fuzzy hybridization de-
scribed in Section 11-B. Fig. 3 provides an overview of the whole
process [41].

The work of Keller ef al. [35]. [36], which falls under the
previous category, is extended [47] in the present framework.
The model uses a fixed network architecture that employs
parameterized families of operators, such as the generalized
mean and multiplicative hybrad operators. The hybrid op-
erator can behave as union, interseclion, Or mMean OperaLor
for different sets of parameters, which can be learned during
traming. These networks possess extra predictable properties
and admit a training algorithm that produces sharper inference
results. Since the exact nature of each operator is learned by
the network, the generated rules are capable of more accurately
representing the inpul—output relationship.

Rhee and Knshnapuram [130] have repored a method for
rule generation from minimal approximate fuzzy ageregation
networks, using node activation and link weights. They estimate
the linguistc labels and the comesponding tnangular member-
ship functions for the input features from the training data. Hy-
brid operators with compensatory behavior whose parameters
can be learned during gradient descent to estimate the type of
ageregation are employed at the neuronal level Pruning of re-
dundant features and/or hidden nodes helps in generating ap-
propriate rules in terms of AND-OR operators that are repre-
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sented by these hybrid functions. Zhang and Kandel [131] have
also developed an adaptive fuzzy reasoning method using com-
pensatory fuzey operators. 1t is found o effectively learn fuzey
IF-THEN rules from both well- and ill-defined data. The effi-
ciency of the compensatory learning algorithm can be enhanced
by choosing an appropriate compensatory degree. Zurada and
Lozowski [ 132] have applied T'- and 5-nonms on input member-
ship functions negative, zero, and positive 0 extract linguistic
rules for pattern classes.

Mitra and Pal have used the fuzzy logical MLP for infer-
encing and rule generation [48]. The model consists of logical
neurons employing conjugate pairs of -novms T and P-conorms
5. like min—-max and product—pmbabilistic siom, in place of the
weighted sum and sigmoidal functions of the conventional MLP.
Warious fuzey implication operators are used o introduce dif-
ferent amounts of interaction during emror backpropagation. The
built-in AND-OR structure of the fuzey logical MLP helps it 1o
generate more approprate rules in AND-OR form, expressed as
disjunction of conjunctive clauses.

A peural petwork for formulating fuzezy production rules has
been constructed by Yager [133]. Numercal information is used
to find the preliminary partiioning of the inpul—outpul joint
space. The linguiste vanables associated with the antecedent
and consequent parts of the rules are represented as weights in
the neural structure. The membership values of these linguistic
varighles, modeled as furzey sets, can be learned. The determi-
nation of the firing level of a neuron is viewed as a measure of
possibility between two fuzey sets: the connection weights and
the input. Unlike Keller et al. [36], here a self-organizing proce-
dure is used to determine the siructure and initial weights of the
network, and obtain the nucleus of rules for a fuzey knowledge
base, This procedure s suitable in data-nch sitwations, where
one is unable 1o find experts who can provide an organized de-
scription of the system. However, in the absence of expert opin-
ions, the training data must be representative of the system’s
behavior and the unsupervised leaming algorithm needs 1o be
propedy selected. Yager [134] has also employed neural mod-
ules for modeling the rules of fuzzy logic controllers with a com-
biner (using min or product functions). The vadous weights are
learned and the importance of the antecedent clauses simulated.

Lin and Lu [135] have designed a five-layered network ca-
pable of processing both numerical and linguistic information.
Fuzzy rules and membership functions are encoded for fuzey
inferencing. The inputs, outputs, and connection weights can
be fuzzy numbers of any shape, represented by ev-level fuzey
sets. Min and max operators are used o perform condition
matching of fuzzy rules and integration of fired rules having
the same consequent. Fueey supervised learning and fuzey
reinforcement learning are developed using interval arithmetic
and fuzzy input—output pairs and/or linguistic information. The
reinforcement signal from the environment involves linguistic
information (fuzey critic signal) such as good, verv good,
or bad instead of the nommal numerical critic values like 0
(success) or 1 (farlure). The system 1s used for reducing the
number of rles in a fuzey mlebase, and learning proper fuzzy
control rules and membership functions.

The inferencing in the pseudo outer-product-based fuzey
neural network (POPFNN) [ 136] uses fuzzy rule-based sysiems
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that employ the fruth value restriction method. There are five
layers, termed the input, condition, rulebase, consequence, and
output layers. The fuzzification of the input and the defuzzi-
fication of the ouput are automatically accomplished. The
learning process consists of three phases: self-organization,
POP learning, and supervised leaming. A self-organizing
algorithm is employed in the first phase 1o initialize the mem-
bership functions of both the input and output varables by
determining their centronds and widths. In the second phase,
the POP algorithm is run in one pass 1o identify the fuzzy rules
that are supported by the tramming set. The denived structure
and parameters are then fine-tuned using the backpropagation
algonthm.

A cell recruitment leaming algorithm that is capable of
forgetting previously learned facts by learning new information
has been employed by Romaniuk and Hall [137] to build a

neuro—fuzey system for determining the credimvorthiness of

credit applicants. The network consists of positive and negative
collector cells along with unknown and intermediate cells, and
can handle fiuzzv or uncertain data. Fuzzy functions such as
maximum, minimum, and negation are apphied at the neuronal
levels depending on the cormesponding bias values. This inere-
mental leaming algorithm can be used either in conjunction
with an existing knowledge base or alone. Extraction of fuzzy
IF-THEN rules 15 also possible.

IV, USING KNOWLEDGE-B ASED NETWOREKS

One of the major problems in connectionistneuro—fuzzy
design is the choice of the optimal network structure. This has
an important bearing on any performance evaluation. Moreover,
the models are generally very data-dependent, and the appro-
priate network size also depends on the available traiming data.
Vanous methodologies developed for selecting the optimal
network structure include growing and pruning of nodes and
links, employing genetic search, and embedding nitial knowl-
edge in the network topology. The last approach—embedding
initial knowledge—is usually followed in the case of knowl-
edge-based networks. It is formally shown [138] that such
knowledge-based networks require relatively smaller raiming
sel sizes for comect generalization. When the initial knowledge
fails to explain many instances, additional hidden units and
connections need o be added. The imitnal encoded knowledge
may be refined with experience by performing learning in the
data environment. The resuling networks generally imvolve
less medundancy in their wpology.

Incorporation of the concept of neuro—{uzzy integration at
this level can also help in designing more efficient (intelligent)
knowledge-based networks. The general role of fuzzy sets is o
enhance ANN'S by incorporating knowledge-onented mecha-
nisms. Preprocessing of training data leads 1o improvement in
learning andfor enhanced robusiness characteristics of the net-
work. Prior knowledge, in the form of linguistic rules and mem-
bership functions, can be embedded ino an ANN and thereby
shorten the keaming process. The blackbox aspect of an ANN is
avoided o this manner and new knowledge can be extracted in
rule form. Note that linguistic rules are more natural and easily
interpretable. The heunstic, data-driven leaming procedure op-

erates on local information, causing only local modifications in
the underlying fuzzy system. The furzy rules encoded within
the system can be viewed as vague prototypes of the taining
data.

In this section, we embark on knowledge-based networks for
performing inferencing and rule generation. We first describe
the newral approaches. Thisis followed by different neuro—fuzey
knowledge-based approaches (hybridization categories 1 and 3,
Section 1-B). Next, we demonstrate how GA's are incomporated
into this framework. Finally, some recent literature, using rough
sels in this respect, 15 presented.

A. Connectionist Models

Let us consider here the models developed by Gallant [1], Fu
[10], Shavlik er af [3], [11]. [139], Yin and Liang [ 140], and
Lacher ef al. [141]. The networks, other than that in [141], n-
volve crisp mputs and outputs. The ininal domain knowledge,
in the form of rules, is mapped into the multilayer feedforward
network topology, using binary hink weights o maintam the se-
mantics. Note that the rule generation aspect of Gallant’s model
[1] has already been discussed in Section H1-B, as this is one of
the seminal works in this direction. The other models are now
desenbed.

Yin and Liang [140] have employed a gradually aug-
mented-node learning  algorthm o incrementally build a
dynamic knowledge base capable of both acquiring new
knowledge and relearning existing information. The rules are
explicitly represented among the condition nodes, rule nodes,
and action nodes, and the algonthm gradoally builds the mul-
tilayer feedforward network. The network structure is changed
dynamically according to the new environment or through
human intervention. This connectionist mcremental model has
been applied to the design of an animal identification system.
In Fu's model [10] lidden units and additional connections
are introduced appropriately when the network performance
stagnates durng waining using  backpropagation. Weight
decay, pruning of weights, and clustering of hidden units are
mcorporated to improve the generabzaton of the network.

Towell and Shavhik [11] have designed a hybrid keaming
system KBANN, and applied it to problems of molecular
biology. Disjunctive rules are rewritten as multiple conjunctive
rules while mapping into the network structure. Nodes and links
are incorporated, on instructions from the user, 1o augment the
knowledge-based module. It 1 primarily a theory mefinement
system that is capable of pruning an inserted rule set, but not
capable of adding new rles. 1t is largely topology preserving
and assumes that the mital domain theory 15 basically comect
and nearly complete. Leaming or evolution of new knowledge,
as a distributed representation, 1s nol encouraged here [5].

An expansion of the network guided by both the domain
theory and training data has been reported in TopGen by Opite
and Shavlik [139]. Dynamic additions of hidden nodes are
made at the best place by heunistically searching through the
space of possible network topologies, in a manner analogous
to the adding of rules and conjuncts to the symbolic rulebase.
This approach wses a specialized ANN archilecture with a
specialized tmuning algorithm. It generates sparser rule sets as
compared to KBANN and overcomes the latter’s limitation of
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not being able to extend a relatively weak mitial domain theory.
The computational expense is justified in terms of the human
expert’s willingness o wail for an extended period of time for
better predictive accuracy. TopGen decreases false negatives
by adding new rules, decreases false positives by adding new
nodes o the network, and vses weight decay o preserve
useful knowledge. The network which generalizes best on the
corresponding validation set s selected as the best network.

A way of using the knowledge of the trained neural model 1o
extract the revised rules for the problem domain is described by
Fu [10] and Towell and Shavlik [3]. Knowledge, in the form
of rukes in disjunctive normal form, is encoded ino the net-
work. The other hinks mepresent low-weighted connecuons, al-
lowing subsequent refinement. The network is trained through
error backpropagation. This is followed by rule extraction. It is
assumdéd that the neurons have binary inputs and hard-limiting
activation functions, and the method of ule extraction searches
for constraints on the inputs of a given neuron such that the
weights are =& (bias). An exhaustive search for firing condi-
tions follows. Each firing corresponds 1o a rule under a certain
combination of inputs. All combinations are checked, such that
the rule search becomes a combinatorial task.

The subser algonthm [ 10] can be vsed by the network o im-
prove the search complexity for the combination of firing condi-
tions. Here one searches for any single weight exceeding the bias
and rewritesall conditions sofound as rules withsingle input vari-
able. The search continues for increased size of sets until all sets
have been explored and possibly rewritten asrules. The extracted
rubkes are simple to understand and their size can be resticted by
specifying the numberof premisesfantecedents 1o be considered.
However, someof the proble ms associated withthis algonthmare
as follows [13]. It requires lengthy, exhavstive searches of size
£H2%1 for a hidden/output node with a fan-in of &, It extracts a
large set of rles up to [J, = {1 — &0, where 3, and /3, are the
number of subsets of positively and negatively weighted links,
respectively. Some of the generated rules may be repetitive, as
permutations of rule antecedents are not taken care of aulomati-
cally. Mormeover, there 15 no guarantes that all useful knowledge
embedded in the trained network will be extracted.

The subset algorithm has been further modified in Towell and
Shavlik [3] by the M of /¥ algorithm for extracting meaningful
rubes. A general rule inthis case is of the form: F (ar feast M of
the following N antecedents are true), THEN - - . The rationale
is to find a group of links that form an equivalence class, whose
members have similar effect (weight values) and can be used
mterchangeably with one another.

The steps of this algonthm involve clustering the weights
of each neuron into groups, averaging their values 10 create
equivalence classes, eliminating low-value weights if they have
no effect on the sign of the total activation and oprimizing by
freczing the remaining weights and retraining the biases using
the backpropagation algorthm. This is followed by rmfe ex-
traction. Arithmetic is performed such that one searches for
all weighted antecedents, which, when summed up, exceed the
threshold value of & given neuron.

This algorithm has good generalization {accuracy), but can
have degraded comprehensibility [6]. Note that the algonthm
considers groups of links as equivalence classes, thereby gen-
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erating a bound on the number of rules mther than establishing
a ceiling on the number of antecedents. This approach differs
from that of Saito and Nakano [83] (descnbed in Section L1-B),
where a breadth-first search is employed 1o exhaustively find
those mput settings that caose the weighted sum o exceed the
beas ata mode. Even though the algorithms m [3], [10] are expo-
nential, their inherent simplicity makes them extremely useful.

Lacher et al. [141] have designed event-dnven, acychic net-
worksof neural objects called expert networks. There are regular
nodes and operation nodes (for conjunction and negation). Input
weights are hard wired, while the output weights of a node are
adaptive. Antecedents of a disjunction in a mle are simplified
to generate a set of individual rules before formulating the ini-
tal network architecture. Virtual rules are used o create polen-
tial connections for learning in order o overcome sitluations in-
volving small initial setof rles. The backpropagation algorithm
15 modified w work in the event-driven environment, where both
forward and backward signals propagate in dara-flow fashion.
The form of the rules (coarse knowledge) is tuned with the asso-
ciated certainty factors (fine knowledge), and the resultant net-
work trained for betler performance.

B. Incovporvating Fuzzy Sets

A briel survey on the knowledge-based networks involving
fuzziness at different stages is provided here. The approaches in
[9], [ 142 ][ 144] fall under category 1 of the fusion methodolo-
zies described in Section I1-B, while those in [89], [145], and
[146] can be grouped in category 3.

Knowledge extracted from experts in the form of membership
functions and fuzzy rules (in AND—OR form) is used 1o build and
preweight the neural net structure, which 1s then tuned vsing
tramming data. Kasabov [ 142 ] uses three neural subnets—produc-
ton memory, working memaory, and vanable binding space—I1o
encode the production rules, which can later be updated. FulNN
[143]is a five-layered feedforward architecture with the second
layer calculating fuzey inpul membership functions, the third
layer representing fuzey rules, the fourth layer caleulating
output membership functions, and the fifth layer computing
output defuzzification. The network has features of both a neural
network and a fuzzy inference machine.

Fuzzy signed digraph with feedback, termed fuzzy cognitive
map, has been used by Kosko [ 144] o represent knowledge. Ad-
ditive combination of augmented connection matrices are em-
ployed to include the views of a number of experts for generating
the knowledge network. Kosko [ 15] interprets a fuzzey rule as an
association between antecedent and consequent. Neural associa-
tve memaory o bidirectional associative memory 15 used Lo store
fuzey rules. The weight of a rule is indicative of its importance.

Machado and Rocha [145] have used a connectionist knowl-
edge base involving fuzzy numbers at the input layer, fuzey
AND at the hidden layers, and fuzey OR at the output layer. The
hidden layers chunk input evidences into clusters of information
for representing regular patterns of the environment. The output
layer computes the degree of possibility of each hypothesis.
The inital network architecture 15 generated using knowledge
graphs elicited from experts. The experts express their knowl-
edge about each hypothesis of the problem domain by selecting
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an appropriate setol evidences and building an acychc weighted
AND—OR graph (knowledge graph) to descnbe how these must
be combined o support decision making.

Tan [89] has used a generalization of fuzzy ARTMAP [50],
called cascade ARTMAP. It represents intermediate attributes
and rule cascades of rule-based knowledge explicitly, and per-
forms multistep inferencing. A major problem of using MLP
to refine rule-based knowledge [3], [10] is the preservation
of symbolic knowledge under the weight tuning mechanism
of the backpropagation algorithm. Another limitation is that
unless the mmibal rulebase 15 moughly complete, the mitial
network architecture may not be sufficiently rich for handling
the problem doman. A rule msertion algonthm translates
IF-THEN symbaolic rules into cascade ARTMAP architecture.
This knowledge can be refined and enhanced by the learning
algonthm. During learning, new recogniion calegories (rukes)
can be created dynamically to cover the deficiency of the
domain theory. This 15 i contrast o the stabe architecture of
the standard slow learning backpropagation networks. Learning
in cascade ARTMAFP 15 match-based (not error-based); it does
not wash away existing knowledge and the meanings of units
do not shift. It relies on a specific archilecture, viz. adaptive
resonance theory mapping, which enables it o handle the sta-
Bility—plasticity dilemma. The extracted rules involve discrewe
inputs and are of good quality. The algorithmic complexity is
linear in the number of recognition categories. Results indicate
that the performance is superor as compared o the KBANN
[11], 1D-3 {decision tree) and MLE

Most of these models are mainly concemed with the en-
coding of initial knowledge by a fuzey neural network followed
by refinement during training. Extraction of fuzzy rules in
this framework has been attempted [9], [89], [142], [145],
[146]. Connection weights of FuNN, above a presel threshold,
determine the condition or action ¢lements i the extracted
rules along with their comesponding degrees of importance and
confidence factors [143]. Inference, inguiry, and explanation
are possible dunng consultation with the expert n [145]. As
the cascade ARTMAP [89] preserves symbolic mle form, the
extracted rules can be directly compared with the onginally
inserted rules. These rules are claimed [89] o be simpler
and more accurale than the M of & rules [3]. Besides, cach
extracled mle s associated with a confidence factor that
indicates 1s imporance or uselulness, This allows rmanking and
evaluation of the extracted knowledge.

Machado and Rocha [ 146] have also vsed an mterval-based
representation for membership grades (MGL) to allow reasoning
with different types of uncertainty: vagueness, ignorance, and
relevance. The model incorporates the facilities of incremental
learning, inference, inguiry, censorship of input information,
and explanabon as in expert systems. The utility-based inguiry
process permits signific ant reduction of consultation cost or risk
and gives the system the common sense property possessed by
experts when selecting tests 1o be performed. The ability to crit-
icize inpul data when they dismupt a trend of acceplance or rejec-
tion observed for a hypothesis mimics the behavior of experts,
who are ofien able 1o detect suspicious input data and either
reject them or ask for their confirmation. The explanation al-
gonthm provides responses o gquenes such as fiow a particular

conclusion was reached orwihy a partic ular question was formu-
lated. The network forms a set of pathways that compete 1o send
the largest evidential flow to the outpul neuron representing the
hypothesis. The structure of the winning pathway represents a
chain of fuzzy pseudoproduction rules that can be presented 1o
the user either in a graphical format or as English text.

Application of this algorithm has been made o the deforesta-
tion monitoring of the Amazon region, using Landsat-V satellite
images. The classes considered are forest, savanna, water, defor-
ested area, cloud, and shadow. Eighty-two numerical features of
spectral, textural, and geometric nature were measured on each
image segment (of spectrally homogeneous regions, generated
by region growing). Fuzzy classification allows the modeling
of complex situations such as transition phenomena (as i the
regeneration of forest in a previously burned area) or mublliple
classification {as in the case of forest overcast by clouds).

A model by Mita er al. [9], falling under category 1 of the
neuro—fuzzy integration scheme, has been developed for clas-
sification, inferencing, querying, and rule generation. It is ca-
pable of generating both positive (indicating the belongingness
of a pattern to a class) and negarive (indicating its degree of
not belonging o a class) rules in linguistic form 1o justify any
decision reached. This is found to be useful for inferencing in
ambiguous cases. The knowledge encoding procedure, unlike
many other methods [10], [11], mvolves a nonbinary weighting
mechanism. The a priori class information and the distribution
of pattern points in the feature space are taken into account while
encoding the crude domain knowledge from the data set among
the connecton weights, Fueey intervals and lingustic sets are
used in the process. Each pattern class is modeled in terms of
positive and negative hidden nodes. An estimation of the links
connecting the output and hidden layers (in terms of the pre-
ceding layer ink weights and node actuvation) 1s made. The net-
work topology is then refined, using growing and/or pruning,
thereby generating a near optimal network architecture. The
knowledge-based network 15 shown 10 converge much carher,
resulting in more meaningful rules at this stage as compared to
other models.

The trained knowledge-based network is wsed for rule
generation in IF-THEN form. These rules describe the extent to
which a test pattern belongs or does not belong 0 one of the
classes in terms of antecedent and consequent clauses provided
in natural form. Two mle generation strategies, as developed
by Mitma et al. [9] are 1) pedagogical—reating the network
as a blackbox and vsing the tmming sel mpul (In OUMErc
and/or linguistic forms) and network output (with confidence
factor) o generate the antecedent and consequent parts and
2y decompositional—backtracking  along maximal weighted
paths wsing the raned net and wtilizing 115 input and output
activation (with confidence factor) for obtaining the antecedent
and consequent clauses. The concept of generaling negative
rules and its imphecation w medical diagnosis 1s descenbed in
Sectuon V-C. The model has been tested on vowel, synthenc,
and medical data.

C. With Recurrent Networks

Omlinand Lee Giles [ 147 ] insert prior knowledge in the form
of rules into recurrent networks for performing rule revision.
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The inserted rules are compared with those i the DEA ex-
tracted from the trmned network. It s claimed that the network s
able w preserve the comrect rules, while simullancously adapting
(through training) the incormect inserted rules.

D, Incowporating Genetic Algorithms

Opite and Shaviik [148] have vsed the domain theory of
Towell and Shavhik [3]. [11]. as descnbed in Secton [V-A,
o generate the knowledge-based network structure. Random
perturbation is applied o create an initial set of candidate
networks or population. A node 15 perturbed by either deleting
it or by adding new nodes o it Next, these networks are traimed
using backpropagation and placed back into the population.
New networks are created by using cmossover and mutation
operators specifically designed w function on these networks.
The algorthm tries 0 minimize the destruction of the rule
structure of the crossed-over networks, by keeping intact nodes
belonging o the same syntacte rule (e, the nodes lnghly con-
nected w each other). The mutation opermtor adds diversity 1o
a population, while sull mamtaining a directed heunistic search
technique for choosing where 1o add nodes. In this manner, the
algorithm searches the topology space in order 1o find suitable
networks, which are then trined using backpropagation.

Evolutonary strategy 15 used by lin et al. [61] 1o oplimize
a fuzey rule system. The neuro-fuzey hybridization employed
here falls under category 2 (Section 1U-B ). However this initial
knowledge is tuned using evolutionary algorithms before being
mapped to a radial basis function network for refinement. The
number of fuzzy rules equals the number of hidden nodes in
the network. A neural network regulanzaton technigue, termed
adaptive weight sharing, is developed to extract understandable
fuzey rules from the trained network.

Kasabov and Woodford [149] have evedved the FulNN [143]
(Section IV-B) as an associative memory for the purpose of
dynamically storing and modifying a rlebase. Rules can be
extracted and inserted from/into the system ( EFulNN) in both
on-line and off-line modes in a changing environment.

E. Incorporating Rough Sets

Let us first describe a model by Yasdi [66], which uses
rough sets for the design of knowledge-based networks in the
rough-neuro framework. The intention is 1o use rough sets as
a tool for structuring the neural networks. The methodology
consists of generating rules from training examples by using
rough set-theoretic concepts and mapping them into a single
layer of connection weights of a four-layered neural network.
Altmbutes appearing as rule antecedent (consequent) become
the input (output) nodes, while the dependency factors become
the weight of the adjoining links in the hidden layer. The input
and output layers involve nonadjustable binary weights, Max,
min, and OB operators are modeled at the hidden nodes, based
on the syntax of the rules. The backpropagation algorithm is
slightly modified. However, the network has not been tested on
any real life problem and no comparative study is provided to
bring out the effectiveness of this hybrid approach.

Now we demonstrale a way of integrating rough sets and
fuzey-neural network for designing a knowledge-based sysiem,
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where the theory of rough sets s wilized for extracting do-
main knowledge. In the rough—fuzzy MLP [12], [67], the ex-
tracted erude domain knowledge 15 encoded among the connec-
ton weights. This helps one o auomatically generale an appro-
priate network architecture in terms of hidden nodes and links.
Neuro-fuzzy hybridization of category 1 (Section 11-B) is em-
ployed here. Methods are denved to model: 1) convex decision
regions with single-object representatives and 2) arbitrary deci-
sion regions with multuple-object representatives. From the per-
spective of pattern recognition, this implies using a single pro-
totype to model a (convex) decision region in case of method 1.
For method 2, this means using multiple prototypes 1o serve as
representatives of any arbitrary decision region. A three-layered
fuzey MLP is considered where the feature space gives the con-
dition attnbutes and the output classes the decision attnbutes
s0 as o result i oa decision table, This table may be trans-
formed, keeping the complexity of the network 1o be constructed
in mind. Rules are then generated from the (transformed) table
by computing relative reducts. The dependency factors of these
rules are encoded as the initial connection weights of the fuzey
MLP. The knowledge encoding procedure mvolves a nonbmary
welghting mechanism based on a detatled and systematic esti-
mation of the available domain information. Moreover, the ap-
propriate number of hidden nodes is automatically determined
here.

Such a network is found to be more efficient than the conven-
tonal version [12]. The architecture of the network becomes
simpler, due to the inherent reduction of the redundancy among
the connection weights. The dependency rule for each class is
obtained by considenng the corresponding reduced attribute-
value table. A smaller table leads 1o a simpler ruke in temms of
conjunctions and disjunctions, which is then translated into a
network having fewer hidden nodes. The objective is to strike
a balance by redocing the network complexity and reaching a
good solution, perhaps at the expense of not achieving the best
performance. While designing the initial structure of the fuzey
MLF, the union of the rules of all the pattem classes is con-
sidered. Here the hidden nodes model the conjuncts in the an-
tecedent part of a rule, while the output nodes model the dis-
juncts. The appropriate number of hidden nodes is automatically
generated by the mough set theoretic knowledge encoding pro-
cedure. On the other hand, both the fuzey and conventional ver-
sions of the MLP are required to empirically generate a suitable
size of the hidden layer(s). Banerjee er af. [ 12] further compared
the rough—fuzzy MLP with other related techniques like deci-
S100 rees.

A modular approach has been pursued by Mita er al
[69] o combine the knowledge-based rough-fuzzy MLP
subnetworks/modules generated for each class, using GA's.
Dependency rules are extracted directly from real-valued
attribute table consisting of fuzzy membership values. This
helps in preserving all the class representative points in the
dependency rules by adaptively applying a threshold that
automatically takes care of the shape of the membership func-
tions. An I-class classification problem is split into I two-class
problems. The generated subnetworks are combined, and the
final network evolved using a GA with restricted mutation
operator that utilizes the inherent knowledge of the modular
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structure. This divide and conguer strategy, followed by evo-
lutionary optimization, is found to enhance the performance
of the network. A compact set of more meaningful and less
redundant (refined) rules are generated. This work is a novel
rough-neuro—fuzzv—genetic hybridization in the soft computing
framework. Application of the model has been made for
medical diagnosis [68], [69].

V. APPLICATION TO MEDICAL DIAGNOSIS

Here we describe a fuzzy MLP for rule generation [7] and
demonstrate its effectiveness in medical diagnosis problems.
This is followed by a short descrption of negative rule gen-
eration by a knowledge-based fuzzy MLP [9]. AL the end of
the raiming phase the network 15 supposed w0 have encoded
the input-output information distributed among its connection
weights, This constitutes the knowledge base of the desired de-
cision-making system. Handling of imprecise inpuls is possible
and natural decision 15 obtamed associated with a certaimty mea-
sure denoting the confidence in the decision.

A Maodel
The model is capable of
+ inferencing based on complete andfor partial information;
+ querying the user for unknown input variables that are key
Lo reaching a decision;
+ producing justification for inferences in the form of
IF-THEN rules.
Fig. 4 gives anoverall view of the various stages involved in the
process of inferencing and rule generation.

The input can be in guantitative, linguistic, or set forms or a
combination of these. It is represented as a combination of mem-
bership values o the three primary linguistic properties fow,
medium, and high, modeled as 5 functions [33]. The model can
handle the hinguistic hedges very, mowe or less, and not, as well
as the set form modifiers about, less than, greater than, and be-
tween. Missing or unknown inpul features can also be taken care
of.

The user can ask the system why it inferred a panticular con-
clusion. The system answers with an IF-THEN rule applicable 1o
the case at hand. Note that these IF-THEN rules are nol mepre-
sented explicitly in the knowledge base; they are generated by

Block diagrum of inferencing and rule generation phases of furzy MLE

the inferencing svstem, by backiracking, from the connection
weights as needed for explanation. As the model has already
inferred a conclusion (at this stage), a subset of the currently
known information is selected 1o justify this decision. The an-
tecedent and consequent parts of the generated rules are in nat-
wral form using the linguistic modifiers and a certainty factor

An input pattern J, from the training set is presented o the
input of the trained network and its output computed. To find
the antecedent clauses of the mle, one may backtrack from the
output layer o the input through the maximal weighted hinks.
The path from node & in the output layer to node i 4 in the input
layer through node # in the hidden layer is maximal if

Lozl L 0
?J"F.-;; 1-';‘ + '”'.‘i;'i:.-'. Yo,

= muax {w.li:myljh + 1:!3???-;.?;1'?’,' } (3)
provided node activation yf = LA, 1')'?,, = (LA, and the max-
imum is computed over the index i, Here the path length from
node &in the output layer o node §in the hidden Iu}'uris-u-;__j-_i,rj'; ;
the superscript referring to the layer [9]. Only one node ¢ 4 cor-
responding o the three linguistic values of each feature I is
considered so that

]

i

4] 1 1
A 11H, ..
.l'“.‘i!’lf.‘] £k L

i {I T R A )
where A and B correspond to low [ L}, medinwm { M}, or high
{H . The three-dimensional linguistic pattern vector, with or
without modifiers [comesponding to the linguistic feature I7
computed by (4)], which 1s closest wo the relevant three-dimen-
sional part of pattern F', is selected as the antecedent clanse.
This is done for all input featres to which a path may be found
by (3). The complete IF part of the mule is obtained by ANDing
clauses comresponding w each of the features, eg.,

If & as meeec o doss A and oy ois wof 2

and - and B s very

The consequent part of the corresponding IF-THEN rule is gen-
erated using a certainty factor {]r_':.a!__i'l . For the hinguistic output
form, one uses one of the following.

1) Very likely for 0.8 =< hef!! =2 1.

2) Likely for 0.6 < bl < 0.8,
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TABLE 1
RULE GENERATION AND QUERYING PHASES ON HEmMTO Dara

Tupud featsres Rule generated [ 1ni-
Imitially Initially Ciery yﬁ THEN tial
supplied unknown for IF «lanse part rule
COET 100 MOV, TR - 7T
Ly o A 1] CRTNN
LIV = 700
GGT < B0 GOT medium,
15 < BUN < 20 GPT low,
o MOH < 36 GET very low, Lakely | ALD
male BUN very med. PH falae
AOCYE = 100 GOT, GRT, .0 GOT very low,
male LODH, QGT, GOT 1 GPT wery low,
BUFN, ANTH, GPT AT LIH very Low,
TR, MOH V26 MOV very figh, Very
ETHT NN [N 74 MOCH Wat med., likely A
Loy 1.0 | MOH Mol Kigh L fatae
TOT < 40 CPT. LD, 04| GOT very low,
femule QLT BUN, L GRT A7 | GET very Tow,
MOV, MOH, . GGT Nk LOH Tow,
T8, BN a3 : GHET very Low,
CRITNN Lirxi BT HUN Mal med., Likoty Fll
MOV T2 MOV Mal wned. L Julse
GOT < A0 LOF. LT, TS GOT pery Low,
A < FPT < 100 BIFN, WEH, MOH E: MOV wery low,
MOV s T Baf MOH Mal meed., Lafialy 'R
fomiale CTHT N Y 1 MCH Mal Low [ falsg
LITH = 7on GOT, PT, BT
RO« B e, LN GO .| 2T oan,
miule M, THIL, e 04 T Mol o,
LRTN N MO 4 HUN pory med.. Yory
SOT AT MOV very Tow, tikiely LC
BON B4 MOH Mol med. FH Jalae
BIFA = 2 COT. GFPT. ab QErT high,
hEE R LOH., GGT. SOT 25 BLUN Mol higk.
ke MTH, TE, 7 FT H MEV hagh, Very
REEA N MOH A4 MOH Mol red. Mkpely [N
MO Mol high Fil Falae
CALrE™ -2 40 VLML, GEY 1 GOT very Lo,
A0 = QFT « 1H LN, MOy, MO a0 LU wery low,
made P MCOH, TERI CRTMNN T MOV very hagh,
CRTNN T .| MOH high, Very
BIrn TH CRTMNN Low, fikedy T'H
MOV B3 | CHTNN very med. | ALD falae

3) More or less likefy for 0.1 = -’Jf:n’__*;‘r < (LG

4) Not unlikely for 0.1 < hel¥ < 0.

5) Unable to recognize for IrJf:'I_f < (L1

A sample rule, in terms of input features £ and £, is as
follows: If I is very medinm AND I is high then fikefy class 1.

B, Medical Data

Medical diagnosis, or more specifically, the results of tests
involve imprecision, noise, and individual difference. Often one
cannot clearly distinguish the difference between normal and
pathological values. Such test results cannot be precisely eval-
vated by crisp sets. Sometimes the patient can be simultane-
ously diagnosed as suffenng in different degrees from multiple
diseases. Itis also more dangerous 1o classify a sick person as
healthy than vice versa. Incorporation of fuzziness at the input
and output of the neural network under consideration appears
Lo be a good solution o such problems. Here one can simulta-
neously assign one or more finite nonzero membership values.

An effective handling of a certamm medical diagnosis problem
mvolving hepatobihiary disorders [42] 15 demonstmted i this
section. The data 1s available in hup:/fwwwasical acan'-sush-
mila/patlems.

The data hepato consists of 536 patent cases ol various
hepatobiliary disorders. The mine input features are the results
of different biochemical tests: glutamic oxalacetic ransaminate
(GOT; Karmen umt), glutamic pyruvie tansaminase (GPT;
Karmen wnmit), lactate dehydrase (LDH; w/liter), gamma
glutamyl tmnspeptidase (GGT; mu/ml), blood urea nitrogen
(BUN; mg/dl), mean corpuscular volume of red blood cell
(MCV; 1), mean corpuscular haemoglobin (MCH; pg). total
bilirubin (TBil; mg/dl), and creatimine (CRTNN; mg/dl).
The 10th feawre corresponds 1o the sex of the patient and is
represented in binary mode as (1.0 or (0,13 The hepatobiliary
disorders aleoholic hiver damage (ALD), pnmary hepatoma
(PH). lwver curhosis (LC), and cholelithiasis (C) constitute the
four output classes. Table 1 depicts the rule generation and
querying phases of the fuzey MLP for a sample set of partially
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known input features of the hepato data. Columns 3 and 4
refer, respectively, 1o the input feature supplied by the user after
querying and the resulting output membership of the neuron
corresponding o the disorder supported by the THEN part of the
generated rule in column 6.

The last column of the table indicates the rules obtained from
the initally supplied feature set in column 1. There were only
two types of such rules in Hayashi’s model [ 103]: the ones ex-
cluding a disease and the ones confirming a disease. The fuzzy
MLP [42] resorts o querying and further updating to obtain
rules that are more specifically indicative of a disease. Note that
querying should be resorted o at a particular stage, and there-
fore querying is not required in all cases with a partial set of
input features (e.g., see row 1 of Table 1)

C. Negative Rules

It may sometimes happen that we are unable o classily a test
pattem directly with the help of the positive rules (conceming its
belonging to a class). In such cases, one proceeds by discarding
some classes that are unlikely o contan the pattern, and thereby
arave at the class(es) w which the patern possibly belongs. In
other words, in the absence of positive information regarding the
belonging of pattern I7y, 1 class C, the complementary infor-
mation about the pattern £, not belonging to class e is used.
To handle such situations, negative rules are generated with the
consequent part of the form not in class C by backiracking
from the output layer through the rained connection weights
along negative hidden nodes comesponding o this class [9]. A
sample negative rule generated for the medical data hepato is:
If GOT is fow aND GPT is fow aND LDH is very medinm AND
GGT is low aND BUN is fow aND MCV is medivm anD MCH
is Mol medivm aND TBil is {ow aND CRTNN is very medium
then the pattern s rot in class ALD.

V1. CONCLUSIONS

We have provided an exhauvstive survey of fuzzy, neural, and
neuro—fuzzy mle generation algorithms. The neuro—fuzzy ap-
proach, symbiotically combining the merits of connectionist and
furzy approaches, constitutes a key component of soft com-
puting at this stage. To date, there has been no detailed and in-
tegrated categorization of the varous neuro—fuzzy models used
for rule generation. We have attempted to collect these under a
unified soft computing framework.

Moreover, we have included both rule extraction and rule re-
finement in the broader perspective of mle generation. Rules
learned and interpolated for fuzey reasoning and fuzzy control
have also been considered from this wider viewpoint.

Although the focus remained on neuro—fuzey models, we also
dealt with other fuzzy, neural, GA's, and rough set-based ap-
proaches to rule generation. Both feedforward and recurrent
neural networks were considered. We concentrated on catego-
rizing the different neuro—fuzzey approaches based on their level
of synthesis. In the course of our study we noticed that other than
the fuzzy perceptron [34], not much work has been reported in
literature on the convergence analysis of neuro—fuzzy learning.
This remains an open problem for future research.

Rule generation from fuzzy/nonfuzzy knowledge-based net-
works were found to result in more refined rules, as compared Lo
both the initial crude domain knowledze used to encode them as
well as those generated by networks involving no initial knowl-
edge encoding. Finally, real-life application to medical diag-
nosis was provided.
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