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ABSTRACT

A new method of feature selection is developed, based on structural similarity. The topo-
logical neighborhood information about pairs of objects [or patterns), to partition(s), is
taken into consideration while computing a measure of structural similarity, This is termed
proximity, and is defined in terms of membership values. Multi-objective evolutionary
optimization is employed to arrive at a consensus solution in terms of the contradictory
criteria pair involving fuzzy proximity and feature set cardinality. Results for real and syn-
N thetic datasets, of low, medium and high dimensionality, show that the method led to a
Structural similarity : 3 ? ¢ :
Wiili-cibjective spdiilzation correct selection of the reduced Eeatun_z subset. Comparative stur:!y_u. .Ialsq provided, and
Feature selection quantified in terms of accuracy of classification and clustering validity indices.
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1. Introduction

Feature selection is essential in analyzing large data, particularly being a preprocessing step lor reducing dimensionality,
removing irrelevant features, reducing storage requirements and enhancing output comprehensibility. It is a process that
selects a minimum subset of n' features from an original set of n features (n' < n), such that the feature space is optimally
reduced according to a certain predetermined evaluation criterion. This often involves selecting subsets of features useful
to build good predictors [16].

Search is a key issue in feature selection, involving search starting point, search direction, and search strategy. One also
needs to measure the goodness of the generated feature subset. Feature selection can be supervised as well as unsupervised,
depending on class information availability in data. The algorithms are typically categorized under filter and wrapper models
[23], based on whether or not the learning methodology is used to select the feature subset. The wrapper methods assess
feature subsets according to their usefulness to a given predictor. However selecting a good set of features is usually subop-
timal for building a predictor, particularly in the presence of redundant variables. Since finding the best feature subset is
found to be intractable or NP-hard [1], therefore heuristic and non-deterministic strategies are deemed to be practical.

Feature selection can be supervised or unsupervised. Supervised feature selection mostly depends on the performance of
a chosen classifier. In the absence of class information, the unsupervised techniques use some intrinsic property of the data
[26]. Here, no external information like class label of an instance is needed. Related literature on feature subset evaluation
include Category Utility score [9], Fisher's feature dependency measure [37,11], entropy based unsupervised feature ranking
6], and generally proceed by selecting the subset(s) of features while preserving the inherent characteristic of data. In Ref.
|38], the authors use an unsupervised method that assumes a linear model to choose a subset of features which can
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approximate the original data. Zhao et al. [39] have proposed an embedded model which evaluates a feature subset based on
their capability of preserving sample similarity.

The use of soft computing is an interesting proposition along this direction [2], in order to arrive at an acceptable solution
at a lower cost, This is of particular interest towards the efficient mining and analysis of large data. We can utilize the uncer-
tainty handling capacity of fuzzy sets [25] and the search potential of genetic algorithms for efficiently traversing large
search spaces. When there are two or more conflicting characteristics to be optimized, often the single objective optimiza-
tion function requires an appropriate formulation in terms of an additive combination of the different criteria involved. In
such cases a multi-objective optimization becomes more appropriate. Multi-objective GAs (MOGAs) [7] may be used as a tool,
while efficiently searching for optimal solutions.

An interesting way of looking at feature selection is to aim at preserving the structural similarity of data clusters, while
mapping a high-dimensional feature space to a lower-dimensional one. In other words, a pair of objects (or patterns) belong-
ing to the same partition in the original high-dimensional space is expected to be retained in the same partition in the re-
duced domain as well. By considering such similarity or proximity between all object pairs as a guideline [29], one can hope
to eliminate some of the less important features, The aim is to retain those features which allow the similarity between the
partitioning, in the original and reduced spaces, to be high. This can also help in improving the computational efficiency in
the lower dimensional space, given that the mapping is nearly lossless as measured in terms of the similarity measure used,

In this article, we propose such a method of feature selection, based on structural similarity. The topological neighbor-
hood information about pairs of objects (or patterns), to partition(s), is taken into consideration while computing a measure
of structural similarity. This is termed proximity, and is defined in terms of membership values of the corresponding pat-
terns. For a dataset with N input patterns we can define an N = N symmetric matrix, referred as proximity matrix P, whose
(1,7) th entry represents the similarity (or dissimilarity) measure for the ith and jth patterns for i, j=1, ..., N. Typically dis-
tance functions are used for the purpose. The proximity matrix is a pertinent construct that allows us to deal with structural
information inherent in the data. In the fuzzy perspective the concept of similarity boils down to the membership values,

We focus on the use of proximity relationship, as a similarity measure, from the viewpoint of fuzzy sets. This is used as
one of the objective functions, during multi-objective optimization, for evaluating the fitness of the feature subsets of vary-
ing cardinality. The use of fuzziness allows us to efficiently model uncertainties and ambiguities inherent in real life over-
lapping data. The proximity of a pair of patterns in the original feature space is compared with that in the reduced subspace
of selected features. If they are similar, as measured in terms of their belonging to the same cluster (both before and after
feature selection), then this implies that the eliminated feature{s) are not so relevant to the decision making process. The
second criterion is the cardinality of the selected feature subset. This is sought to be minimized, and serves as a penalty
to the ohjective function. A close observation reveals that these two criteria are of a conflicting nature, A smaller subset
of features is likely to result in a reduced proximity, and hence reduced classification accuracy (as compared to the original
feature space),

Multi-objective optimization is employed to arrive at a consensus solution in terms of this contradictory criteria pair,
involving fuzzy proximity and feature set cardinality. Here MOGA is used as a tool for the multi-objective optimization,
and any other technique could also have sufficed. The user does not need to specify the desired number of features, as it
is embedded in the optimization process. The algorithm terminates when an optimal subset of features is obtained, accord-
ing to the fitness criteria of the multi-objective genetic optimization. Experimental results indicate correct selection of the
reduced feature subset. Validation of the selected set of features is reported in terms of classification accuracy using WEKA
[17] implementation of several well-known classifiers, as well as internal and external clustering validity indices.

The rest of the paper is organized as follows. In Section 2 we present the proximity-based methodology for feature selec-
tion and outline the background on multi-objective optimization. The experimental results and comparative study are de-
scribed in Section 3, on various real and synthetic datasets. Finally, Section 4 concludes the article.

2. Proximity-based feature selection

Let us consider Fig. 1 to explain the concept of structural similarity between clusters in the context of feature selection.
Using this crude example, we have discussed that the idea of preserving cluster structure of original feature space in a fea-
ture subset, would actually lead to feature selection. Removing irrelevant feature(s) does not affect much the internal char-
acteristics of data. Three patterns X1, X2 and X3 are seen to be partitioned into the same cluster in the three-dimensional
feature space of part (a). The three features are aligned with three reference axes i.e. x-axis, y-axis and z-axis of this dataset.
If the least important feature i.e. the feature aligned with y-axis is eliminated, the cluster structure is expected to remain
unaltered; implying that the single cluster would still contain the same distribution of pattern points as depicted in part
(b} of the figure. Here the three- to two-dimensional mapping is said to be almaost lossless, such that the clustering structures
in the two subspaces are very similar. The clustering structure is said to be preserved in the transformation between the two
subspaces. On the other hand, if an important feature e.g the feature aligned with z-axis is eliminated then the mapping is
bound to disrupt the cluster structure since important information gets lost in the process. From part (¢) of the figure we
observe that the similarity between the partitioning, in the two subspaces, is now no longer high. In other words, the dis-
tance between the partitioning is higher; with the pattern points getting redistributed into two different clusters i.e. cluster
structure of original space is not preserved here.
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Fig. 1. Mapping of patterns from {a) three-dimensional space. to two two-dimensional spaces having cluster structure (b) preserved, and {¢) not preserved,

In this paper we use proximity as a way of determining the similarity between clustering structures, while mapping from
a high- to a low-dimensional feature space. In the process, we aim to retain the important features. Such preservation of
structural similarity between clusters is expected to lead to the selection of important features, Let there be K subsets of data
located in different feature subspaces, with the number of patterns in each subspace being equal to N. We form a ¢ = N par-
tition matrix 7 consisting of membership values p;. This membership value is updated by minimizing an objective function
Jim defined in Eq. (1) [4].

N ¢
i 1 i
T = 231 (X — my|| (1)
i=1i=1
We compute py e [0,1] as the membership of the jth pattern to the ith mean m; where ||| is the distance norm and
1= m' < oc is the fuzzifier [4). Note that the dimensionality n of the patterns in each subset could be different. However,
in each subset, the distance of a pattern is computed from the fuzzy cluster prototypes over the same set of features. We have

m = Sy (2)
f l':.lulj}
and
1
-HI}' = .—.TrLL {3_]
T (E)

Wi, with dy = ||x; — my||%, subject to 7,y = 1, ¥k, and 0 < ) | . = N, ¥i. Typically, we choose m’ > 1.
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The partition matrix is used to evaluate proximity p, which measures the extent to which a pair of patterns are regarded
as similar or dissimilar in different subspaces [29]. This incorporates a mechanism of partial supervision in the process of
navigating a structure in the data. The proximity matriz P contains the proximity results for all possible pairs of patterns.
The fuzzy partitions conveyed by Eq. (3), obtained by running fuzzy c-means (FCM) [4], are directly related to the proximity
relation. The proximity between pattern pair &y and k; is computed as

piki,ka) = _EE':MJ.H A H, ), @

where & denotes the minimum operation, p(k. k) = [0,1], and ky. k=1, ..., M. Evidently p(ky.kz) =1 for k; = k; such that
membership is evaluated with respect to FCM, and plk,, ka) = p{kz. kq).

The aim is to reduce the number of features, subject to maintaining the structural similarity between patterns. For this
purpose we employ multi-objective optimization to handle the conflicting requirements of dimensionality reduction along
with proximity preservation. We use genetic algorithm (MOGA) [ here NSGA-I1| [8]. as a tool to efficiently traverse the feature
subspaces, subject to fulfilling the above objectives.

2.1. Proximity between feature subspaces

Let the cardinality of the original and reduced feature spaces be n and n', respectively. Let the proximity matrices in these
two spaces be denoted by P and . The similarity between the two matrices is represented by a scalar value

N
Ps= 3 [plki.ka) np'lke, ke, (5)
ky=1.kp =k
where p'ik, k:) is computed by Eq. (4) in the reduced feature space and » denotes the minimum operation.

Mote that the membership value ji, at each stage is computed based on the FCM objective function, using Eqs. (2) and (3.
This becomes inherent in the proximity matrix in Eq. (4). Moreover, as the MOCA updates the encoded cluster means over
the generations it has to continuously refer to the FCM based membership computations.

We retain only those pattern pairs which belong to the same cluster in both the original and the reduced feature space, in
an attempt to reduce the ambiguity of the resultant clustering. For such cases we use

N
P, = 3 [(pikika) = 6) 1 (p'(ke. k2) = 8)], (6)
Ky kg +1
such that P, takes the minimum of the values of p(k,,k;) and p'(k,k;) only when both p{kq,k;) and p'(kq, k) are greater than
a threshold #. This implies that both y, and g, are greater than or equal to @ in the original and reduced feature spaces by
Eq. (4).

2.2, Evaluation of the subspaces

The resultant partitioning in the different feature subspaces is evaluated both internally and externally. While the exter-
nal measures compare the resultant partitioning with the correct classification of the (known) data, the internal measures
compute a relationship involving the inter- and intra-cluster separability. There exist many measures of this type in litera-
ture [20,15,18,14,35]. Some of them are discussed and presented here.

The Silhouette statistic [34] offers one way of internally validating the generated clusters. Though computationally more
intensive, it is another way of estimating the number of clusters in a distribution. The Silhouette index, S, computes for each
point a width depending on its membership in any cluster. This silhouette width is then an average over all observations.
This is expressed as

1 by —a ;
Spmar J (7)
Ny ioe, maxia;, by)
where Ny is the total number of points of cluster Cy, o, is the average distance between pattern x; and all other points in its
own cluster Cp, and by is the minimum of the average dissimilarities between x; and patterns in other clusters. Finally, the
global silhouette index, S, of the clustering is given by

1.¢
5==3 5. (8)
C *-.‘!
The partition with the highest value of § is considered to be optimal.
The F-measure is an external validation technique, using class labels as external information. It combines precision and
recall [32], expressed as

R Precision(i, j) = E"’ ; 9

Recallii. j) = ==,
(i) =) ;
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where i is the number of patterns belonging to class i that fall in cluster j, and n;, n; are the cardinalities of class { cluster j
respectively. The F(i,j) of cluster j and class i is computed as

2 = Recall(i.j) = Precision{i,j)

Fta) = Recall(i,j) + Precision(i.j) L
Mo one-to-one mapping exists between a class and a cluster. The F(i) for a particular class i is given as

F(i) = maxF{i, j). (11)
Finally, the F-measure is evaluated as

F;Ejj%F[l'}, (12)

with values lying in the range [0,1], and a larger value of F indicating improved quality of clustering,

To compare partitions in reduced and original feature spaces, some well known external measures like Jaccard coefficient
(f113], Rand index |31] and one information theoretic measure, Variation of Information (V1) [24] is used. Jaccard and Rand
index are ranged in [0,1] and V1 in [0,log N] where N is the total number of points. A value nearer to 1 indicates better match-
ing of the partitions two different spaces in case of | and Rand index and in case of VI, similar partitions generate a value
nearer to 0.

The performance of the selected feature subsets, obtained on the basis of maximization of proximity and minimization of
cardinality, is also externally validated in terms of its predictive accuracy. This is measured by several well-known classifiers
[12], like k-nearest neighbor (k-NN), Naive Bayes [10] and support vector machine {5VM).

2.3, Multi-objective optimization

Multi-objective optimization [7] trades off between a vector of objective functions F(¥) = F, (%), F2(%). ..., Fu(X), where M
is number of objectives and ¥ ®") is a vector of n decision variables. Unlike single-objective optimization problems, here
we (ry to optimize two or more conflicting characteristics represented by objective functions. Modeling this situation in a
single objective case would amount to a heuristic determination of a number of parameters involved in expressing such a
scalar-combination-type objective function. The multi-objective technique, on the other hand, is concerned with minimiza-
tion or maximization of a vector of objectives F{¥) that can be the subject of a number of constraints or bounds. In other
waords, we have

Minimize/Maximize F(X)
subjectto g(X) <0, i=12,....I
h(¥1=0 k=12 .., K:

| - [} = N
Xj <X =X, 1= 400

(13)

where [ and K are the inequality and equality constraints respectively. Each decision variable x; takes a value within lower
bound xf and upper bound xJ”, with the bounds constituting a decision variable space . The solution set of ¥ that satisfies all
(I + K} constraints and all 2n variable bounds, forms the feasible solution space £2. As these objective functions are competing
with each other, there is no unique solution to this technique. Instead, the concept of non-dominance |7] (also called Pareto
optimality [5]) must be used to characterize the objectives. The objective function space A is defined as A = f = ®", where
f = F{¥),_,,. A mapping from feasible solutions space into objective function space, in two dimensions, is depicted in Fig. 2

The concept of optimality, behind the multi-objective optimization, deals with a set of solutions. The conditions for a
solution to be dominated with respect to the other solutions are outlined here. A solution ¥'"is said to dominate the other
solution ¥*' if the following two conditions are true [7]:

I,.f//-ff—h-m\ it A
i . F, i ey
i l"-. = T | /__ |IlII
\‘m__ i T /
\____/
X, F,

Fig. 2. Mapping from feasible solutions space into objective function space.
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1. The solution 1 is no worse than ¥'¢' in all M objectives, ie.

Fi(®V) it Fi(®*) %i=1.2,...M.

2. The solution 8" is strictly better than ¥ in at least one of the M objectives, i.e.

Fi(X""y a F;(X¥®") for at least one i € {1,2,... M}

If any of the above conditions is not satisfied, then the solution ¥ does not dominate the solution ¥'*', 5o, the solution ¥
and #*' form Pareto optimal front of these objective functions. A typical Pareto-optimal front over two objective functions is
shown in Fig. 3. Here we simultaneously optimize the conflicting requirements of the multiple objective functions. Genetic
algorithms may be used as a tool for multi-objective optimization. In this article we have used the Non-dominated Sorting
Genetic Algorithm (NSGA-I1), that has been shown to convergence to the global Pareto front while simultaneously maintain-
ing the diversity of the population [8],

2.4. Optimization tool

The multi-objective optimization is implemented using MOGA, specifically NSGA-II. We encode the problem as a
real-coded string of length L, with the first n bits corresponding to the n features in the original space. Here, in the bit
representation, a “1" implies that the corresponding attribute is present while “0" indicates that it is not. The desired number
of features need not he pre-specified, since it is automatically determined during the optimization. Let the size of a chromo-
some be

L=n4+cxn=nx(c+1) (14

The ¢ cluster centers {or prototypes) are encoded in real form in the subsequent ¢ = n bits. Only those features of the centers
in the second part of the string, corresponding to a “1” in the first part, are considered during clustering. Fig. 4 depicts such
an encoding in a chromosome, representing a sample set of cluster prototypes in a feature subspace. Initially all the bits are
set randomly.

The objective is to optimize a conflicting set of requirements; ie., select a minimal number of features that enable us to
arrive at an acceptable structure-preserving mapping. We employ MOGA with P, of Eq. (6] as the fitness function

fi = Py, (15)
The second fitness function corresponds to the cardinality of the feature set under consideration, and is defined as
h=n (16)

While f; is minimized to give credit to a candidate string containing less attributes, the function f; maximizes the extent to
which all pairs of patterns belong to the same cluster in the two feature spaces, viz., original and reduced subspace. These
two fitness functions are optimized in the framework of MOGA. Clustering is done by FCM to update the prototypes m,, in the
different subspaces.

A
—
,' _ Pareto optimal
F. ,71'#"'# Front
ﬁ-”f J
-

F,

Fig. 3. Pareto optimal front or non-dominated solutions of F, and Fs.
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Fig. 4. An encoded chromosome representing a feature subspace with the cluster prototypes.

2.5, The algorithm

The objective is to preserve the proximity relationship between pattern pairs, which is a measure of their structural sim-
ilarity, while reducing the number of features. The main steps of the algorithm, outlined below, are repeated over several
generations.

1. Initialize the population randomly, with real numbers.

2. Select a pair of chromosomes randomly for single-point crossover.

3. Perform two-point mutation simultaneously on the two parts of the string. In the first part, the value of the randomly
chosen bit (signifying presence or absence of the corresponding attribute) is flipped, In case of the second part, the value
my,, corresponds to the randomly chosen attribute j of the ith cluster center; this is mutated as

My, = 0 %X+ My, (17)

where the perturbation x ~ Norm(0,1) is drawn from a Gaussian distribution, the variance #* determines the magnitude of

this perturbation at position my_,, and my__ is its new value (at the corresponding attribute j of the ith cluster center) after

mutation,

4. Calculate the fitness values of different feature sets based on their proximity and cardinality, using Eqgs. (15) and (16).

5. Rank the population using dominance criteria. Calculate the crowding distance of the chromosome, to maintain diversity
in the population [&].

6. Combine parent and offspring population. Replace the parent population by the best members of the combined
population.

Mote that the cluster centers are initially set randomly. During crossover and mutation the centers get modified. Their
effect is reflected through the proximity function (Eq. (15)) into the fitness evaluation. The features present in a chromo-
some, as indicated by the *1"s in the first part, determine the reduced feature subspace. They affect the computation of prox-
imity in terms of cluster prototypes, using Eqs. (2)-(4). Finally the selected feature sets are validated in terms of cluster
validity indices (Eqs. (8) and [12)) and the classification accuracy.

3. Experimental results

The performance of the algorithm was tested on various synthetic and real datasets. These include (i) a synthetic dataset
and the benchmark Iris flower (low-dimensional), (ii) lonosphere and Spambase [ medium-dimensional), and (iii) Isoler and
Colon cancer microarray gene expression data (high-dimensional). All results were averaged over several (3-5) runs involv-
ing different random seeds. No significant change was observed in the performance, using different seeds. The choice of ¢ in
Eq. (6) was taken to be 0.5, so that the membership of pattern pair ky, k; became simultaneously high in the same cluster. The
crossover and mutation probabilities, in the MOGA, were selected as 0.85 and 0.05 respectively after several experiments,
The clustering was evaluated in terms of clustering validity indices. The selected feature subsets were externally validated,
using the publicly available WEKA implementation [17] of different classifiers like k-nearest neighbors (k-NN), Naive Bayes’
(NB) and support vector machine (SVM), involving ten-fold cross-validation. The clustering structures of reduced and origi-
nal features space are compared using J, Rand index and Vi.

3.1. Data description

The synthetic data contains three clusters, each with 100 randomly generated patterns. The two-dimensional scatter plot
of Fig. 5 depicts the patterns lying within circles of unit radius, each having different centers. A lot of overlapping is artifi-
cially introduced. We introduced a third attribute having completely random values, to evaluate the effectiveness of the
algorithm in identifying the significance of the first two features. The [ris data [13] consists of 150 pattern points with four
input features corresponding to measurements of sepal length, sepal width, petal length, petal width on fifty flowers from each
of three species setosa, versicolor, virginica (representing the three output classes).

The [onosphere data represents autocorrelation functions of radar measurements. There are 351 instances, each having 34
{continuous) features and belonging to two classes, viz. “good™ or “bad” - indicating the passage or obstruction of free elec-
trons in the ionosphere. We considered a total of 32 features (attributes 3-34) as input to the algorithm. The Spambase data
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Fig. 5. Synthetic data.

consists of 4601 instances of emails, to be classified into spam or non-spam categories. There are 57 continuous attributes
denoting word frequencies.

The Isolet data consists of several spectral coefficients of utterance of English alphabets by 150 subjects. There are 617 real
features (having values in the range [0,1]) with 7797 instances and 26 classes. The above-mentioned three datasets were
taken from the UCl Machine Learning Repository.'

The Colon Cancer data® is a collection of 62 gene expression measurements from colon biopsy samples. There are 22 normal
and 40 colon cancer samples, having 2000 genes (features). Typically, microarray gene expression data involves a larger number
of features {genes) as compared to the samples (time points). In other words, the features correspond to gene expression values
that indicate the abundance of mRNA in a sample (or tissue) for a number of patients; with the objective being to separate can-
cer patients from healthy ones based on their gene expression profiles. Many of these features are redundant and adversely af-
fect the output decision. Hence preprocessing is often needed [16] to initially eliminate some of the irrelevant features. Some
initial preprocessing [2] was done, to reduce the large number of redundant genes to 943, before applying the proposed
alzorithm.

3.2, Low- and mediuvm-dimensional data

The performance of the algorithm for strings generated in the non-dominated Pareto front, for the four datasets (having
low and medium number of features), are presented in Tables 1 and 2. The second column (in both tables) indicates the
selected attributes, marked by a "1 in the first part of the chromosome, with the string corresponding to feature positions
1,2, ....n. The two fitness functions are evaluated by Eqs. (15) and {16). However in cases where the original feature space
did not figure in the Pareto optimal front, this is still included as the last row for each dataset in the table for comparison
(without any [, ). The external validation performance of the selected feature subsets is provided, along with that of the ori-
zinal set, in terms of classification accuracy involving ten-fold cross-validation using different classifiers. The algorithm was
run for 100 generations with a population size of 50 chromosomes. The Silhouette index (Eq. (8)) and F- measure (Eq. (12))
values are listed under the column heading Silh. Stat. {5) and F-meas. respectively.

We know that the synthetic data is represented with the first two attributes, and the third feature was inserted randomly.
As evident from the results, the selection of the first two features {only) generally results in the best overall accuracy, as well
as 5 and F, due to the elimination of this unimportant third feature, The feature set {1,2] also produces hetter clustering in
reduced space according to [, Rand index and VI

In case of the [ris data, it is observed that the choice of feature 3 occurs in all the three cases, with feature 4 being selected
the second-most [requently. Together they result in the second highest proximity and second lowest cardinality. It is well-
known that these are the two features most important for discriminating between the classes in this benchmark data. Inter-
estingly, the performance of the k-NN in the reduced space (involving attributes 3 and 4) is found to be the overall best -
inspite of the elimination of two features. The same holds for the validity indices § and F. The SVM provides best accuracy
with three features while NB performs best with only feature 3. The J, Rand index and Vi are shows that the cluster structure
is best preserved also in feature 3.

The results from Table 2 exhibit better average classification performance by k-NMN and SVM, for Spambase, with a smaller
set of features viz, 13 and 15, The values of both S and F are also the best with 15 features, Although NB provides a better

U httpe ) pwewwics.uci.edu—mleamn M LRepository. tml,
2 htep:/fmicroarray. princeton.eduoncology,
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Table 1
Performance of selected feature subsets, of low cardinality, from Pareto-optimal front.

Dataset Feature subspace  f (pros. (=107 f (card)  Validation accuracy (%) by Silh. Stat. (5)  F-meas. | Rand W
k-MN NEBE S5VM

=
1

4
7349
M0 RO TRT 0.055 0.395 - - -
716

Synthetic
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c=3
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{3.4) 0,36 2
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[Original] - 4
M4 960 96T 0156 0.677 - - -
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The significance of bold values represent the best value in a set of measured values.

score of 79.3% in the original space, yet its performance with 15 features is comparable at 79.0%, The J, Rand index and Vi
provide best result with 11 features i.e the original cluster structure is found on that feature space.

Results for the lonosphere data demonstrate that out of the 32 initial attributes our algorithm selected a cardinality of 5
and 7 for the best performance in terms of mean recognition accuracy (%) by k-NN. In Fig. 6 we depict a visually understand-
able, three-dimensional projection, in terms of attributes 4, 5, 6 of the 32-dimensional data. Incidentally, this corresponds to
the best performance by classifier NB. It is observed here that our algorithm selected a reasonably good set of features, which
captured the structural similarity between the two classes in the original feature space (at the best values of § and F). The
best feature subset in terms of structure preservation is a set of 16 features according to the J, Rand index and VI

Mext the scope of the algorithm was extended to incorporate a variation in the number of clusters. We determined the
optimum number of clusters ¢, (varying ¢ from 2 to 12), in both the original and reduced feature spaces, by maximizing
the Silhouette index of Eq. (8). FCM is used to determine the fuzzy partitioning corresponding to the ¢, value for each gen-
erated feature subspace. Multiobjective optimization in terms of maximization of proximity (Eq. (15)) and minimization of
cardinality of the feature space (Eq. (16)) ensures the selection of those feature subsets that retain structural similarity
among the clusters. The encoded chromosome of Fig. 4 now involves only the first n bits. However, the computational com-
plexity gets enhanced and adversely affects the processing of large data.

Table 3 depicts the results for the [ris and lonosphere data. In all the cases the optimum number of clusters converged to
¢, = 2. Incidentally the corresponding value of 5 was found to be better here, as compared to Tables 1 and 2. The algorithm, in
this modified framework, generated the same subsets of reduced features in Table 3 as in Table 1. In case of Synthetic data the
extended algorithm failed to eliminate the random third feature. The Spambase data was found to be too large to be pro-
cessed, upon varying the number of clusters. With the lonosphere data we obtained a different set of reduced feature subsets,
that were generally comparable in terms of predictive accuracy and F-measure, The result of the [, Rand index and VI shown
that cluster structure is also preserved when we allow variation clusters,

3.3. High-dimensional data

Table 4 presents the average performance of the algorithm (over ten runs), corresponding to strings generated in the non-
dominated Pareto front, for the high-dimensional lselet and the microarray Colon cancer data. The algorithm was run for 100
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Table 2
Performance of selected feature subsets, of medium cardinality, from Pareto-optimal front.
Dataset Feature subspace Sz (card.) Validation accuracy (%) by Silh. Stat. {5) Femeas. 1 Ramnd Vi
k-KM MNB 5VM
IC' -
Spambase {27, 2B, 29, 47, 1 .o
= 4601 48, 49, 53 54, 11 3 69,9 61.2 774 0,099 0.664 1.00 1.00 0,00
n=57 55, 56. 57] 5 0.0
c=2 7 69,4
fi= {3. 4,9, 10, i 779
105.8 = 10° 11, 22, 23, 24, 15 3 781 79.0 85.5 0.131 0.742 0.55 L58 .85
35, 36, 37, 38, 5 78.2
52,53, 54] 7 718
{6.7, 8 12, 1 80.4
13, 14, 15. 26, 13 3 80.3 (5.5 81.2 0,039 0672 0.82 082 0.38
27, 2B, 36, 44, 5 80.3
45] 7 79.7
1 725
{Original) 57 3 720 79.3 B3.7 0098 0.664 - - -
5 7.6
7 714
lonosphere {6.7.8 9 1 0.8
N=351 10, 11, 16, 17, [ 3 0.6
n=32(2-34) 18, 22, 23, 24, 5 0,2 74.9 90.3 0.077 0.724 0.94 0.97 016
c=2 25,29, 30, 31} 7 0.4
h= 1 0.9
061 « 10° {4, 5,6, 33, 34] 5 3 929
5 92.6 35.6 5.6 0108 0.731 0.54 .69 .96
7 92.3
1 86,2
[4. 5, 6} 3 3 a1
5 91.9 89.7 503 0.156 0.836 0.45 0.57 1.08
7 92.3
1 91.7
{14, 21, 22, 23, 7 3 92.0
24, 25, 26] 5 92.2 T0.4 B5.8 0070 0.73% 0.75 .85 0.51
7 92.0
1 9141
{Original) 32 3 91.3 1.8 94.0 0078 0.700 - - -
5 91.7
7 92,0

The significance of bold values represent the best value in a set of measured values,

Feature 6

Fig. 6. Projection of lorosphere data in three-dimensional space,

Feature 5

generations with a population size of 40 chromosomes. There were 15,000 generations, with a population size of 200. The

10-fold cross-validation is used to compute the classification accuracy in both the cases.
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Table 3
Performance of selected feature subsets, from Pareto-optimal front, allowing variation of clusters.
Dataset Feature subspace i (prox. {=10%))  f(card) Validation accuracy (%) by Silh. Stat. (57 F- meas. | Ramd VI
NE VM
Iris
N=150 {3} 0,549 1 067 953 0311 0933 082 n.a3 037
=4 {3, 4} 0.556 2 060 Q6.7 0311 0950 0.7a 0492 042
c=3 {1,234} 0.564 4 060 a7 0311 0677 - - -
[Original)
[3.5.8,
13,1517, 2,739 9 B2.6 895 0,150 0,740 DA 0oz 0.29
lonosphere  19,21,31)
(358,
N =351 15,17, 2733 T B6.9 BO.7 0150 0.728 085 0492 0.2a
=32 21,31)
c=2 [3.5.8,
13,1517, 2737 8 857 B892 0150 0.74G 085 nal n.za
21.31)
Table 4
Performance of some selected feature subsets, of large cardinality. from Pareto-optimal front.
Dataset fa (card.) Validation accuracy {%) by Silh. Btat. (5] F- meas, I Rand Vi
k-NM MNE SVM
k=
Isolet 1 716
N=T7797 275 3 791
n=G17 5 302 549 949 24« 1077 0344 0.88 0.54 0.28
c=26 T 307
fi=291 % 107 1 775
274 3 791
5 203 B4.8 4.8 24 1073 0336 0.9 094 0.26
T 807
1 92.7
al7 3 93.7 B5.1 955 1.5 = 103 0365 - - -
(Original) 5 94.1
7 94.1
Colon 1 B39
N=62 2l 3 80.7 54.8 64.5 1.5 = 1072 0.704 1.0 1.0 0.0
= 2000 5 .0
Mareprae = 943 7 71.0
r=2 1 B39
fi=125 = 107 264 3 80.6 54.8 64.5 15 = 1072 0704 1.0 1.0 0.0
5 71.0
7 o
1 7
943 3 79.7 532 64.5 12 = 1072 0.704 - - -
(Preproc.) 5 75.8
12] 7 748
1 771
20040 3 77 532 B2.3 24x10? OLGET - - -
(Onginal) 5 752
T 739

The significance of bold values represent the best value in a set of measured values.

With the fsolet data we observe that the performance of the classifiers is, in general, better in the original feature space.
However, both NB and SV¥M provide comparable classification accuracy with less than half the number of features. The value
of 5 is found to be better in the reduced space. The values of the J, Rand index and VI index indicate that the clustering ob-
tained in reduced space preserves the structure present in original space.

In case of the Colon microarray data we observe that the performance of NB and k-NN (for k=1, 31 is better with reduced
features, The same is true for F. Keeping in mind that the reduction in feature set cardinality is almost ten times, as compared
to the original set of 2000 features, the overall performance can be said to be reasonably good in the reduced space. For this
data, clustering is compared with preprosed feature subset. The [, Rand index and VI index show the proposed FS method
preserved the cluster structure in reduced subset. Here clustering is compared with the same in preprocessed feature space.
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Comparative study on Iris data.
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Algorithm Features providing best performance

PR [3, 4}

DK {3, 4]

PC 4, 3]

n 3. 4}

IS (3.4)

Table &
Comparative study with E-KN on some data.
Dataset Algorithm Accuracy (%)
Mean 50D

PR 04,49 1.34

Iris BR 92.29 2.57

n=4 5F% 9229 2.57

n=2r=3 5FFS 92.29 257
SWC 93.48 2.03
Relief — F 9568 &5
FR 7975 059

Spambase BB 7093 070

n=57 5F% TO73 0.77

n=27c=12 SFFS T0.73 0.77
W TG40 1.05
Relief — F 3900 028
PR TH.67 1.81

lonosphers B 75.96 .35

n=32 SFS 549,94 032

n=16,c=2 SFFS 7473 0.37
SWIC G203 032
Relief — F 59,50 1.30

Isolet PR S4.60 038

n=617 SFS 74.45 1.20

n=30c=26 SWC 78.25 1.22
Relief — F S0.40 030

3.4. Comparative study

The performance of the proposed algorithm (model PR) for Iris data was compared with that of some of the existing tech-
niques, considered as benchmark in this study. These are

b =

. the statistical method of Devijver and Kittler [10] (model DK),

. the fuzzy entropy based method of Pal and Chakraborty [28] (model PC),

. the neural network based method of Ruck and Rogers |36] (model R*), and
. the model of Ishibuchi [19] (model IM).

Table 5 demonstrates a comparative study of the feature subsets selected by different algorithms for the Iris data. As Iris
data is typically studied by researchers (in the pattern recognition field), an extensive comparison has been provided for this
data. The overall study shows that the results tally with each other. The features 3 and 4 are always found to be more impor-
tant than the features 1 and 2 for classifying Iris data.

MNext the average performance of algorithm PR was compared (on some of the datasets), using a test set (90% of the data)
with certain existing unsupervised technigues, averaged over 10 runs, using a training set size of 10%. The algorithms con-

sidered are the

1. branch and bound {model BB) [10]: a search method in which all possible subsets are implicitly inspected without

exhaustive search; if the feature selection criterion is monotonic then BB returns the optimal subset,

2. sequential forward search (model 5F5) [10]: a suboptimal search procedure where one feature is added at a time to the
current feature stage; at each stage the feature to be included in the feature set is selected from among the remaining

available features so that the new enlarged feature set yields a maximum value of the criterion function used,
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3. sequential floating forward search (model 5FFS) [30]: a near-optimal sequential forward search with provision for back-
tracking, and

4. stepwise clustering (model SWC) [21]: a non-search based scheme which obtains a reduced subset by discarding corre-
lated features,

We also compared the performance of the supervised Relief-F [22] algorithm, Table 6 presents a comparison of the aver-
age classification performance, by the k-NN over k = 1,3,5, 7, for sample feature subsets selected by these algorithms for data-
sets Iris, Spambase, lonosphere and Isolet. In each case the initial n features were reduced to n' {as reported in [27], for
uniformity of comparison). In general, the proposed algorithm PR was better than Relief-F for Isolet and comparable for Iris.
As compared to the other algorithms, PR was always found to be better.

For Iris n' = 2 corresponds to the minimal subset selected by our algorithm in Table 1. However with Spambase and flon-
asphere we observed that an even lower cardinality of 13 (row 4) and 5 {row 6) by PR in Table 2 provided a higher classifi-
cation accuracy as compared to that generated by the larger subsets, n' =27 and 16 respectively (n' as reported in [27]) in
Table 6.

Since BB and SFFS algorithms required infeasibly high computation time for high-dimensional data, we did not include
them for the comparison involving Isolet. The performance was best with PR for n' = 309 (as reported in [27]). On the other
hand, Table 4 indicates the lowest cardinality of 274 with a poorer average classification accuracy {as compared to that using
1’ = 309). The computational complexity of the proposed algorithm is O{glnN*) where | is population size and g is the number
of the generations. Mow complexity of ReliefF algorithm is O{t,Nn) where t, is the number training sample used for finding
nearest neighbor [33]. It has higher time requirement for dataset with large number of samples. The computational complex-
ity of BB, 5F5, and SFFS algorithms are infeasibly high for large data set [27].

Interestingly, we also explored the use of c-means [10] clustering during proximity computation. This resulted in the gen-
eration of binary values in the proximity matrix, instead of values lying in the range [0,1]. The presence of a number of
“ones" in the matrix perhaps lead to a greater homogeneity between the chromosomes of the population, as evaluated by
the first objective function of Eq. (15). Thereby, during multi-objective optimization this objective function plays a less sig-
nificant role as compared to the cardinality of the feature space (Eq. {16)). Hence c-means almost always results in a min-
imum cardinality of feature space, typically one, with no emphasis on the cluster structure. This highlights the utility of fuzzy
clustering in the algorithm.

4. Conclusion

A new feature selection algorithm, based on structural similarity, has been developed. Fuzzy proximity was used to eval-
uate the similarity between the original and reduced feature subspaces. The cardinality of the feature subset was simulta-
neously minimized. The optimal number of features was automatically determined during the multi-objective optimization.
This algorithm preserves the performance of the benchmark classifiers as well as cluster structure in reduced space. Com-
parative study demonstrated the effectiveness of the developed method.

The use of soft computing promises to provide acceptable solutions faster. The topological neighborhood information,
pertaining to the inherent cluster structure in the data, is utilized while achieving reduction in feature subspace cardinality.
This is expected to have wide ramifications in data mining, data analysis and retrieval, with particular emphasis on
visualization.

Although we have restricted our method to numeric attributes, it could be extended to include mixed data by incorpo-
rating medoids and considering a symbolic framework for computing the cluster prototypes. This aspect is currently under
study.

The basic objective of this paper was to investigate how preservation of structural similarity, as measured by proximity,
could help in the selection of appropriate features. Multi-ohjective genetic algorithm was a tool used during optimization.
Any other tool could also have served the purpose, However, in the MOGA framework the size of the chromosome in Eq.
(14 is limited by the cardinality n while matrix P is dependent on the number of patterns N. This constrains the algorithm
for large data, with a complexity of O{glnN?). That is one of the reasons why we use preprocessing for the high-dimensional
and redundant gene expression data. However, a larger number of patterns can be effectively handled by a divide-and-con-
quer modularization strategy involving some collaboration ameongst independent smaller subsets of patterns. We are cur-
rently exploring this scheme for effectively handling larger data.
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