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Abstract. Approximation of an image by the attractor evolved through iterations of a set of con-
tractive maps is usually known as fractal image compression. The set of maps is called iterated
function system (IFS). Several algorithms, with differentmotivations, have been suggested towards
the solution of this problem. But, so far, the theory of IFS with probabilities, in the context of image
compression, has not been explored much. In the present article we have proposed a new technique
of fractal image compression using the theory of IFS and probabilities. In our proposed algorithm,
we have used a multiscaling division of the given image up to apredetermined level or up to that
level at which no further division is required. At each level, the maps and the corresponding proba-
bilities are computed using the gray value information contained in that image level and in the image
level higher to that level. A fine tuning of the algorithm is still to be done. But, the most interesting
part of the proposed technique is its extreme fastness in image encoding. It can be looked upon as
one of the solutions to the problem of huge computational cost for obtaining fractal code of images.
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1. Introduction

A set of contractive maps on a space is called iterated function system (IFS) on the same space. The
most interesting property of IFS is that it produces a fixed point when the maps are used recursively
starting with any arbitrary set. The fixed point is called theattractor of the IFS. The theory of image
coding using IFS was first proposed by Barnsley [2]. He modeled real life images by the attractor
evolved through iterations of an IFS. With the help of iterated function system, along with the Collage
theorem, Barnsley laid the foundation stone of fractal image compression. However, in most of his
published research papers, implementation part of the theory of IFS to real life images has not been
very clear as the demonstrations are mostly restricted to binary images. Seemingly, a photocopying
machine has been designed by means of which coefficients of maps are computed [3]. The concept of
photocopying machine has also been extended to the case of gray scale images [3]. In this case, the
machine is computing not only the coefficients of maps but also the probability values associated with
each map. The reason behind using the IFS with probabilitiesis that a Markov operator associated with
the probability measure whose support is the support of the given image can be defined. It has also been
shown that the Markov operator is a contractive map on the space of all probability measures. Barnsley
also presented the Collage theorem for measure [3] for whichthe Markov operator possesses an invariant
measure in probability space. From this Collage theorem it has been found that an IFS with probabilities
can produce an invariant measure such that the support of theinvariant measure is the unique fixed point
of the IFS concerned.

The first ever published algorithm of fractal image compression was suggested by Jacquin [12].
This scheme is based on partitioned or local IFS [13]. A variety of algorithms have been explored
[8, 6, 16, 7, 14] there after. Most of these schemes are closely related to the technique described by
Jacquin. Unfortunately, the theory of IFS with probabilities, in the context of image compression, has
not been explored much. Though the theoretical results are existing in the literature for a long time
[3, 11, 5], there are very few attempts to implement the theory on computer for images. It may be due to
the fact that some of the mathematical terms need to be properly explained and interpreted in the context
of computer programme on a digital images apart from considering all other implementation details.

An algorithm, which is not in the line of PIFS based fractal image compression has been suggested
here. We have used a multiscaling division of the given image. At each level the coefficients of maps
and the corresponding probabilities are computed using thegray value information. This is an attempt to
implement the theory of IFS with probabilities for digital images. There are very few references [9, 10]
in the literature on fractal image compression, besides thework done by Barnsley [3], on this particular
aspect. The present algorithm is appeared to be extremely fast for encoding a given image. A comparison
of the proposed method with a GA based fractal method [14] is provided. It is found that the present
scheme is at least 300 times faster than that of the GA based based methodology. Note that, previously
it has been found that GA based fractal scheme is faster than the conventional fractal scheme which uses
exhaustive search.

The algorithm described here utilizes the probabilistic relation exists in between pixel values of a
given image. Contribution of a particular pixel, in terms ofintensity (gray level value), towards the total
intensity of the image is computed under a multiscaling partition. If ‘ p’ is the proportion of the total
intensity carried by a pixel then one can express the intensity of that pixel (say ‘g’) as g = p × G,
where ‘G’ is the sum of all pixel values. In this algorithm, ‘p’ is computed as a product of a set of
probability values which were obtained from the image information (pixel values) after braking the image
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in multiscaling order. In the reconstruction process each pixel value is again regenerated using ‘G’ and
the stored set of probability values. Note that ‘G’ is also stored within the code. The scheme performs
very fast as no search is performed for finding appropriate domain blocks and maps for a set of range
blocks. This sort of searching is very common in case of PIFS based image compression. In the present
case, the range blocks are the image partitions at a particular subdivision and the domain blocks for
these range blocks are the image partitions at immediate higher level subdivision. The same kind of
partitioning is also utilized by Dudbridge [4]. As far as we understand, the present algorithm is only
similar with the algorithm suggested by Dudbridge [4] in case of selection of domain blocks and range
blocks under multiscaling partitioning. The procedure forcomputation of codes is not exactly the same
as that of the method suggested by Dudbridge. Note that no computation such as ‘least square’ is adopted
in our method.

There is a lot of scope for improving the present algorithm towards the efficiency in the sense of
compression ratio as well as quality of the decoded image. Itis obvious that a fine tuning of the scheme
is needed. Work, in this regard, is in progress. Our main objective, in this article, is to investigate the art
of finding a probabilistic approach for approximating the given image. The high speed of execution of
the method appeared to be the main advantage.

The mathematical foundation of IFS with probabilities is outlined in Section 2. The methodology of
the proposed probabilistic algorithm is described in Section 3. Section 4 presents implementation and
the results. Discussion and conclusions are provided in Section 5.

2. Mathematical Foundation

The detailed mathematical description is given in [2, 3]. Some relevant definitions and theorems are
stated here. Proofs of the theorems have not been stated as all these are already given in [2]. Starting
with the definition of complete metric space, IFS has been defined in the space of probability measures.
Invariant measure of IFS in terms of Collage theorem has alsobeen described in the same space.

The most important result which is being used here, is the theorem of invariant measure of IFS
with probabilities defined on a probability space. Other definitions and theorems are stated for better
understanding of the theorem of interest. To define the IFS with probabilities in the probability space,
we need to define, the probability space and the IFS in that space. Again we need to define the probability
measure and the contractive mapping theorem on this space. Let us start with complete metric space.

Definition 1: Let (X, d) be a complete metric space. ThenH(X) denotes the space of all nonempty
compact subsets ofX. ♠

Definition 2: Let The mapw : X → X is called a contractive map with contractivity factors with
0 ≤ s < 1 if

d(w(x), w(y)) ≤ s d(x, y) ∀x, y ∈ X.♠

Lemma 1: Let w be a contractive map on the complete metric space(X, d). Thenw mapsH(X) into
itself where

w(B) = {w(x) : x ∈ B}, ∀B ∈ H(X).

w is a contractive map on(H(X), h) with contractivity factors.Here‘h′iscalledHausdorffmetric. ♠
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Lemma 2: Let (X, d) be a complete metric space. Let{wi : i = 1, 2, · · · , n} be contractive map on
(H(X), h). Let the contractivity factor forwi be denoted bysi for eachi. DefineW : H(X) → H(X) by

W (B) =

n⋃
i=1

wi(B), ∀B ∈ H(X).

ThenW is a contractive map with contractivity factors = max{si : i = 1, 2, · · · , n}. ♠

Definition 3: An iterated function system (IFS) consists of a complete metric space(X, d) together
with a finite set of contractive mapswi : X → X, with respective contractivity factorssi, for i =
1, 2, · · · , n. The notation for this IFS is{X;w1, w2, · · · , wn} and its contractivity factor iss where
s = max{s1, s2, · · · , sn}. ♠

The preceding results are useful in proving the following theorem of the existence of a fixed point of
IFS.

Theorem 1 (IFS Theorem): Let {X;w1, w2, · · · , wn} be an IFS with contractivity factors. Then the
transformationW : H(X) → H(X) defined by

W (B) =

n⋃
i=1

wi(B), ∀B ∈ H(X),

is a contractive map on the complete metric space(H(X), h) with contractivity factors; i.e.

h(W (B),W (C)) ≤ s.h(B,C), ∀B,C ∈ H(X).

AlsoW N (B) is defined as

W N(B) = W (W N−1(B)); ∀B ∈ H(X) and ∀N ≥ 2,

where
W 1(B) = W (B); ∀B ∈ H(X).

It has a unique fixed point, calledattractor , A ∈ H(X), which obeys

A = W (A) =

n⋃
i=1

wi(A),

and is given by
A = lim

N→∞

W N (B) ∀B ∈ H(X). ♠

Besides the contractive maps, there may exist a condensation map. The theorem of IFS is also valid
when the condensation map is included in the IFS along with the contractive maps.

Definition 4: Let (X, d) be a complete metric space and letC ∈ H(X). Define a transformation
w0 : H(X) → H(X) byw0(B) = C; ∀B ∈ H(X). Thenw0 is called a condensation transformation
andC is called the associated condensation set.♠
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The condensation map is also a contractive map with unique fixed point. Next we are going to state
the Collage theorem of IFS.

Theorem 2 (Collage theorem):Let (X, d) be a complete metric space. LetT ∈ H(X) and letε ≥ 0 be
given. Choose an IFS{X;w1, w2, · · · , wn} with contractivity factors such that

h(T,

n⋃
i=1

wi(T )) ≤ ε,

whereh is the Hausdorff metric. Then

h(T, A) ≤
ε

1 − s
,

whereA is the attractor of IFS. ♠

Now we shall define IFS defined on the space of all probability measures. In particular, the Markov
operator, which is a contractive map on the space of all probability measures, is defined below. For this
purpose, one needs to first define a metric on the space of all probability measures.

Definition 5: An iterated function system with probabilities consists ofan IFS{X;w1, w2, · · · , wN}
together with an ordered set of numbers{p1, p2, · · · , pN}, such that

p1 + p2 + · · · + pN = 1 and pi > 0 ∀i.

The probabilitypi is associated with the transformationwi. ♠.

Definition 6: Let = {(x, y) ∈ IR2 : a ≤ x ≤ b, c ≤ y ≤ d},
wherea < b and c < d are real constants. Also letP denote the set of all probability measures on.
The Hutchinson metricdH onP is defined by

dH(µ, ν) = sup{

∫
f dµ −

∫
f dν : f : → IR2 is a continuous function

and obeys|f(x) − f(y)| ≤ d(x, y) ∀x, y ∈ }, ∀µ, ν ∈ P. ♠

Theorem 3: Let P denote the set of all probability measures onand letdH denote the Hutchinson
metric. Then(P, dH) is a complete metric space.♠

Definition 7: Let{ ;w1, w2, · · · , w2; p1, p2, · · · , pn} be an IFS with probabilities. The Markov opera-
tor associated with the IFS is the functionM : P → P defined by

M(ν) = p1ν ◦ w−1
1

+ p2ν ◦ w−1
2

+ · · · + pnν ◦ w−1
n ; ∀ν ∈ P.

i.e. M(ν) =

n∑
i=1

piν ◦ w−1

i
. ♠

The preceding definitions and results are needed to prove thefollowing theorem.

Theorem 4 (Hutchinson’s Theorem): Let M : P → P be the Markov operator associated with an
IFS with probabilities, where each transformation has contractivity factor 0 ≤ s < 1. ThenM is a
contractive map, with contractivity factors, with respect to the Hutchinson metricP; i.e.,

dH(M(ν),M(µ)) ≤ s dH(ν, µ); ∀ν, µ ∈ P.
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In particular, there is a unique measureµ ∈ P such thatMµ = µ. Also, ifMN (ν) = M(MN−1(ν))
for ν ∈ P, N ≥ 2, then

lim
N→∞

MN (ν) = µ, ∀ν ∈ P.

where the convergence is with respect to the Hutchinson metric onP. ♠

The Collage theorem for measures is stated below. The theorem states that any given probability
measure is approximated by the fixed point (unique invariantmeasure) of an IFS with probabilities.

Theorem 5: Let{ ;w1, w2, · · · , wn; p1, p2, · · · , pn} be an IFS with probabilities. Letµ be the associ-
ated invariant measure. Then the support ofµ is the attractor of the IFS{ ;w1, w2, · · · , wn}. ♠

Theorem 6 (Collage Theorem for Measure):Let { ;w1, w2, · · · , wn; p1, p2, · · · , pn} be an IFS with
probabilities. Letµ be the associated invariant measure. Lets ∈ (0, 1) be the contractivity factor for the
IFS. LetM : P → P be the associated Markov operator. Letν ∈ P. Then

dH(ν, µ) ≤
dH(ν,M(ν))

(1 − s)
. ♠

Note that the theory of IFS with probabilities can be extended to include acondensation measure.
Once IFS with probabilities or the Markov operator associated withν is at hand, one can approximate
the measureν by the invariant measureµ starting from any measure on the same space. In the context
of image compression, the process of computing the Markov operator is called the encoding process.
Likewise the process of finding the invariant measureµ, hence the attractor of the concerned IFS, starting
from any initial measure, is called the process of decoding.

To implement the aforesaid theory on real life images the problem is to find a way of defining prob-
ability measure corresponding to an image. It is extremely difficult to define the probability measure of
the image. However an algorithm called gray scale photocopying algorithm, seemingly, was suggested
by Barnsley [3] as a part of his patented work. We don’t know the details of the patented work. A de-
scription of the algorithm is given in [3]. But the implementation part is not clear from this description.
The methodology of the present algorithm is motivated by this description. We are presenting here only
the salient features of the algorithm suggested by Barnsley[3].

The gray scale photocopying algorithm is a procedure for computing the invariant measureµ, the
unique solution ofQ(µ) = µ, µ ∈ P. Consider a gray scale photograph supported on. If light is
passed through the photograph, it reflects a certain amount of light. Dark regions reflect relatively less
light, while bright regions reflect relatively large. A function ν is introduced which describes the amount
of light reflected from different regions of the photograph.The photograph is now represented byν ∈ P,
whereP is the set of all normalized Borel measures on. The photocopying machine consists of some
lenses and filters. The emitted light, from different parts of the given image, is controlled by system of
lenses which apply the affine transformationswi; i = 1, 2, · · · , n. Each lens system has its own filter
pi, i = 1, 2, · · · , n. A filter attenuates the light that passes through it by a factor proportional to the
numberpi. The output of the machine is taken on a photographic plate. The resulting image isQ(ν).

The basic idea of the machine is adjusting the affine mapswi and the probabilitiespi one by one
starting from all set at zero. For example, first of all, the transformationw1 and the probabilityp1 are
adjusted to make the output image as good an approximation aspossible to a part of the target measure
ν. The adjustment ofw1 andp1 are such thatp1ν ◦w−1

1
(B) < ν(B) for every Borel subsetB of . Thus
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Level  0 Level  1 Level  2

Figure 1. Multiscaling type division of an image

(ν − p1ν ◦ w−1
1

) is a Borel measure. Next the affine transformationw2 and probabilityp2 are adjusted
in such a way thatp1ν ◦ w−1

1
+ p2ν ◦ w−1

2
is as good an approximation as possible of a larger part ofν.

Again the adjustment is such thatν − (p1ν ◦w−1
1

+ p2ν ◦w−1
2

) is a Borel measure. New transformations
and probabilities are added successively to the IFS with probabilities to improve the approximation ofν

by Q(ν). At all stages the contractivity of the Markov operator is maintained to bes by insisting that
each affine map has a contractivity factor less thans, where0 ≤ s < 1. Once the output image looks
sufficiently like the input image, the transformations and the corresponding probabilities are recorded.

In the next section we have described our proposed algorithm.

3. Proposed Probabilistic Approach for Image Encoding

In the present work we have used a multiscaling division of the given image as described in figure 1. At
each level of partitioning, the image or subimage is dividedinto four quadrants. Each quadrant is called
the child of its parent image or subimage. The Markov operator is computed and the approximation
of the image by means of the invariant measure of the Markov operator is carried out at each level of
partitioning. The process of partitioning the image, or thesubimage as the case is, and computing the
Markov operator are performed up to a predetermined level orup to a level at which no further division
is required. No further division is required at any level indicates that the successful approximation of
the given image through the obtained Markov operator. To compute the Markov operator, it is essential
to find the maps and their corresponding probabilities. At each level, probabilities are computed by the
ratio of sum of gray values of a child subimage to the sum of gray values of its parent subimage. This
conforms the sum of four probabilities, at each level, to be unity. The ratio of the gray level value of
a pixel to the sum of all gray level values of the entire image indicates the proportion of information
carried by that pixel. Actually, contractive maps along with the probabilities try to approximate the ratio
of each gray level value to the sum of all gray level values. So, in the proposed algorithm, it is essential
to store the information regarding the sum of gray level values. Also the corresponding contractive maps
are nothing but the maps from a parent subimage to its child subimages [Figure 1]. The size of a parent
subimage is double that of its child subimages. Hence, the map from parent subimage to its child is a
contractive map.
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We have already mentioned that the division of a parent subimage into its children depends on the
performance of the approximation of the subimage by the Markov operators. Now if the complexity of
the pixel values of the parent subimage is higher, then further division of the subimage is quite likely. On
the other hand the image region where the complexity of the pixel values is low, no further division is
required. In this case, if there is division, then we are losing in the sense of compression ratio. In order
to avoid this problem we have introduced a simple classification scheme. The scheme classifies the child
subimages into two groups according to the variability of the pixel values. If the variability is lowi.e.,
if the variance of the pixel values in the subimage is below a fixed value, called threshold, we call the
subimage as smooth type. Otherwise we call it a rough type. Each pixel value in a smooth type subimage
is replaced by the mean of all pixel values. The procedure canbe looked upon as a condensation map.
Note that under a condensation map, an image region is nothing but the copy of itself. Rough type
subimages are approximated by the computed Markov operators. Hence, for each subimage we are to
store either a probability value or the mean of the pixel values along with the information regarding the
block type.

It may be noted that there will exist a level at which no further division of the image blocks is
required. When the size of a child image block becomes 1× 1 [i.e., the child image block is a pixel], it
can’t be further subdivided. It may also be observed that, insuch a case, there will be a contractive map
from the parent image block to the child image block such thatthe error in estimating the pixel value of
the child image block is zero.

The description of the encoding algorithm, the computationof bit rates and the decoding process are
described in the following subsections.

3.1. Description of the Encoding Algorithm

Step 1: Compute the sum of gray level values of the given image.

Step 2: Partition the image (I) into its four quadrants. Each quadrant is called child subimage
(Ik, k = 1, 2, 3, 4) of I.

Step 3: Compute

i) pk =
sum of pixel values inIk

sum of pixel values inI ;
4∑

k=1

pk = 1.

ii) Mean(Ik)=mk (say), k = 1, 2, 3, 4.

iii) Variance(Ik)=vk (say), k = 1, 2, 3, 4.

Step 4: If Variance(Ik) < Th , [Th is a prefixed value]

then approximateIk by replacing each pixel value ofIk by mk,

else computeI1
k

= pk.w(I) , k = 1, 2, 3, 4. (A)

Herew(I) is obtained by considering non overlapping windows of size2 × 2 covering the entire
image (I) and taking sum of four pixels within a window. thus, the sizeof w(I) becomes equal to that
of Ik , k = 1, 2, 3, 4.

Step 5: ComputeI1 by appendingI1
k

, k = 1, 2, 3, 4. (B)
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Repeat the process (A) and (B) untilIN = IN+1, whereIN

k
= pk.w(IN−1) is the approximation

of Ik . Note thatIN is an approximation ofI by Theorem 6 [see Section 2]

Step 6: Check the difference betweenIk andIN

k
.

If the difference is small (approximation is satisfactory)
then STOP,
else replaceI by I1

k
, k = 1, 2, 3, 4 and repeat steps 1, 2, 3, 4 and 5 until the size ofIk is equal

to a prefixed value.

A schematic diagram of the encoding process is presented in Figure 2.

3.2. Computation of Bit Rate

The complete description of an image in terms of its code, with respect to its storage or transmission
requirements, is to be evaluated to get the compression ratio or bit rate. The important overhead costs
which are to be considered for the proposed encoding method of an image are : (i) the description of
the image partition, (ii) the nature of the blocks,i.e., class information of blocks and (iii) the quantized
values of the numerical parameters.

First of all, the sum of the gray level values or the average gray level value of the given image is to
be stored. If the given image is a 8 bit/pixel image then 8 bitsare required to store this average gray
level value. Next a complete description of the image partition needs to be stored. Note that we have
used here a multiscaling type division. At any stage, a blockis either partitioned into its child blocks
or remains unaltered. The partitioning of a block into its child blocks depends on the performance of
the estimator of the parent block. In particular, for a parent block, there may exist either one or two or
three or all four children blocks. Therefore, there are, sixteen possible coding configurations for a block
at any stage and 4 bits are required for storing this information. The image is partitioned in a quad-
tree fashion. Whenever a image block is partitioned in to 4 sub-blocks, one needs to decide whether to
partition a sub-block further or not. There could be 16 possible configurations available for this. If one
needs to partition only one sub-block the information aboutwhich sub-block to be partitioned needs to
be stored. So there are 4 such cases. Similarly, if one needs to partition 2 sub-blocks out of 4, then there
will be 6 possibilities to indicate which two sub-blocks required further partitioning. Again if one needs
to partition 3 sub-blocks out of 4, then there are 3 possibilities for the same. Lastly, there is only one
possibility if one needs to partition all 4 sub-blocks. So, all together there are 16 possibilities available
for each image block at level of partitioning. We call these possibilities as 16 configurations. Figure 3
shows the sixteen possible configurations of a block at any stage. Each block is again, either smooth type
or rough type. Thus for storing block information, we need tostore one more bit for each block. Now,
we are left with two most important numerical parameters, the mean gray level value of a smooth type
block and probability corresponding to a block. the mean values and the probabilities are quantized and
stored in the codes.

3.3. Image Reconstruction from the Code

Image reconstruction is a process of decoding the obtained code. Here the decoding process is almost
similar to the encoding process. The process starts with an arbitrary image with at least one pixel having
nonzero pixel value. This starting image plays the role of a dummy image. In the decoding process no
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Figure 2. Schematic diagram of the proposed encoding algorithm
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Figure 3. Possible configurations of a subimage

probabilities or contractive maps are computed. The starting image is partitioned following the partition
rule stored in the codes. Using the block information, the mean gray level values or the stored probabili-
ties and the maps are applied to the blocks of the starting image to get the stabilized value for each pixel
of the starting image. These stabilized values are not the fixed points of the target image. The desired
image [i.e., the close approximation of the target image] is obtained bymultiplying each stabilized value
of the starting image by the ratio of sum of the gray level values of the original image, stored in the
codes, to that of the starting image.

In the decoding, the number of iterations to get to the stabilized value of a pixel of the starting
image is fixed, depending on the image size. Also, unlike the decoding of a PIFS code [12, 14, 15],
no intermediate reconstruction of the image is possible in this decoding scheme. Note that, the starting
image should be such that, there exist at least one pixel withnonzero pixel value. Otherwise, whatever
may be the subdivision of the image, we will always obtain theimage with every pixel value being zero.

A schematic diagram of the decoding process is presented in Figure 4.

4. Implementation and Results

The probabilistic approach for fractal image compression,discussed in Section 3 is tested with a wide
range of gray scale images. We are presenting here the results obtained for some 256× 256, 8 bits/pixel
images. First of all, let us discuss the results obtained by implementing the algorithm on the benchmark
image “Lena” (256× 256, 8bits/pixel). The original image of “Lena” is shown in Figure 5. The image
is subdivided into four128 × 128 subimages, each of which is encoded separately. Partitioning of
each subimage has been carried out up to the level of subimages of size 2× 2. The performance of
the encoding methodology is also examined by considering the image partitioning up to the level of
subimages of size 4× 4.

For encoding the “Lena” image, the results of partitioning up to 2× 2 subimages and 4× 4 subimages
are reported here. Also, the encoding using partitioning upto 2× 2 subimages has been performed for
different threshold values. Note that, successful approximation of an image block at any stage will be
judged by the selected threshold value. Actually, the threshold is set to evaluate the error criterion (here,
the error criterion is RMSE). All the test results and some statistics of both the cases are given in Table 1.
The test result is showing how compression ratio increases with decrease in the PSNR value for encoding
up to 2× 2 subimages. The time taken for encoding is also computed to show the relative fastness of the
proposed fractal image compression scheme using IFS with probabilities. The programming language
used here is “c” and all the programs have been executed on a 233 MHz Silicon graphics Workstation.
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Figure 5. Original images of Lena, Girl, LFA, and Seagull (8 bpp)

Table 1. Test results for256 × 256, 8 bit/pixel “Lena” image using different threshold values

Lowest level Compression PSNR bits/pixel Time elapsed

subimage size Ratio (in db) (bpp) (in Sec.)

4 × 4 20.1 22.43 0.40 8.34

2 × 2 3.20 30.49 2.50 23.39

2 × 2 5.08 28.23 1.58 16.40

2 × 2 8.81 27.11 0.90 10.93

The corresponding figures for the “Lena” image are shown in Figure 6. In Figure 6, the top left image
shows the decoded image of ”Lena” where the encoding is carried out up to the subimage of size 4× 4.
The rest of the images are showing the decoded “Lena”for different threshold values when the encoding
is processed up to the subimages of size 2× 2. The decoding process is carried out with a starting image
which is “White” image having all the gray level values fixed at 255.
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Figure 6. Decoded Lena (clockwise from top left corner): (i)0.40 bpp, where subimage size is4 × 4; (ii) 0.90
bpp, subimage size is2 × 2; (iii) 1.58 bpp, where subimage size is2 × 2; (iv) 2.50 bpp, where subimage size is
2 × 2

The algorithm is also tested for the “Girl” image, a “low flying aircraft (LFA)” image and a “Seagull”
image. All these images are 8 bit/ pixel images of size256 × 256. The original images are shown in
Figure 5. Experimental results of these images are shown in Table 2. Images in Figure 7 are the decoded
images of “LFA”, “Girl” and “Seagull” respectively. For allthe cases the starting image is considered
as the “White” image having all the gray level values 255. Note that, images can also be reconstructed
starting from any other image.

Table 2. Test results for several256 × 256, 8 bit/pixel images

Image Compression PSNR bits/pixel Time elapsed

Ratio (in db) (bpp) (in Sec.)

Girl 10.41 27.75 0.76 9.68

LFA 4.46 24.23 1.79 15.46

Seagull 7.20 26.12 1.11 12.56
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Figure 7. (Left to right): (i) decoded LFA, 1.79 bpp, where subimage size is2 × 2, (ii) decoded Girl, 0.76 bpp,
where subimage size is2 × 2, and (iii) decoded Seagull, 1.11 bpp, where subimage size is2 × 2

The proposed probabilistic approach for fractal image compression method is also compared, in
terms of the computational time, with the GA based fractal image compression technique proposed by
Mitra et al. [14]. The basic feature of GA based fractal imagecompression scheme is same as that
of the scheme proposed by Jacquin [12] and is usually known aspartitioned iterated function system
(PIFS) based compression. A GA based compression techniquetries to reduce the computational time
for the implementation of the PIFS based compression technique. It has been found that almost 20 times
reduction in the search space is achieved for the GA based compression technique in comparison to the
usual PIFS based image compression technique. In the usual PIFS based image compression technique,
an image is tiled with “range blocks”, and for each range block a mapping on a larger “domain block”
is found such that the transformed domain approximate the range block. The search for an appropriate
domain block and transformation for each range block is carried out by exhaustive search mechanism. In
GA based technique, the search is performed using GAs. Note that, the present probabilistic approach is
introduced with no search mechanism. The test results of both probabilistic approach encoding and the
GA based encoding techniques are presented in Table 3.

Table 3. Results obtained by using probabilistic approach and the GA based technique for fractal image com-
pression

probabilistic approach GA based technique

Image Compression PSNR Time elapsed Compression PSNR Time elapsed

Ratio (in db) (in Sec.) Ratio (in db) (in Sec.)

Lena 8.81 27.11 10.93 10.50 30.22 3141.47

Girl 10.41 27.75 9.68 11.37 30.74 2608.18

LFA 4.46 24.23 15.46 5.51 26.86 5838.17

Seagull 7.20 26.12 12.56 7.40 27.27 4240.02
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It is very clear from the Table 3 that the proposed probabilistic approach for fractal image compres-
sion is very fast compared to the GA based fractal image compression technique. On the other hand, the
compression ratio and the quality of the decoded image in terms of PSNR of the proposed method is not
so impressive as compared to that of GA based technique. A fewblocking effects, due to quantization,
are visible in the decoded image of the present algorithm. But in respect of computational time, the
proposed method is probably one of the fastest, if not the fastest.

5. Conclusions and Discussion

The proposed probabilistic approach for image compressionis a direct outcome of the theory of IFS with
probabilities. The algorithm is very fast in the sense of computational time. But at the same time, the
technique is very much dependent on the partitioning schemeused. As we are using multiscaling type
division to find the contractive maps and corresponding probabilities, it is assumed that, under a suitable
transformation, there exists at least some similarity between image regions along this direction. But real
life images need not necessarily possess similarity like this. To overcome this problem one has to divide
the image up to subimages which are considerably small. Notethat the algorithm will be a lossless one
if one goes up to the pixel level division for every pixel. But, in that case, it would not be useful for
compression as there will be hardly any compression.

The proposed method is also applicable in case of condensation maps included in the set of maps. A
particular type of condensation map is used in the present case. Note that, due to this type of condensation
map, each pixel value of an image region is replaced by the average of all pixel values of that region.

The present scheme is an attempt to find an image compression technique using IFS and probabilities.
Some blocking effects are observed, though those are not very serious, in the final decoded image. It
is true that some modifications have to be incorporated to make the algorithm more efficient to achieve
a high compression ratio as well as quality decoded image. The information regarding multiscaling
partition is taking a huge storage space causing reduction in the compression ratio. One way to increase
compression could be to bypass this information. Towards the solution of this problem one can possibly
make the multiscaling image subdivision mandatary up to a prespecified level. In particular, for the first
few subdivision, one may consider all four subimages instead of going for option of selecting a few out
of four depending on the image estimation obtained at that subdivision. This may reduce the burden of
storing 4 bits for each subimage at each level. Another way ofincreasing compression could be done
by adopting a lossless compression,eg. arithmetic or run length, scheme and applying it to the code
obtained by the probabilistic approach.

The huge reduction in the computational time makes the present algorithm more attractive. The
probabilistic approach technique for fractal image compression is at least 300 times faster than the GA
based fractal image compression technique. The relative fastness of the proposed algorithm appeared
to be its main feature. The method is found to be practically an online process. The fastness of the
algorithm can be utilized to real time coding, for which reasonable compression may be delivered very
rapidly. A U.S patent [1] on this work has already been obtained.

The present method of compressing an image is based on the fact that what proportion of pixel values
is present in a small block of image compare to the total pixelvalue present in the entire image. It turns
out to be a self similar in nature. More precisely, it is portioned self similar in nature. It is working
well as no natural image shows exact self similar characteristics. However, K. Culik II et al.[17, 18, 19]
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established a relation between Iterated Function Systems (IFS) and automata theory where self similar
images could be generated using rational expression. Theseworks opened up a new concept for image
analysis. In the present discussion we have not tried to discuss the same.
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