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approach should ideally be invariant to orientation of the texture. Extraction of

rotation invariant texture features is a difficult task. Kashyap et al.7 first realized

the importance of rotation-invariant texture feature extraction and developed a

texture classification scheme based on autoregressive (AR) model. But the difficulty

with this model is that, it could not be used for textures with strong anisotropy.

Cohen et al.8 modeled textures as Gaussian Markov random fields and used

the maximum likelihood (ML) method to estimate coefficients and rotation angles.

The problem with this method is that the likelihood function is highly nonlinear

and local minima may exist, also this algorithm is computationally very expen-

sive. Chen and Kundu4 used multichannel subband decomposition and a hidden

Markov model (HMM) to solve this problem. The two-dimensional (2D) images

were decomposed into subbands using quadrature mirror filter (QMF) banks, and

modeled features of these subband images as an HMM. Texture samples with dif-

ferent orientations are treated to be in the same class. But it is obvious that for an

image the signal components in each subband will be different for different orienta-

tions. So variability in texture feature vectors increases with increase in the number

of textures to be analyzed. Wu et al.9 tried to solve this problem by converting the

2D textured images into one-dimensional (1D) signals by spiral resampling. In this

case, rotational-invariance is simulated as translation-invariance. But this method

is also computationally expensive.

Haley and Manjunath10 describe a method of rotation invariant texture dis-

crimination based on Gabor filters. A multiresolution family of these wavelets is

used to compute microfeatures which characterize the spatially located amplitude,

frequency and the directional behavior of a texture. However, a large combination

of parameters makes texture discrimination using Gabor filters computationally

expensive. Most recently Fountain et al.11 have worked on rotation invariant texture

features by taking the Fourier transform (FT) of the gradient direction histograms

of the textures. Chantler and McGunnigle17 proposed a novel scheme that is surface-

rotation invariant. It uses the eigenvalues of a surface gradient-space distribution as

its features. A distribution-based classification and a set of texture measures based

on center-symmetric auto-correlation and local binary patterns are applied to rota-

tion invariant texture classification.18 Later on Ojala et al. modified and extended

this to take care of gray scale invariance.19 A large number of related works may be

found in the survey on rotation invariant texture classification.14 Circular Gabor

filter (CGF) has been used for rotation invariant texture segmentation.15 The rota-

tion invariant textures are achieved via the channel output of CGF.

Due to different imaging equipments and techniques, scenes which are imaged

may have different gray scale values. The result is due to a complex process and

is not easily modeled. Chen and Kundu4 used a linear function with an offset to

describe the phenomenon. Using this model a transformed gray-scale may be cor-

rected by histogram equalization, but this increases the complexity of the classifier.

They used coefficients of skewness and kurtosis to describe features invariant to

gray-scale transformation. Wu et al.9 solved this problem in a better way.
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Despite all these research we are of the opinion that a more general way to cope

with this problem is to incorporate rotational information in the texture features

themselves.

In the present work, texture properties are characterized by wavelet frame

analysis mainly as suggested in Ref. 12. While discrete wavelet transform gives

a nonredundant representation of the textures, the discrete wavelet frame gives an

overcomplete representation. This technique is employed to study the performance

of a texture segmentation problem with respect to rotational invariance, in particu-

lar Refs. 13 and 16. Also invariance to gray-scale transform and immunity to noise

is being extensively studied.

The two-dimensional (2D) implementation of the discrete wavelet transform

(DWT) using a filterbank21,22 is obtained in two steps by successive application of

the 1D filtering along rows and columns of an image. Due to the separable nature

of implementation of the 2D DWT, it is strongly oriented in the horizontal and

vertical directions. Such a decomposition cannot efficiently characterize directions

other than 0◦ and 90◦. This is particularly inappropriate while rotated textures are

taken into consideration. So we need a nonseparable implementation of the wavelet

transform in 2D. We make use of a wavelet filter which is circularly symmetric and

hence is invariant to rotation.

Section 2 describes the wavelet parameter computation which gives the features

for texture discrimination and integration of these features. In Sec. 3, we give

the formulations of the different performance measure that we have used in

this experiment. Section 4 presents our results and critical remarks about the

performance and finally, in Sec. 5, we conclude our study.

2. Multiscale Feature Extraction

The proposed feature extraction scheme consists of three main stages given in Fig. 2.

It consists of a filtering stage and a subsequent nonlinear stage followed by a smooth-

ing filter (both these constitute the local energy estimator). Basically, the purpose

of the filter is to extract local frequencies of the textures, and the objective of local

energy estimator, is to estimate the energy of the filter output in a local region.
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Fig. 1. Separable filtering for 2D discrete wavelet transform.
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Fig. 2. Fast iterative implementation of the algorithm used for extracting texture features.

The directional information, can be incorporated in the 2D wavelet function, by

including a rotational parameter in it23

ψa,θ(�b) =
1

a
ψ

(

Rθ

(

�x −�b

a

))

(2.1)

where Rθ is the rotation operator denoted by the matrix
(

cos θ − sin θ

sin θ cos θ

)

.

Now if the wavelet is circularly symmetric i.e. Rθ has no influence in (2.1), such

a wavelet would generate rotation invariant features. We have chosen the wavelet

used by Mallat,24 which is the second derivative of a smoothing function. This

choice has been made because this closely approximates the second derivative of

Gaussian, which has circular symmetry and the basis functions are symmetrical,

which means that there is no phase distortion.

2.1. Multiscale 2D wavelet transform

The technique used by Mallat25 using discrete wavelet frames has been used in the

present work (Fig. 3). Let φ(x, y) be a smoothing function. We call the smoothing
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function the impulse response of a lowpass filter with a total mass of one and

compact support, i.e.
∫

∞

−∞

∫

∞

−∞

φs(x, y)dxdy = 1, and

∃ε > 0 : φs(x, y) = 0, ∀ |x|, |y| > ε.

(2.2)

Considering φ(x, y) to be double differentiable, we define two wavelet functions,

ψ1(x, y) and ψ2(x, y) such that,

ψ1(x, y) =
∂2φ(x, y)

∂2x
and ψ2 =

∂2φ(x, y)

∂2y
. (2.3)

Let, φs(x, y) = 1
s
φ(x

s
) be the dilation of φ(x, y) by s. Then,

ψ1
s(x, y) =

1

s3
ψ1

(x

s
,
y

s

)

and ψ2
s(x, y) =

1

s3
ψ2

(x

s
,
y

s

)

, (2.4)

be the dilations of the functions ψi by a factor s.

Let I(x, y) be an image in 2D and I(x, y) ∈ L2(R). The wavelet transform of

I(x, y) at scale s has two components defined by,

w1
s(x, y) = I ∗ ψ1

s(x, y) and w2
s(x, y) = I ∗ ψ2

s(x, y), (2.5)

where s is the dilation or scale parameter and usually has values equal to 2s with

s = 0, . . . , d0. This gives the traditional octave band wavelet transform of depth d0.

w1
s and w2

s contain the horizontal and vertical frequency information of I at scale

s and are referred to as the detail images.

The computation of the 2D transform is carried out by means of a set of lowpass

filters hs associated with the smoothing function φ and bandpass filters gs associ-

ated with the wavelets ψ1 and ψ2 and have finite impulse responses. The filtering

is done in an iterative manner.

c2s+1(x, y) = [hs,x ∗ [hs,y ∗ c2s ]](x, y),

w1
2s+1(x, y) = [δs,x ∗ [gs,y ∗ c2s ]](x, y),

w2
2s+1(x, y) = [gs,x ∗ [δs,y ∗ c2s ]](x, y),

(2.6)

where c1I is the original image and δ is the Dirac filter whose impulse response

equals 1 at 0 and 0 otherwise. The “∗” denotes the convolution operator.

Then the wavelet representation of depth d0 of the image I(x, y) consists

of the low resolution images {c2s} and detail images {wj
2s} for {j = 1, 2} and

{s = 1, . . . , d0}.

2.2. Rotation invariant features

In this section we will be explaining how we extract the rotation invariant features

from wavelet transformed images.12,13
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Substitution of (2.3) and (2.5) in (2.4) yields the following,

(

w1
s(x, y)

w2
s(x, y)

)

= s2











∂2

∂2x
(I ∗ φs)(x, y)

∂2

∂2y
(I ∗ φs)(x, y)











= s2∇2(I ∗ φs)(x, y)

(2.7)

where ∇2 denotes the Laplacian. It defines edge magnitudes of the image and since

it has the same property in all directions, is invariant to rotations in the image.

That is, the wavelet transform of an image consists of the components which give a

measure of the edge magnitudes of the image, smoothed by the dilated smoothing

function φs. The edge magnitudes of the image is given as,

wr
s(x, y) =

√

(w1
s(x, y))2 + (w2

s(x, y))2. (2.8)

The wr
s(x, y) contain a measure of the edge magnitude at (x, y), which in turn gives

a measure of the local gray level variation of the image. A rotation invariant multi-

scale representation of the image can be formulated as hs = {(wr
s)(s=0,...,2d0 ), c2d0}.

Figure 4 shows some of the textured images that we have used to generate the

Fig. 4. (From left to right row-wise) Rotated samples (0◦, 20◦, 45◦ and 55◦) of some of 4 different
textured images used in our experiment and their gradient magnitude histogram plots.
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Fig. 4. (Continued )

composite textures used in our experiment. We find out the histograms of the gra-

dient values given by (2.8) of these textures at different rotations. The histograms

so obtained has many local minima and maxima which can be removed by local

smoothing of the histogram. This is accomplished by local averaging of neighboring

histogram elements.

We have taken three adjacent elements at a time and the process is repeated

for a number of iterations. A plot of these histograms after smoothing is given in

Fig. 4 to give a feeling that the edge magnitudes of the textures are indeed rotation

invariant. We calculate the mean and second and the third order central moments

of the unrotated texture edge magnitude histogram and also its several rotated
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versions (Table 9), to measure the similarity between these histograms, the error

percentage is around 0.4%.

2.3. Gray-scale transformation invariant features

The gray-scale transform mentioned in Sec. 1 can be described as follows.

It(x, y) = αI(x, y) + δ (2.9)

where, I(x, y) is the gray level at (x, y), α is a positive scale factor, and δ is a

shift factor. We assume that 0 ≤ It(x, y) ≤ 255.0. In texture analysis we require

an algorithm that is invariant to gray-scale transformation. We remove the mean

of the image to nullify the effect of δ. The effect of scale factor α is removed in

formulation of the feature. The features obtained according to Eq. (2.8) can be

modified while considering the gray-scale transformed image (2.9) as,

Wgtrs(x, y) = α
√

(w1
s(x, y))2 + (w2

s(x, y))2. (2.10)

The above Eq. (2.10) can be rewritten by taking logarithm on both sides as,

log(Wgtrs(x, y)) = log(α) + log(Wgs(x, y)). (2.11)

It can be written otherwise in the following form as,

WGT r
s (x, y) = Γ + WGs(x, y). (2.12)

It is very apparent from Eq. (2.12) that the additive factor Γ can be eliminated by

removing the mean from the image WGT r
s (x, y). The features are then obtained

by exponentiating WGT r
s (x, y) whose mean has been removed. Figure 5 shows two

textured images that we have used to generate the composite textures used in our

experiment. We find out the histograms of the exponentiated values given by (2.12),

of these textures for different shift and scale factors. The histogram so obtained

has many local minima and maxima which can be removed by local smoothing of

the histogram. This is accomplished by local averaging of neighboring histogram

elements as explained in Sec. 2.2.

A plot of these histograms after smoothing is given in Fig. 5 to give a feeling

that the features characterizing the textures are indeed invariant to any gray-scale

transforms.

2.4. Noise invariant features

Real images are often degraded by some random errors, this degradation is usually

called noise. Noise arises as a result of unmodeled or unmodelable processes going

on in the production and capture of the real signal. It is not part of the ideal signal

and may be caused by a wide range of sources, e.g., variations in the detector

sensitivity, environmental variations, the discrete nature of radiation, transmission

or quantization errors, etc. It is also possible to treat irrelevant scene details as if
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they are image noise (e.g., surface reflectance textures). The characteristics of noise

depend on its source.

Many image processing packages contain operators to artificially add noise to an

image. Deliberately corrupting an image with noise allows us to test the resistance

of an image processing operator to noise and assess the performance of various noise

filters.

Noise can be generally grouped into two classes: independent noise and noise

which is dependent on the image data.

Image impendent noise can often be described by an additive noise model and

is called additive noise. Whereas in the second case of data-dependent noise (e.g.,

arising when monochromatic radiation is scattered from a surface whose roughness

is of the order of a wavelength, causing wave interference which results in image

speckle), it is possible to model noise with a multiplicative, or nonlinear, model.

The 2D wavelet transform that we have implemented gives a multiscale zero

crossings representation of the image. So, zero crossings appear at those locations

where there are gray level differences corresponding to edges and also appear at

nonedge locations with increasing noise levels. However, our purpose is not to locate

the edge points rather we estimate the local energy around each pixel over small

overlapping windows by some nonlinear operation followed by smoothing, to charac-

terize the 2D signal. So the features so extracted have inherent noise regularization.

2.5. Local energy estimation

The next step is to estimate the energy of the filter responses in a local region around

each pixel. The local energy estimate is utilized for the purpose of identifying areas

in each channel where the bandpass frequency components are strong resulting in

a high energy value and the areas where it is weak into a low energy value.

Wavelet coefficients are insufficient for texture cues. They are helpful to split

textured information into different frequency channels. Then we must consider the

locality of the pixels with local statistics. A nonlinearity is needed in order to dis-

criminate texture pairs with identical mean brightness and second-order statistics.

We have used modulus operator as the nonlinearity. One reason for choosing this

nonlinear operator is that it is parameter free, meaning it is independent of the

dynamic range of the input image and also of the filter amplification. To calculate

features of an image, we slide a fixed size window on the wavelet coefficients of

an image and compute the local statistics in each individual window and associate

these values as feature values of the centered pixels of these windows. There are

a wide variety of textural measures. In this study energy measure for texture seg-

mentation is considered. The energy features measure textural uniformity, i.e. pixel

pairs repetitions. Energy is usually defined in terms of a squaring nonlinearity. How-

ever in a generalized energy function, other alternatives are used. Average absolute

deviation from the mean small overlapping windows has been used as a generalized

energy definition in this work to get separation of features for different patterns.
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The local energy Engs(x, y) around the (x, y)th pixel of the filtered image

Fs(x, y) in the subband s is formally given as,

Engs(x, y) =
1

R

W
∑

m=1

W
∑

n=1

|(Fs(m,n) − F s(x, y))| (2.13)

where, W is the window size and R = W×W , while F s(x, y) is the mean around the

(x, y)th pixel and Fs(x, y) is the filtered image at different scales for s = 0, . . . , 2d0 .

The nonlinear transform is followed by a Gaussian low pass (smoothing) filter of

size G × G (say). Formally, the feature image Feats(x, y) corresponding to filtered

image Fs(x, y) is given by,

Feats(x, y) =
1

G2

∑

(a,b)∈Gx,y

|Ψ(Fs(a, b))| (2.14)

where Ψ(·) is the local energy estimator and Gx,y is a G×G window centered at pixel

with coordinates (x, y). The size G of the smoothing or the averaging window in

Eq. (2.14) is an important parameter. Using a Gaussian weighting window results

in less sparse points (i.e. denser feature distributions) as compared to when no

weighting window is used. The local average absolute deviation values from the

mean (2.13) of a Gaussian window give us a robust quality of features in the feature

space in all of our test images. However, one can use other local statistics depending

upon the applications. Another issue with this regard is the local window size

itself. After a number of experiments we have found that the choice of the local

window size is very crucial to find proper features. In an image with patterns of

different texel sizes, we have to choose a suitable window size. If we choose a larger

window for the largest texel size, we introduce more uncertainty on the boundaries

regions. This problem can be solved if the effective window size changes with the

level of resolution. These various window sizes will catch textures with different

texel sizes. For larger texels, it is better to choose larger local window size and

for smaller texels it should be kept smaller. Likewise, the size G of the Gaussian

averaging window is also an important parameter. More reliable measurement of

texture feature demands larger window size. On the other hand, more accurate

localization of region boundaries requires smaller window. This is because averaging

operation blurs boundaries between textured regions. Therefore, Gaussian weighted

windows are naturally preferable over unweighted windows, because, the former are

likely to result in more accurate localization of texture boundaries.

This step results in a set of feature images Feats(x, y) from which a set of feature

vectors are derived. These feature vectors, corresponding to the decomposed images

at different resolutions, are assumed to capture and characterize effectively different

scales of texture of the input image. The oversampled wavelet transforms introduce

redundancy in filtered images which may be useful for a reliable result in a recog-

nition problem. The redundancy of information will present itself as more patterns

for each cluster in feature space. In many clustering algorithms the reliability of

final results will be increased by having more feature vectors per cluster.
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Having obtained the feature images, the main task is to integrate these feature

images to produce a segmentation. Energy values have to be normalized to ensure

that they lie within the same dynamic range. This ensures that the energy values

in the nondominant spatial frequency channels provide important information for

discriminating between textures during the clustering process. The energy values

are normalized to lie between 0 and 1 so that they can be conveniently used for

segmentation.

We emphasize on the feature extraction (representation) part in this work. So we

have used a traditional k-means clustering algorithm. Although other sophisticated

algorithms like watershed clustering could have been used.

3. Performance Evaluation Measures

We define to following measures of classification accuracy, to evaluate the perfor-

mance of our algorithm, where ground truth is available.

Percentage of correct classification. We provide the performance results in

terms of percentage of correct classification, which is defined as

nic

ni

∗ 100 (3.1)

where ni is the number of pixels belonging to class i, of which nic pixels have been

correctly classified. nic

ni
is also called the Producer’s accuracy.26

In this section we provide two more statistical measures, namely User’s accuracy

and Kappa following Refs. 27 and 28.

User’s accuracy. If n′

i pixels (of all pixels n) are found to be classified into class

i, then the user’s accuracy (U) is defined as

U =
nic

n′

i

(3.2)

where nic is as defined earlier. The user’s accuracy gives a measure of the confidence

that a classifier attributes to a region as belonging to a class. That is, it denotes

the level of purity associated with a region.

Kappa. The coefficient of agreement called “kappa” measures the relationship of

beyond chance agreement to expected disagreement. The estimate of kappa (K) is

the proportion of agreement after chance agreement is removed from consideration.

The estimate of kappa for class i (Ki) is defined as,

Ki =
n ∗ nic − ni ∗ n′

i

n ∗ n′

i − ni ∗ n′

i

. (3.3)

The numerator and denominator of the overall kappa are obtained by summing the

respective numerators and denominators of Ki separately over all classes i.
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4. Experimental Results

We have experimented our segmentation algorithm on a number of textured images

taken from the Brodazt album which clearly exhibit anisotropy. Several rotations

have been considered, like 15◦, 20◦, 37◦, 45◦, 55◦, 60◦ and 90◦. Several composite

textured images have been generated from the rotated versions of these textured

images. Since we are mainly interested in the effectiveness, reliability and robust-

ness of the rotation invariant and noise immune features that are extracted rather

than the segmentation performances, we have experimented on composite textured

images consisting of a moderate number of texture classes.

Local window sizes w×w are 5×5, 9×9 and 17×17 for the first, second and third

level of resolutions. Also the averaging window sizes are chosen in commensuration

with the local windows. Figure 6 shows two class test images that we have worked

on, which consist of 5 regions, out of which two regions are unrotated textures and

the rest three comprise of rotated textures. The images were decomposed into three

levels of resolution as given in Fig. 3. We have taken into account all the three detail

images and two of the low frequency images leaving out the lowest frequency image

at the third level of resolution, to estimate the local energies around each pixel

at different scales. That is in all we are left with only five feature elements which

Fig. 6. Composite textured images with their corresponding segmented outputs (k = 2).
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means a huge reduction in the dimensionality of the feature space, compared to

other methods so far reported in the literature. Segmentation was performed with

k-means clustering with fixed k = 2, results are shown in Fig. 6. The classification

percentages of test images in Fig. 6 are tabulated in Table 1.

Figure 7 shows some composite textured images that we have tested on, which

comprise of three different texture classes. The images consist of 5 regions with

three unrotated textured regions and two rotated textured regions. Segmentation

is carried out using k-means clustering with fixed k = 3 the experimental results are

shown in Fig. 7. The classification percentages for test images in Fig. 7 are given

in Table 1.

Figure 8(a.i) shows another composite textured image that we have tested on,

which comprise of five different texture classes. The image consist of 16 regions with

several rotated and unrotated textured regions. The segmentation result is given

Table 1. Percentage of correct classification corresponding to the test images
Figs. 6 and 7.

Figure No. 6.a.i 6.b.i 6.c.i 7.a.i 7.b.i 7.c.i

% Classification 99.31 98.93 97.41 98.24 97.61 98.49

Fig. 7. Composite textured images with their corresponding segmented outputs (k = 3).
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Fig. 8. Composite textured images; (a.i) Without gray-scale transform, with gray-scale trans-
form; (b.i) α = 1.2, δ = 0; (c.i) α = 0.5, δ = 20; (a.ii)–(b.ii)–(c.ii) Corresponding segmented
outputs (k = 5).
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in Fig. 8(a.ii). To verify the invariance to gray-scale transformation, we performed

some experiments on the same image. For this purpose two different set of parame-

ters were used: α = 1.2, δ = 0 (Fig. 8(b.i) and α = 0.5, δ = 20 (Fig. 8(c.i), segmen-

tation results are shown in Figs. 8(b.ii) and 8(c.ii) The performance of segmentation

was not affected by gray-scale transformation, Table 2 validates this result.

The same image in Fig. 8(a.i) is corrupted with various Gaussian noise levels

(Fig. 9). The result obtained is very encouraging as shown in Fig. 10, which gives

Table 2. User accuracy (U), kappa values (K) and classification
in percentage for different scale and shift factors in Fig. 8.

Parameter Values Overall % Classification

U K

α 1.0
β 0 96.76 95.85 96.73

α 1.2
β 0 96.25 95.36 95.74

α 0.5
β 20 95.12 94.19 94.69

Fig. 9. (a.i)–(c.i) Composite textured images corrupted with Gaussian noise with their cor-
responding segmented outputs (k = 5); (a.i) Mean = 0, Variance = 100.0; (b.i) Mean = 0,
Variance = 200.0; (c.i) Mean = 0, Variance = 300.0.
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Fig. 10. Percentage of correct classification with Gaussian noise (noise parameters are given in
Table 3).

Table 3. Percentage of correct classification corresponding to the test image
Fig. 8(a.i) for different Gaussian noise levels.

Mean 0 0 0 0 0 0 0 0
Variance 0 10.0 50.0 70.0 100.0 150.0 200.0 300.0

% Classification 96.73 96.19 96.17 96.16 96.10 96.09 95.04 94.23

a plot of percentage of correct classification for various noise levels. The percent-

age of correct classification for different noise levels is tabulated in Table 3. The

robustness of the proposed algorithm against noise is verified by experimenting on

the test image of Fig. 8(a.i) corrupting it with different types of noise, these include

Gaussian, Rayleigh, Exponential, Poisson, Uniform, Shot and Speckle noise having

different parameter attributes [Figs. 9 and 11–13], and are tabulated in Tables 4

and 5 (noise was generated by “KHOROS” in Silicon Graphics Irix 5.3). Segmen-

tation is carried out using k-means clustering with fixed k = 5. The experimental

results are shown in Figs. 9 and 11–13. The classification percentages, the user accu-

racy (U) and kappa (K) values for each of the constituent class in the composite

image are given in Tables 4 and 5.
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Table 4. User accuracy (U), kappa values (K) and correct classification in percentage corre-
sponding to the different types of noise for data in Figs. 8, 9, 11–13.

Type of Noise Parameter Attributes Values Effect Overall % Classification

U K

Without noise — — — 96.76 95.85 96.73

Gaussian Mean 0 Additive
Variance 100.0 96.09 95.10 96.10

Mean 0 Additive
Variance 200.0 95.20 94.00 95.04

Mean 0 Additive
Variance 300.0 94.41 93.02 94.23

Rayleigh Variance 100.0 Additive 95.24 94.05 95.06

Variance 200.0 Additive 94.44 93.05 94.32

Variance 300.0 Additive 94.00 92.62 93.92

Table 5. User accuracy (U), kappa values (K) and correct classification in percentage correspond-
ing to the different types of noise for data in Figs. 9 and 11–13.

Type of Noise Parameter Attributes Values Effect Overall % Classification

U K

Exponential Variance 200.0 Additive 95.69 94.62 95.62

Poisson Amount of time 200 Additive
Variance 20.0 95.53 94.41 95.41

Shot % of spikes 50 Additive
Value of spike 30.0 94.88 93.60 94.87

Uniform Minimum value −20.0 Additive
Maximum value +20.0 95.31 94.16 93.31

Speckle Mean 1.0 Multiplicative
Standard +0.28
Deviation 94.19 92.74 94.19

To prove the efficacy of our algorithm we have tested on another test image

Fig. 14 (Fig. 7(c.i)) contaminated with Gaussian, Exponential and Rayleigh noise.

The percentage of correct classification, user accuracy (U) and Kappa (K) of the

segmented results are given in Table 6.

The above study reveals that we have good quality segmentation invariant to

rotation and also without appreciable degradation in performances while noise is

being incorporated. It is to be noted that we have done median filtering of window

size (9 × 9) as a post processing step over the classified images, to simulate the

benefit of local neighborhood information.

For a comparison purpose, We have studied the segmentation result using cir-

cular Gabor filter.15 Figure 17(a.ii) shows the segmented output of the test image
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Fig. 11. (a.i)–(c.i) Images corrupted with Rayleigh noise; (a.i) Var = 100; (b.i) Var = 200; (c.i)
Var = 300.

Fig. 12. Images corrupted with (a.i) Exponential; (b.i) Poisson; (c.i) Uniform noises.
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Fig. 13. Images corrupted with (a.i) Speckle; (b.i) Shot noises and their segmented output
(k = 5).

Fig. 14. Images corrupted with (a.i) Gaussian; (b.i) Rayleigh; (c.i) Exponential noises.
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Table 6. User accuracy (U) and kappa values (K) in percentage corresponding to the different
types of noise for data in Fig. 14.

Type of Noise Parameter Attributes Values Effect Overall % Classification

U K

Without noise — — — 96.47 94.76 96.85

Gaussian Mean 0 Additive
Variance 200.0 96.14 94.27 96.21

Rayleigh Variance 200.0 Additive 96.19 94.36 96.08

Exponential Variance 200.0 Additive 96.04 94.09 96.27

Fig. 17(a.i) which is same as Fig. 8(a.i). Figure 17(a.iii) is the corresponding using

Zhang’s method.15 Similarly for other test image Fig. 17(b.i), the segmented outputs

are Fig. 17(b.ii) and 17(b.iii) for the proposed and Zhang’s methods respectively.

The performance results are summarized in Table 8.

The objectives of the filtering and that of the local energy estimator, are

to transform the edges between texture regions into detectable discontinuities.

We have also studied the segmentation results particularly segmentation bound-

aries (strongest edges) between regions,using the Marr–Hildreth/Laplacian of

Gaussian (LOG) operator as the filter, which is a zero-crossing detector as well

as orientation independent. Figure 15(a.ii) shows the segmented output of the

test figure Fig. 15(a.i) that we have already used before (Fig. 8), using LOG as

the edge detector. Figure 15(b.ii) illustrates the performance of the LOG edge

detector, with the test image having a gray-scale transform (Fig. 15(b.i)). The seg-

mented output of Fig. 15(c.i), which is contaminated with gaussian noise is given in

Fig. 15(c.ii). The performance results are summarized in Table 7. From the figures it

is quite evident that our method gives a much better result over the LOG operator.

Since the basic philosophy behind this work is to choose a filter which is circularly

symmetric, we have proved the choice of any filter other than this will not give rota-

tional invariance. For this we have demonstrated the segmentation on Fig. 8 using

Canny’s edge operator or Derivative of Gaussian (DOG). The segmentation result

is shown in Fig. 16(b) and classification score of 59.23% is obtained, from which we

can infer that Canny’s edge detector cannot give rotational invariance for texture

image.

5. Conclusion

This paper studies the issues of gray-scale transform and rotation invariance and

immunity to noise, for texture segmentation. Simple and computationally efficient

features have been extracted based on the fact that circularly symmetric wavelets

give rotationally invariant features, as these wavelets are independent of orientation.

We have seen that wavelet frame analysis is appropriate over the standard subsam-

pled wavelet analysis for rotational invariance. We have also seen that the features

that we have extracted are really invariant to rotation by studying the gradient
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Fig. 15. (a.i) Test image of Fig. 8; (b.i) With gray-scale transform α = 1.2, δ = 0; (c.i) With gaus-
sian noise (mean = 0.0, variance = 100.0); (a.ii)–(b.ii)–(c.ii) Corresponding segmented outputs
(k = 5) using Laplacian of Gaussian (LOG) as the zero crossing edge detector.
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Table 7. User accuracy (U), kappa values (K) and classification in percentage for test image
Fig. 8 using Marr–Hildreth operator as edge detector, results shown in Fig. 15.

Parameter Values Overall % Classification

U K

Without noise & gray-scale
transform 72.99 66.24 71.22

With gray-scale α = 1.2
transform δ = 0 67.68 59.63 66.56

With gaussian mean = 0.0
noise variance = 100.0 67.60 59.61 66.57

Table 8. User accuracy (U), kappa values (K) and classification in
percentage for two different test images including the Fig. 8(a.i).

Parameter Test Figure Overall % Classification

U K

Proposed Fig. 17(a.i) 96.76 95.85 96.73
Fig. 17(b.i) 96.06 97.09 98.56

Zhang’s method15 Fig. 17(a.i) 90.94 91.75 92.66
Fig. 17(b.i) 93.96 94.09 94.56

magnitude histograms of the several rotated versions of the same texture class. The

features are also invariant to gray-scale transformations and have inherent noise

regularization. Yet another important aspect of our methodology is that, we make

use of only five features to achieve the desired segmentation and this entails a huge

reduction in feature dimensionality.

Studying the results of our experiment over several composite textured images

we can conclude that our scheme performs appreciably well. But some edge

inaccuracies are observed apart from some misclassification. One reason for this

might be because, for the purpose of segmentation the features that are computed

are pixel based, i.e. features are the measure of local energies over a small window

around each pixel. A proper choice of this window size is very essential. The window

size should be such that it captures the total periodicity of the micro textures of

each class this calls for larger window size, where as for accurate texture bound-

ary localization between classes the window size should be small. Experimentation

with Gabor filter15and its comparison with the proposed technique, has shown that

performance of the later one is found to be comparable. Although results due to

Gabor filter is comparable, but a large number of parameter selection makes this

method15 computationally expensive.

Experimentation with other zero-crossing detector like the Marr–Hildreth

(LOG) operator which is although isotropic, proved to be inferior to the proposed
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Fig. 16. (a.i) Test image of Fig. 8 (a.ii) corresponding segmented output (k = 5) using Derivative
of Gaussian (DOG) as the edge detector.

Fig. 17. (a.i)–(b.i) Test images and corresponding segmented outputs; (a.ii)–(b.ii) Using proposed
method; (a.iii)–(b.iii) Using Gabor filters.15
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Fig. 17. (Continued )

Table 9. Moments of the magnitude histograms tabulated for comparing
the similarity between the unrotated texture histograms and their rotated
versions Fig. 4.

Texture Data Rotation in Degrees Order of Moments

First Second Third

unrotated 1.126 0.0014 0.0016
20 1.127 0.0014 0.0016

Texture 1 45 1.128 0.0014 0.0016
55 1.129 0.0014 0.0016
90 1.126 0.0014 0.0016

unrotated 1.288 0.0024 0.0029
20 1.307 0.0023 0.0030

Texture 2 45 1.313 0.0023 0.0031
55 1.317 0.0024 0.0031
90 1.291 0.0023 0.0029

unrotated 1.411 0.0029 0.0041
20 1.444 0.0028 0.0039

Texture 3 45 1.419 0.0029 0.0042
55 1.432 0.0030 0.0043
90 1.405 0.0029 0.0040

unrotated 1.334 0.0024 0.0032
20 1.339 0.0024 0.0033

Texture 4 45 1.336 0.0024 0.0032
55 1.341 0.0024 0.0033
90 1.331 0.0024 0.0032

technique for extraction of rotational invariant features, which in turn responsible

for generating correct location of pixels on the segmentation boundaries between

different regions Cany’s edge detector (DOG) is also failed to give rotational

invariance as well.
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