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Abstract In this article, a novel multimodal Medical Image Fusion (MIF) method
based on Non-subsampled Contourlet Transform (NSCT) and Pulse-Coupled Neu-
ral Network (PCNN) is presented. The proposed MIF scheme exploits the advan-
tages of both the NSCT and PCNN to obtain better fusion results. The source med-
ical images are first decomposed by NSCT. The low-frequency subbands (LFSs)
are fused using the ‘max selection’ rule. For fusing the high-frequency subbands
(HFSs) a PCNN model is utilized. Modified Spatial Frequency (MSF) in NSCT
domain is input to motivate the PCNN, and coefficients in NSCT domain with
large firing times are selected as coefficients of the fused image. Finally, inverse
NSCT (INSCT) is applied to get the fused image. Subjective as well as objective
analysis of the results and comparisons with state-of-the-art MIF techniques show
the effectiveness of the proposed scheme in fusing multimodal medical images.

Keywords Image fusion - Pulse-Coupled Neural Network - Multiscale Geometric
Analysis - Medical Imaging - NSCT

1 Introduction

Over the last few decades, medical imaging is playing an increasingly critical and
vital role in a large number of healthcare applications including diagnosis, re-
search, treatment and education etc. To provide support to the physicians vari-
ous modalities of medical images have become available, reflecting different infor-
mation of human organs and tissues and possessing their respective application
ranges. For instance, structural medical images like Magnetic Resonance Imaging
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(MRI), Computed Tomography (CT), Ultrasonography (USG), Magnetic Reso-
nance Angiography (MRA) etc. provide high resolution images with anatomi-
cal information. Whereas, functional medical images such as Position Emission
Tomography (PET), Single-Photon Emission CT (SPECT) and functional MRI
(fMRI) etc. provide low-spatial resolution images with functional information. A
single modality of medical image cannot provide comprehensive and accurate infor-
mation. Therefore, combining anatomical and functional medical images to provide
much more useful information through image fusion (IF) has become the focus of
imaging research [1].

So far, many IF techniques have been proposed by various researchers. It has
been found that the pixel-level spatial domain IF methods usually lead to contrast
reduction. Methods based on Intensity-Hue-Saturation (IHS), Principal Compo-
nent Analysis (PCA) and the Brovey Transform offer better results, but suffer from
spectral degradation [25]. Pyramidal IF schemes such that the laplacian pyramid,
gradient pyramid, contrast pyramid, ratio-of-low-pass pyramid and the morpho-
logical pyramid etc. fail to introduce any spatial orientation selectivity in the
decomposition process, and hence often cause blocking effects [10]. The widely
used Discrete Wavelet Transform (DWT) can preserve spectral information ef-
ficiently but cannot express spatial characteristics effectively [24,15]. Therefore,
DWT based fusion schemes cannot preserve the salient features of the source im-
ages efficiently, and introduce artifacts and inconsistencies in the fused results [22].
Recently, several Multiscale Geometric Analysis (MGA) tools were developed such
as Curvelet, Contourlet, NSCT and Ripplet etc. which do not suffer from the prob-
lems of wavelet. Many IF and MIF methods based on these MGA tools were also
proposed [22,3,13,12].

PCNN is a visual cortex-inspired neural network characterized by the global
coupling and pulse synchronization of neurons [6,17]. It has been observed that
PCNN based IF schemes outperform the conventional IF methods [11,23,18,4,8,
5]. Even though there exists several IF schemes based on transform domain and
PCNN, most of these methods suffer from various problems. In [16] Z. Wang.
et al. have proposed a fast MIF scheme based on a multi-channel PCNN (m-
PCNN) model with easy extensibility capability, producing fused images with
high information content, but suffering from the problems of contrast reduction
and loss of image fine details. Q. X.-Bo et al. have developed an IF method based
on spatial frequency (SF) motivated PCNN in NSCT domain [19]. It works well for
multifocus IF and visible/infrared IF, but the absence of directional information in
SF and the use of same fusion rule for both the subbands cause contrast reduction
and loss of image details. The IF technique proposed by G. Xin et al. based on
dual-layer PCNN model with a negative feedback control mechanism in the NSCT
domain has shown promising results in multifocus IF [20]. In [4] M. M. Deepika et
al. have proposed a combined method of MIF and edge deduction based on NSCT
and PCNN. This scheme also suffers from the problems of contrast reduction and
unwanted image degradations. The technique proposed by K. Feng et al. in [8]
based on bi-dimensional empirical mode decomposition and m-PCNN, shows good
result in preserving the source images fine details in the fused image, but suffers
from contrast reduction. In most of the existing IF methods based on PCNN
the value of a single pixel (coefficient) in spatial or transform domain is used
to motivate one neuron [20,16,4]. But this simple use of pixels (coefficients) in
spatial or transform domain is not effective enough, because humans are sensitive
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Fig. 1 Structure of PCNN.

to edges and directional features. Moreover, it has also been found that using
different fusion rules for different subbands result in better fused images.

The field of MIF is quite different from that of multifocus and visible/infrared
IF. Most of the times, there are very subtle differences between the features of
the source medical images. Special care has to be taken during the fusion process
of these fine details. Therefore, we need a MIF scheme that can simultaneously
handle the problems of contrast reduction, loss of image details and unwanted
image degradations. The main contribution of our proposed MIF method is to use
the shift-invariance, multi-scale and multi-directional properties of NSCT along
with the modified spatial frequency (capable of capturing the fine details present
in the image [26]) motivated PCNN in such a way that can capture the subtle
differences and the fine details present in the source medical images that result in
fused images with high contrast, clarity and information content.

2 Methods
2.1 Non-subsampled Contourlet Transform (NSCT)

In 2006, Arthur L. da Cunha et al. proposed an overcomplete transform called
the NSCT [2]. NSCT is a fully shift-invariant, multiscale and multidirection ex-
pansion that has a fast implementation. The Contourlet Transform (CT) is not
shift invariant due to the presence of the down-samplers and up-samplers in both
the Laplacian Pyramid (LP) and Directional Filter Bank (DFB) stages of CT [2].
NSCT achieves shift-invariance property by using the Non-subsampled pyramid
filter bank (NSP or NSPFB) and the Non-subsampled DFB (NSDFB).

2.1.1 Non-subsampled Pyramid Filter Bank

NSPFB is a shift-invariant filtering structure accounting for the multiscale prop-
erty of the NSCT. This is achieved by using two-channel Non-subsampled 2-D filter
banks. It has no downsampling or upsampling and hence shift-invariant. Perfect
reconstruction is achieved provided the filters satisfy the following identity
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Fig. 2 Block diagram of the proposed MIF method.

Inverse NSCT

Fused Image

Ho(2)Go(2) + H1(2)G1(2) =1 (1)

where Ho(z) is the lowpass decomposition filter, H1(z) is the highpass decompo-
sition filter, Go(z) is the lowpass reconstruction filter, and G1(z) is the highpass
reconstruction filter.

In order to obtain the multiscale decomposition, NSPFB are constructed by
iterated Non-subsampled filter banks. For the next level all filters are upsampled
by 2 in both dimensions. Therefore, they also satisfy the perfect reconstruction
identity. The equivalent filters of a k-th level cascading NSPFB are given by

Hi(=2"")ITZ2 Ho(z2'), 1 <n < 2

HE(2) = {H;__Ol Ho=?) R 2)

where 2z’ stands for [z{, zé]
2.1.2 Non-subsampled Directional Filter Bank

The NSDFB is constructed by eliminating the downsamplers and upsamplers of the
DFB by switching off the downsamplers/upsamplers in each two channel filter bank
in the DFB tree structure and upsampling the filters accordingly [2]. The outputs
of the first level and second level filters are combined to get the four directional
frequency decomposition. The synthesis filter bank is obtained similarly. All filter
banks in the NSDFB tree structure are obtained from a single NSFB with fan
filters. To obtain multidirectional decomposition the NSDFBs are iterated and to
get the next level decomposition all filters are up sampled by a quincunx matrix
given by

QM = B _ﬂ 3)

The NSCT is obtained by combining the 2-D NSPFB and the NSDFB. The
resulting filtering structure approximates the ideal partition of the frequency plane.
It must be noted that different from the contourlet expansion the NSCT has a
redundancy given by R = Z?:o 2 where 2% is the number of directions at scale

7
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2.2 Pulse Coupled Neural Network

PCNN is a single layered, two-dimensional, laterally connected neural network of
pulse coupled neurons. The PCNN neurons structure is shown in Fig. 1. The neu-
ron consists of an input part (dendritic tree), linking part and a pulse generator.
The neuron receives the input signals from feeding and linking inputs. Feeding
input is the primary input from the neurons receptive area. The neuron receptive
area consists of the neighboring pixels of corresponding pixel in the input image.
Linking input is the secondary input of lateral connections with neighboring neu-
rons. The difference between these inputs is that the feeding connections have
a slower characteristic response time constant than the linking connections. The
standard PCNN model is described as iteration by the following equations [17,9]:

Fijn] = eiaFF@j [n—1]4+ Vg Z Wi 5. k,1Y4,5 [n—1]+ Si; (4)
K,
Lij[n] =™ Lijln =1+ Ve Y mijkiYijln—1] (5)
k,l
Ui,j[n] = Fij[n](1 + BLi j[n]) (6)
Y, [n] _ 1, Ui,j[n] > Ti’j [n] (7)
td 0, otherwise

T;jln] = e T, j[n — 1] + V7Y 4(n] (8)

In Eq.(4) to Eq.(8), the indexes i and j refer to the pixel location in the image,
k and [ refer to the dislocation in a symmetric neighborhood around one pixel,
and n denotes the current iteration (discrete time step). Here n varies from 1 to
N (total number of iterations). The dendritic tree is given by Egs.(4)-(5). The two
main components F' and L are called feeding and linking, respectively. w; j x,; and
m;, j k1 are the synaptic weight coefficients and S is the external stimulus. V& and
Vi are normalizing constants. ar and aj are the time constants, and generally
arp < ar. The linking modulation is given in Eq.(6), where U; ;[n] is the internal
state of the neuron and f is the linking parameter. The pulse generator determines
the firing events in the model in Eq.(7). Y; j[n| depends on the internal state and
threshold. The dynamic threshold of the neuron is Eq.(8), where V and ar are
normalized constant and time constant, respectively.

2.3 Proposed MIF Scheme

The notations used in this section are as follows: A, B, R represents the two
source images and the resultant fused image, respectively. C' = (A, B, R). L&
indicates the low-frequency subband (LFS) of the image C at the coarsest scale
G. DgC:h represents the high-frequency subband (HFS) of the image C at scale g,
(g =1,....,G) and direction h. (i, 7) denotes the spatial location of each coefficient.
The method can be easily extended to more than two images.
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2.8.1 Fusing Low Frequency Subbands

The LFSs coefficients are fused using ‘max selection’ rule. According to this fusion
rule, select the frequency coefficients from L& or L2 with greater absolute value
as the fused coefficients:

Ar: A/ - B/ -
R o LG(Zvj)v |LG(17])| 2 |LG(17])|
Letg) = {LCB;(i,j), otherwise (9)

2.8.2 Fusing High Frequency Subbands

The HFSs of the source images are fused using PCNN. As humans are sensitive to
features such as edges, contours etc., so instead of using PCNN in NSCT domain
directly (i.e., using individual coefficients), modified spatial frequency (MSF) in
NSCT domain is considered as the image feature to motivate the PCNN.

Spatial frequency (SF) proposed by Eskicioglu et al. is calculated by row and
column frequency [7]. It reflects the whole activity level of an image which means:
the larger the SF the higher the image resolution. We have used a modified version
of SF in the proposed MIF method. The MSF consists of row (RF), column (CF)
and diagonal frequency (DF). The original SF lacks the directional information
present in the image which results in the loss of important fine details of the
image. Whereas, MSF incorporates this directional information and this results
in an image clarity/activity level measure capable of capturing the fine details
present in the image [26]. For an M x N pixel image the MSF is defined as

MSF = /RF?2 + CF? + DF? o)
where,
1 M N
RF =\ 37N =T mZ::l nz?[fm,n ~ frno1]? a1
1 M N
CF =\ =1y~ mZ::Q ;[fm,n — Fotn]? 12)
and,
pr=reae (13)
where,
1 M N
P= (M —1)(N —-1) ijQﬂgQ[fm,n AL (14
and,

Q= ; Z Z[fmflyn - fm,nfl}2 (15)
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Let, M SFi‘f;h’c be the modified spatial frequency corresponding to a coeffi-

cient Dg n(%,7), measured by using an overlapping window around the concerned
coefficient where C' = (A, B). In order to reduce the computational complexity,
we use a simplified PCNN:

G ,h,C
FI ] = MSFY; (16)
h,C —ar 79,h,C h,C xrg,h,C
Ly Inl=e LY In— 1]+ Vp Z Wz‘g,j,k,z Yi?j,k,z [n —1] (17)
k,l
h,C h,C h,C
UZm=In] = F75 ]+ (1 + BLY; [n]) (18)
097 n] = e 09" n — 1] + VoY% n — 1] (19)
g,h,C g,h,C
Y‘g,‘h,C[n} _ L U [n] > 075" [n] (20)
“J 0, otherwise
,h,C ,h,C ,h,C
7" ] =T [n — 1+ Y [n] (21)

where, the feeding input Fﬁ;-h’c is equal to the modified spatial frequency MSF&h’C.
The linking input Lf”jh’c is equal to the sum of neurons firing times in linking
range. W; ;1,1 is the synaptic gain strength and subscripts k¥ and [ are the size of
linking range in the PCNN. ay, is the decay constant. £ is the linking strength,
Vi, and Vp are the amplitude gains. Uf:’jh’c is the total internal activity and fo’c
is the threshold. If Uff;-h’c is larger than 01-9”]-’1’0, then the neuron will generate a
pulse Yi,j’.h’c =1, also called one firing time. The sum of Yf}hc = 1 in n iteration
(namely the firing times), is used to represent the image information. Here, rather
than ij’-h’c[n], we have analyzed Tf}h’c[n}, since neighboring coefficients with

similar features represent similar firing times in a given iteration time.

2.4 Algorithm

The medical images to be fused must be registered to assure that the corresponding
pixels are aligned. Here we outlines the salient steps of the proposed MIF method:

1. Decompose the registered source medical images A and B by NSCT to get the
LFSs and HFSs.

2. Fused the coefficients of LF'Ss using the ‘max selection’ rule described in Sec-
tion 2.3.1, to get the fused LFS.

3. Compute the MSF as described in Section 2.3.2, using overlapping window on
the coefficients in HFSs.

4. Input MSF of each HF'S to motivate the PCNN and generate pulse of neurons
with Eqs.(16)—(20). and compute the firing times Tﬁ;h’c[n] by Eq.(21).

5. If n = N, then iteration stops. Then fuse the coefficients of the HFSs by the
following fusion rule:

.. Jh, A Jhy,

22
th(i,j), otherwisee (22)

Dy (iy§) = {
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Fig. 3 Source images (top two rows) with fusion results (last row): (source images are down-
loaded from http://www.imagefusion.org/; http://www.med.harvard.edu/aanlib/home.html);
al = CT, b1l = MRI, a2 = T1 — weighted MR, b2 = MRA, a3 = CT, b3 = T1 —
weighted MR — GAD, a4 = T1 — weighted MR, b4 = T2 — weighted MR, a5 = CT,
b5 = Proton Density (PD) weighted M R.

6. Apply inverse NSCT (INSCT) on the fused LFS and HFSs to get the final
fused medical image.

The block diagram of the proposed MIF scheme is shown in Fig. 2.

3 Results
3.1 Experimental Setup

We implemented the proposed technique in MATLAB, and experiments were car-
ried out on a PC with 2.66 GHz CPU and 4 GB RAM. The decomposition pa-
rameter of NSCT was levels = [1,2,4] and we used ‘pyrexc’ and ‘vk’ as the
pyramid filter and orientation filter, respectively. Parameters of PCNN was set
as k x 1l = 3x3, ar, = 0.06931, ap = 0.2, 8 = 0.2, Vp = 1.0, V = 20,
W =1[0.707 1 0.707, 1 0 1, 0.707 1 0.707] and N = 200.

The selected quantitative criterions used in the objective analysis are as follows:

3.1.1 Standard Deviation (STD)

It measures the contrast in the fused image. An image with high contrast would
have a high standard deviation.
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3.1.2 Entropy (EN)

The entropy of an image is a measure of information content. It is the average
number of bits needed to quantize the intensities in the image. It is defined as

L—1
EN = - p(g)log, p(g) (23)
g=0
where p(g) is the probability of grey-level g, and the range of g is [0,.....,L-1]. An
image with high information content would have high entropy. If entropy of fused
image is higher than parent images then it indicates that the fused image contains
more information.

3.1.8 Spatial Frequency (SF)

Spatial frequency can be used to measure the overall activity and clarity level of
an image. Larger SF value denotes better fusion result.

3.1.4 Mutual Information (MI)

It measures the degree of dependence of the two images. A larger measure implies
better quality. Given two images xr and xr MI is defined as [14]:

MI =1(za;zp) + I(zp;2F) (24)
where,
L L hR F(u ”U)
I(zRr;x :E gh u, v)logs ———"—~ 25
(rr;2F) o 2 RF( ) g2hR(u)hF(’U) (25)

where hg, hr are the normalized gray level histograms of zr and xr, respectively.
hr,r is the joint gray level histogram of zr and zr, and L is the number of bins.
xr and xp correspond to the reference and fused images, respectively. I(zr;xr)
indicates how much information the fused image zr conveys about the reference
zr. Thus, the higher the mutual information between zr and zr, the more likely
zr resembles the ideal zg.

3.1.5 QAB/F

C.S. Xydeas et al. proposed an objective image fusion performance measure Q4 5/F
as follows [21]:

AB/F _ Yone1 Yot (@ (0, myw? (n,m) + QP (n, myw® (n, m))
St Lo (WA (n,m) 4+ wB (n,m))

where Q4 (n,m) = ‘;F(n,m)QﬁF(n,m). Q‘;F(n,m) and QA (n,m) are the
edge strength and orientation preservation values, respectively. n, m represent
the pixel location and N, M are the size of images, respectively. QBF (n,m) is
similarly computed. w*(n, m) and w?(n,m) reflect the importance of Q4 (n, m)
and QB¥' (n,m), respectively. The dynamic range of QAB/F is [0, 1], and it should
be as close to 1 as possible.

Q

(26)
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Table 1 Performance Evaluation of the Proposed MIF Scheme

Fused Image

Combination Name SF EN  STD MI SF EN STD QAB/F Qo

C1 fﬁ g;gég égé%g ggggég 4.8300 6.9434 6.7724 65.8646 0.7771 0.5286

C2 }ig 2138? iég?é 359.51;)1’;2 5.0067 7.8946 6.0659 68.9896 0.6699 0.6646

C3 E?é (73(2)388 gigég g?igg; 3.1200 6.8315 4.5234 82.3317 0.5180 0.8990

C4 ii ggigg ggggg g;é;ig 3.4700 6.9678 4.0450 79.5945 0.5410 0.8883

C5 ig égstf(?s :2528[1)}1 Z?Sggg 3.0593 6.3261 4.3645 83.7037 0.5338 0.8796

8.1.6 Qo

It is a universal image quality index proposed by Wang et al. [21]. Qo, between
the source image A and the fused image F' is defined as follows:

20,¢ - 2af
CETINCESD
where 0, represents the covariance between A and F'. 04, o¢ indicates the stan-

dard deviation of A and F; and @, f represent the mean value of A and F, respec-
tively. Qo(A, B, F) is the average between Qo(A, F') and Qo(B, F):

Qo(A, F) = (27)

Qo(A, F) + Qo(B, F)
2
Note that —1 < Qo < 1, and it should be also as close to 1 as possible.

Fig. 3, shows five pairs of source medical images of different modalities used
in the experiments along with the corresponding fused results obtained by the
proposed method. In Fig. 3, Ci (i = 1,2,...,5) indicates the image combinations:
Ci = (ai,bi, fi), ai and bi are the two groups of source images and fi represents
the fused results.

The CT image in Fig. 3(al) shows the bones and the MRI image in Fig. 3(b1)
displays the soft tissue information. The T1l-weighted MR image in Fig. 3(a2)
contains the soft tissues and it also shows a lesion in the brain, but the vascular
nature of the lesion is not clear. The vascular nature of the lesion is evident in MRA
image of Fig. 3(b2), but the tissue information is low. In Fig. 3(a3) and Fig. 3(b3),
CT image demonstrates the calcification and the MR image reveals several focal
lesions involving basal ganglia with some surrounding edema, respectively. Both
the MR images of Fig. 3(a4) and Fig. 3(b4) show a lesion in the frontal lobe.
The CT image in Fig. 3(ab) indicates a medial left occipital infarct involving the
left side of the splenium of the corpus callosum and the MR image in Fig. 3(b5)
reveals only mild narrowing of the left posterior cerebral artery. For the five source
medical images of Fig. 3, the detail quantitative evaluation is given in Table 1.
The Table 2 shows the performance comparisons of our proposed method against
some of the existing MIF schemes using the images of the image combinations
C1 and C5 as the source images. Fused images for the image combinations C'1

Qo(A,B, F) = (28)
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Table 2 Performance comparisons using C'1 and C5

Scheme Combination MI  SF EN STD QAB/FqQ,
Scheme [19] cl 2.6817 5.0373 6.2781 29.7318 0.6850 0.4762
5 2.6651 5.9269 4.2015 55.6347 0.3163 0.7626
Scheme [16] el 5.4036 5.3104 5.8783 33.7291 0.7527 0.5212
5 3.1076 5.9834 4.1933 55.1152 0.4958 0.8578
Seheme [15] el 2.0575 5.6108 4.0822 33.6529 0.4010 0.4527
5 2.8041 6.2651 4.1899 56.2076 0.4850 0.7529
Scheme [22] I 2.5295 6.5575 6.3877 53.8200 0.4537 0.4976
5 2.4406 6.2136 4.2635 56.5361 0.4371 0.4981
Seheme [24] 1 27148 6.6501 6.7295 57.9787 0.5219 0.5071
5 2.6217 6.1865 4.3216 78.4728 0.4210 0.6150
cl 47477 6.9326 6.7704 65.8304 0.7754 0.5272
Scheme NSCT.PCNN.SF 2.9788 6.2938 4.3528 81.9448 0.5007 0.8751
Proposed Scheme el 7.8300 6.9434 6.7724 65.8646 0.7771 0.5286
5 3.0593 6.3261 4.3645 83.7037 0.5338 0.8796

(k)

Fig. 4 Fusion results on image combinations C'1 and C5: (a)(g) Method NSCT_PCNN_SF,
(b)(h) Method of [19], (c)(i) Method of [16], (d)(j) Method of [15], (e)(k) Method of [22] and
(£)(1) Method of [24].

and C5 obtained by the compared methods of Table 2 are shown in Fig. 4. To
support our choice of MSF over SF, we also conducted an experiment where all
the other configurations of the proposed MIF scheme were kept same, only SF
was used instead of MSF (named NSCT_PCNN_SF for convenience). Table 2 and
Fig. 4 also contain the quantitative results and the fused image obtained by the
method NSCT_PCNN_SF.

4 Discussion
4.1 Subjective Analysis and Discussion

An expert radiologist was asked to subjectively evaluate the effectiveness of the
proposed MIF method. After careful manual inspection of the images of the Fig. 3,
the radiologist conformed to the effectiveness of the proposed scheme. He found
that the fused images obtained by the proposed MIF scheme were more clear, in-
formative and have higher contrast than the source medical images that is helpful
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in visualization as well as interpretation. The fused image of image combination
C1 contains both the bone structure (from Fig. 3(al)) and the soft tissue in-
formation (from Fig. 3(b2)). Both the lesion and its vascular nature along with
the soft tissue information are evident in the fused image (Fig. 3(f2)) of the im-
age combination C2. Similarly, the fused images of the other image combinations
(C3, C4 and C5) contain information from both the corresponding source images.
The resultant fused images of Fig. 4 obtained by the compared methods of Ta-
ble 2 were also shown to the radiologist. The resultant fused images obtained by
NSCT_PCNN_SF are visually very much similar to the fused images obtained by
the proposed technique (as can be seen from the fused images of Fig. 3(f1)(f5) and
Fig. 4(a)(g)). But during the quantitative analysis, we have found that the fused
images obtained by the proposed MIF scheme have higher quantitative results
than the method of NSCT_PCNN_SF. All the compared methods of Fig. 4 except
the schemes of [24] and NSCT_PCNN_SF suffer from the problem of contrast re-
duction. It is clear from the images of Fig. 4 that the methods of [19], [15] and
[22] (Fig. 4(b)(h),(d)(j) and (e)(k)) have lost large amount of image details. As
can be easily seen from the images of Fig. 4(d)(j) and Fig. 4(f)(1), the methods
of [15] and [24] suffer from the problems of blocking effect (as evident from the
lower portions of the images) and contain unwanted image degradations. We can
clearly see from the resultant images given in Fig. 3 and Fig. 4 that the proposed
MIF method results in low contrast reduction, high clarity and high information
content. The proposed MIF scheme also causes less unwanted degradations in the
fused images, as well as is free from the problem of blocking effect. Therefore, it
is clear from the subjective analysis of the fused images that the proposed MIF
method is very effective in fusing multi-modality medical images and superior than
many state-of-the-art MIF techniques.

4.2 Objective Analysis and Discussion

Columns 3 to 5 in the Table 1 show the spatial frequencies, entropies and standard
deviations of the source medical images, and columns 6 to 11 give the values of the
different quantitative measures of the fused images obtained by the proposed MIF
technique. The ‘bold’ values indicate the highest values in the Table 1 for that
quantitative measure. The higher values of SF for the image combinations C'1 to
C4 indicate that the fused images obtained by our proposed method have more
activity and clarity level than the source images. Only the proton density weighted
MR image (Fig. 3(b5)) of image combination C5 has the higher value of SF than
the fused image. The reason behind it may be that the CT image (Fig. 3(ab)) of
the image combination C'5 contains a thick whitish outer-boundary which become
predominant in the fused result. Similarly the higher values of EN for the fused
images show that the fused images obtained by the proposed scheme have more
information content than the source images. We can also see from the Table 1 that
the standard deviation’s values of the resultant images for 4 out of 5 source image
combinations are higher than their corresponding source images, which indicates
that the fused images obtained by our proposed MIF method have higher contrast
than the corresponding source images. Only in case of image combination C2 the
STD value of one of the source image Fig. 3(a2) (T1-weighted MR) is greater
than the fused image. It may be because of the fact that the other source image
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Fig. 3(b2) (MRA) of the image combination C2 has very low contrast (indicated
by low STD value) causing the fused image to have a lower STD value (lower
by very small amount). Therefore, it is clear from Table 1 that the fused images
obtained by the proposed MIF method are more clear, informative and have higher
contrast which is helpful in visualization and interpretation.

In Table 2, the ‘bold’ values indicate the highest values. It is clear from the
Table 2 that the proposed MIF technique has all the highest quantitative results
except for mutual information (MI). The method of [16] has the highest value
for the MI measure. It may be because of the fact that the method of [16] is
based on m-PCNN in the spatial (pixel) domain. It preserves the information
from both the source images better than our proposed method. But since our
method is based on modified spatial frequency motivated PCNN in NSCT domain,
hence it is superior in capturing the fine details of the source images into the
fused image. The highest value of SF indicates that the fused image obtained by
our proposed method has more activity and clarity level than the source images.
Similarly the highest values of EN and ST D for the fused images show that the
fused images obtained by the proposed scheme have more information as well as
higher contrast than the source images. It is also clear from the Table 2 that the
fused image obtained by NSCT_PCNN_SF has lower quantitative results than the
results obtained by the proposed MIF technique. For the other image combinations
used in the experiments we have got similar kind of results.

Medical images of different modalities contain large amount of edges and direc-
tion features, which are quite often very subtle in nature. Through MIF we try to
combine these complementary as well as contrasting features from source medical
images into one fused image. Most of the existing state-of-the-art MIF techniques
suffer from various problems of image degradations like contrast reduction, block-
ing effects and loss of image details etc., and most of these schemes are modality
and task specific. This shortcoming is a big limit to the automatic process and the
generalization for MIF techniques. The original spatial frequency (SF) lacks the
directional information present in the image, which results in the loss of important
fine details of the image. Whereas, modified spatial frequency (MSF) incorporates
this directional information, and this results in an image clarity /activity level mea-~
sure capable of capturing the fine details present in the image [26]. Keeping these
above mentioned issues in mind, in our proposed method we have used the shift
invariance, multi-scale and multi-directional properties of NSCT along with the
modified spatial frequency motivated PCNN in such a way that can capture the
subtle differences as well as the fine details present in the source medical images
into the fused image without reducing the contrast. The use of modified spatial
frequency along with the use of different fusion rules for different subbands pro-
duces fused images with higher spatial resolution and less unwanted degradations
with less difference to the source images. Therefore, it is obvious from the results
and comparisons given above that the fused images obtained by the proposed MIF
method are more clear, informative and have higher contrast which is very helpful
for the clinicians in their diagnosis and treatment.
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