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ABSTRACT

Motivation: Cluster analysis {(of gene-expression data) is a useful
tool for identifying biclogically relevant groups of genes that show
similar expression patterns under multiple experimental conditions.
Various methods have been proposed for clustering gene-expres-
sion data. However most of these algorithms have several short-
comings for gene-expression data clustering. In the present article,
we focus on several shortcomings of conventional clusterng
algorithms and propose a new one that is able to produce better
clustering solution than that produced by some others.

Results: We present the Divisive Comelation Clustering Algorithm
({DCCA) that is suitable for finding a group of genes having similar
pattern of varation in their expression values. To detect clusters with
high comelation and biclogical significance, we use the cormelation
clustering concept introduced by Bansal ef al. Our proposed
algorithm DCCA produces a clusterng solution without taking
number of clesters to be cmeated as an input. DCCA uses the
correlation matrix in such a way that all genes in a cluster have
highest average correlation with genes in that cluster. To test the
performance of the DOCA, we have applied DCCA and some well-
known conventional methods to an artificial dataset, and nine gene-
expression datasets, and compared the performance of the
algorithms. The clusterng results of the DCCA are found to be
more significantly relevant to the biological annotations than those of
the other methods. All these facts show the superiority of the DCCA
over some others for the clustering of gene-expression data.
Availability: The software has been developed using C and Visual
Basic languages, and can be executed on the Microsoft Windows
platfiorms. The software may be downloaded as a zip file from http.
www.isical.ac.in/~rmajat. Then it needs to be installed. Two word files
{included in the zip file) need to be consulted before installation and
execution of the software.

1 INTRODUCTION

Clustering is one of the most important tasks that deals with
finding a structure in a collection of unlabeled data. A loose
definition of clustering could be ‘the process of organizing

objects into groups whose members are similar in some way’
{(Han and Kamber, 2001). A cluster is therefore a collection of
objects that are similer among themselves and dissimilar to the
objects belonging to other clusters. Clustering techniques use
various distance measures for determining similarity /dissim-
ilarity between a pair of objects and decide whether they belong
to the same or different clusters. Euclidean and Maholanobis
distances are commonly used distance measures in this regard.

Generally, clustering algorithms could be either hierarchical
or partitional. Some of the problems with conventional
hierarchical and partitional clustering methods are: (i) These
algorithms find clusters containing co-expressed genes. They
cannot determine a group of genes having similar pattern of
variations in the expression profiles. In other words, the clusters
obtained by these algorithms contain genes with similar
expression values. (i) They need the mumber of clusters we
want to create, as an input. Although DB index. Dunn index
{(Han and Kamber, 2001; Jain and Dubes, 1988; Mitra and
Acharya, 2003) or any other cluster validity indices could be
used for determination of an optimal number of clusters for a
given dataset, this number may be found to be different for
different cluster validity indices. (iii) Conventional hierarchical
and partitional clustering algorithms use either Euclidean or
Maholanobis distances as distance measures. The Euclidean
nom-based methods find mainly spherical shape of clusters
(Kim ef af. 20035) while methods based on the Maholanobis
distance detecting mainly ellipsoidal ones (Kim e al., 2005),
even if these shapes of clusters may not be present in a dataset.
{iv) For large dataset, these algorithms may result in large miss
clustering. Mormover hierarchical clustering algorithms like
AGNES or DIANA (Han and Kamber, 2001 ; Jain and Dubes,
1988; Mitra and Acharya, 2003), may result in one single large
cluster and several singletons.

In order to overcome some of the drawbacks of conventional
clustering algorithms, new clustering algorithms have been
developed for gene-expression data analysis. Xu er al. (2002)
have proposed a new framework for representing a set of multi-
dimensional gene-expression data as a minimum spanning tree
{MST). Based on the MST representation, they have imple-
mented a number of efficient clustering algorithms, including
two with guaranteed global optimality. Kim er af (2005) have
used Gustafson—Kesel (GK) (Gustafson and Kessel, 1979
clustering method for microarray gene-expression data for
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detecting clusters of different shapes in a dataset. Sharan e al.
{2003), have presented a nmew clustering algorithm, called
CLICK. CLICK uses graph-theoretic and statistical techniques
to identify tight groups (kernels) of highly similar genes that are
likely to belong to the same true cluster. Several heurstic
procedures are then used to expand the kernels into the full
clusters. Qin er af. (2003) have described a generalization of the
hierarchical clustering algorithm named as kernel hierarchical
clustering algorithm, and then evaluated the utility of the kernel
hierarchical clustering algorithm using both internal and
extemnal validation. Lukashin and Fuchs (2001} have proposed
a new clustering algorithm for clustering of gene-expression
data based on the method of simulated annealing. Dembele and
Kastner (2003) have developed a method for selection of para-
meters for Fuzzy c-means (FCM) algorithm when it is applied
to gene-expression data clustering.

There also exist several biclustering algorithms in this regard.
These include greedy biclustering algorithms of Cheng and
Church (2000) and Ben-Dor er af. (2002), iterative algorithms of
Getz of al. (2000) and Thmels e af. (2004), SAMBA of Tanay
erf al. (2002), Flexible Overlapped biClustering (FLOC) Kluger
eral. (2003), a graph theoretic algorithm of Alexe er al. (2002).
Murali and Kasif (2003) have defined biclusters as conserved
gene expression motif Le. xMOTIF, and devised an algorithm
to find largest xMOTIF. Prelic ef af. (2006) have compared
performance of different biclustering algorithms, and proposed
a fast divide-and-conquer biclustering algorithm {Bimax).

Apart from different approaches of clustering and bicluster-
ing, Kim and Tidor (2003) have applied the notion of non-
negative matrix factorization (NMF) to the analysis of
gene-array  experiments. NMF is capable of rmecognizing
similarity between sub-portions of the data corresponding to
localized features in expression space. [tis to be mentioned here
that the method is not suitable for low-dimensional data.

Correlation clustering is a new clustering method introduced
by Bansal er af. (2004), which is basically based on the notion of
graph partitioning. Here the quality of clusters is measured in
terms of certain parameters, namely the number of agreemenis
and the number of disagreemenrs. First of all, a graph is
constructed from input data by considering genes as nodes and
comelation between the genes as edges. There are two types of
edges. namely positive and negarive. If the correlation coefficient
between two genes is positive, there is a posirive edge between the
nodes. On the other hand, a negative edge between these two
nodes indicates that the corresponding genes are negatively
correlated. Number of agreements is simply the number of data
points (genes) that are put in correct clusters, and is measured by
the number of pesitive edges in the same clusters plus megarive
edges between genes in different clusters. The number of positive
edges between genes indicates that they are in the same cluster.
On the other hand, the number of disagreemernis is the number of
genes wrongly clustered, and is measured by the number of
negative edges in the same clusters plus number of posivive edges
between nodes in different clusters.

In the area of corelation clustering, several attempts (Alon
ef al., 2005 Charikar ef af, 2003; Charikar and Wirth, 2004;
Demaine and Immorlica, 2003; Demaine er af.. 2006) have
already been made, which deal with variations of this method.
If there exists a perfect clustering, ie. if one gets all the genes

correctly clustered, then the optimal clustering can be obtained
by simply deleting all negarive edges and output the connected
components of the remaining graph (Cohen and Richman,
2002). It has been proved that if no perfect clustering exists,
no algorithm, based on correlation coefficient can find an
optimal clustering in polynomial time (Bansal er al, 2004).
There are two different approaches (Bansal er af.. 2004) for
correlation clustering. Both these approaches create & mumber
of clusters without taking K as an input. One approach is based
on minimization of disagreement while the other is based on
maximization of agreement.

Bansal er al, 2004 has proved that the problem of minimiz-
ing disagreement or equivalently maximizing agreement is
NP-complete. They have provided a constant factor approxima-
tion algorithm to the problem of minimizing disagreements, and
a polynomial-time approximation scheme (PTAS) for maximiz-
ing agreements (Bansal e af, 2004). Both these algorithms
are based on graph partitioning. Main problem of these two
algorithms is that they can only work on a given unweighted
complete graph with positive /negarive labels on the edges.
Another major problem with Bansal ef al’s (2004) comelation
clustering algorithm is that they have considered only sign of
the correlation coefficient but not the magnitude. This may
deteriorate the quality of clusters in terms of biological relevance.

In order to tackle these problems with the aforesaid correla-
tion clustering algorithms, we have considered both sign and
magnitude of the correlation coefficient. Based on this notion,
we have developed, in this article, a new clustering algorithm,
called divisive correlation clusrering algorithm (DCCA). This isa
hierarchical clustering method but differs from the concept of
conventional hierarchical algorithms. Unlike hierarchical clus-
tering method, DCCA produces clusters with nearly uniform size
based on input patterns and can repair that defects occur in a
clustering step to produce proper clustering solution. DCCA uses
Pearson correlation coefficient as the similarity measure. The
common advantage of DCCA over conventional hierarchical
and partitional clustering methods is that it can produce K
clusters from an input dataset without taking K as an input.
DCCA uses concepts of correlation clustering but the algorithm
differs from that in (Bansal er af., 2004).

DCCA considers the value of Pearson correlation coefficients
among all pairs of genes. All the pairs of genes with negative
correlation coefficient values between them should be in
different clusters. In each iteration, the algorithm selects a
cluster having a pair of gene (x.x) with the most negative
correlation coefficient between them. Then this selected cluster is
partitioned into two disjoint clusters. Partiioning is done in such
a way that the genes x; and x; placed in different clusters. The
data points (gepes) having larger correlation coefficient, with the
gene x; compared to that of %, are placed in the cluster that
contains X, The other data points (genes) are placed in the
cluster that contains the gene x;. The placement of each gene is
checked whether they are placed in the most appropriate cluster
or not. IF placement is inappropriate then it is changed over
the set of clusters. Placement checking and comection steps
iterate until all genes are placed in appropriate clusters.
Partitioning continues until all the pairs of the genes inside the
clusters are only positively correlated. DCCA generates clusters
where genes ina cluster have similar pattern of variation in their
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expression profiles. Unlike conventional clustering algorithms,
here a cluster may contain genes with both high and low
expression values.

In our study the superior capability of clustering by DCCA
over a number of algorithms namely Bansal’s Minimizing
Disagreement (MIND) in (Bansal e7 af., 2004), K-means (Han
and Kamber, 2001; Jain and Dubes, 1988; Mitra and Acharya,
2003), PAM (Han and Kamber, 2001; Mitra and Acharya,
2003), DIANA (Han and Kamber, 2001), FCM (Bezdek, 1981;
Bezdek er af. 1984; Dunn, 1973), GK (Gustafson and Kessel,
1979} and an NMF-based algorithm in (Kim and Tidor, 2003)
is demonstrated through experiments with one artificial dataset
and nine gene-expression datasets.

2 DIVISIVE CORRELATION CLUSTERING
ALGORITHM

Let us consider a set of n genes X'= {x), X2. . ...X,]. for each of
which m expression values are given. These # genes will have to
be grouped into K disjoint clusters €, Ca. .. Cp. .. Cg
DCCA uses Pearson correlation coefficient for measuring
similarity /dissimilarity between expression patterns of two
genes x; and x;, which is defined as

o

Pilxg = Xxg = %)

Corr(x;. %) = ; -l (n
3 (0 = % L (g — 5
l‘.'I.I'..'I J=]

where x; and xy are fth sample values of the ith and jth genes
respectively. ¥; and X; are mean values obtained from m sam-
ples of the ith and jth genes, respectively. Pearson correlation
coefficient uses m sample values of a pair of genes x; and x;,
and retums a value lying between +1 and —1. Corr(x. x)=0
represents that x; and x, are positively correlated with the
degree of correlation as its magnitude. On the other hand,
Cormix;. x;)=<0 represents that x; and x; are negatively cor-
related with wvalue |Corr(x,x). Positive value of Pearson
correlation coefficient indicates that the two penes are
co-expressed and negative wvalue indicates that opposite
expression pattern exists between them. With this measure,
genes with low- and high-expression values may be in the same
cluster provided that the pattern of changes in expression
values over the samples for two genes is similar.

As mentioned in Section 1, the problem with Euclidean and
Maholanobis distances (Kim ef af.. 2005) is that they impose a
fixed geometrical structure and find clusters of that shape evenif
they are not present. The Euclidean nom-based methods find
mainly spherical shape of clusters, whereas the Maholanobis
distance-based methods find mainly ellipsoidal ones, even if
those shapes of clusters may not be present ina dataset. Pearson
correlation coefficient is used as a measure of similarity/
dissimilarity to cluster genes with similar expression patterns;
genes with opposite expression patterns are assigned to different
clusters. Before describing the algorithm in details, we define the
following terms and measurements used in this regard.

Attraction: For two genes x; and x,. if Corr(x,, x,) is greater
than zero then there is an attraction between x; and x,.

Repulsion: For two genes x; and x;, if Corr(x,.%,) is less than
zero then there is a repulsion between x; and x;.

Attraction/repulsion value: Magnitude of Corr{x; x;) is the
strength of attraction or repulsion.

Average correlation value: Average correlation value for a
gene x; with respect to cluster C, is defined as

1
AVGCyi = ”—zi‘nrr{m, x)

il
2

xel,
X ZEX;

where n, is the number of data points in C,—{x;}. Thus
AVG Cyy indicates that the average correlation fora gene x; with
other genes inside the cluster C,,. This value reflects the degree
of inclusion of x; to cluster C,.

DCCA considers a pair of repulsive genes that should be
in different clusters as their functional behavior is opposite.
Imitially all the genes are considered in a single cluster. In each
iteration, algorithm selects a cluster having a pair of gene (x;. x;)
with the largest repulsion {i.e. with the most negative repulsion
value). Then this selected cluster is partitioned into two disjoint
clusters. Partitioning is done in such a way that x; and x; are
placed in two different clusters. Data points (genes) having larger
attraction with % compared to x; are placed in the cluster that
contains %, Otherwise, they are placed in the cluster that
contains X, Such partitioning may cause miss placement of genes
as they are placed in clusters based on only attraction value with
two genes %, and x. At this point, average correlation values
for each gene x; with respect to each cluster is calculated and
x; is placed into cluster with which x; has the highest average
correlation value. Partitioning continues until there is no
repulsion present inside a cluster. The algorithm stops when no
repulsion exists between any pair of genes inside any cluster.
DCCA ensures that a gene X, belongs to the cluster C,. iff
AVGCpy = AVGC,, forallg # p. The algorithm also ensures that
all pairs of genes in any cluster are only positively correlated.

Algorithm

Input: A set of # genes X = {x.%2.. .. .X,}. for each of which m
expression values are given.

Output: K disjoint clusters Cy, Ca, ..., Oy, so that X = L,||,'lj:_1 Cy.
Steps:

1. Initially, consider all the genes in one cluster. Set number
of cluster K=1.

2. For each iteration, do:

i. Foreach cluster C,. calculate Pearson correlation coeffi-
cient [Equation (1)] between all pairs of genes in C,.

ii. If no repulsion exists between a pair of genes inside
any cluster then STOP, otherwise perform Step iii.

iii. Identify a cluster C for which a pair of genes x;.x; have

the most nega tive reprfsion value among all the clusters.

iv. Replace cluster € with two clusters C, and C,.

and increase number of clusters K by one.

Place gene x; to €, and x; to . For all the other

genes X in O, compare Corr(x;, %) and Corr(x; x;).
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If Corrx; xg)> Corrix;, x;) then place x; to €,
otherwise place x; to C,.
v. Foreach x; in X, do:

a. For each cluster C,. 1 =p =K, calculate average
correlation value AVGC,; [Equation (2)].

b. If AVGCp = AVGC,,, for each ¢, 1 =g= K and
p#q then place a copy of xg to new pih cluster
CNEW,.

vi. If I__jf_d(‘.-‘&'EWF — ) = ¢ then no change occurs in
the clusters obtained in the previous iteration of Step
v,ie. CNEW\ =C, CNEW,=Ca,.. ., CNEW=Cy,
then go to Step 2. Otherwise for each p, 1 <p = K, set
Cp,=CNEW,. Set CNEW, =4, for each p. Then go to
step v.

DCCA ensures that increase and decrease in expression
values of all gemes in a cluster across samples occur in the
similar way. This form of resulting clusters also helps us in
identifying group of genes that changes their behavior in a
similar way from normal samples to diseased samples. If we
consider a dataset containing normal and diseased samples then
applying DCCA over the dataset will produce a set of clusters,
where each cluster contains co-expressed genes both in normal
and diseased condition. If gere x; and x; belong to the same
cluster and x; is over expressed in diseased samples then x; is
also over expressed in disease samples, and vice versa. We can
identify clusters containing over/under expressed penes in
diseased condition, and thus we will be able to identify group
of genes potentially responsible for a particular disease.
However, the issue of selecting genes potentially responsible
for a particular disease, has not been considered here.
Conventional clustering algorithms cannot guarantee absence
of repulsion inside a cluster or highest average attraction
between genes inside clusters. Due to this reasons, the DOCA is
able to cluster genes with similar behavior together, with higher
degree of accuracy than other conventional clustering algo-
rithms. DCCA has another advantage over conventional
clustering algorithms that it can create K number of clusters
based on input data only, without taking & as an input.

2.1 Comparative analysis of the performance of
DCCA over some existing algorithms using
a synthetic dataset

Before going into the detailed discussion of the results on real
life gene-expression data, here we demonstrate superior
performance of DOCCA over some existing algorithms using
an artificial dataset ADS (Fig. 1). ADS contains 115 3-D samples
distributed in three clusters. The values of these samples in
three clusters vary mostly in x. p and =z directions, respectively.
Figure 2 shows results for DCCA, PAM and GK. It is clear
from Figure 2 that DCCA, PAM and GK were able to obtain
these three clusters successfully. On the other hand, MIND
{(Supplementary Fig. 3). K-means (Supplementary Fig. 4),
FCM (Supplementary Fig. 5) and DIANA (Supplementary
Fig. 6) were unable to obtain desired clusters for the ADS
dataset.
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Fig. 2. Clustered cutpul of DOCA, PAM and GK.

3 RESULTS

The effectiveness of the DCCA is demonstrated on nine gene
expression datasets. These datasets deal with five veast (http://
yigdb.princeton.edu/download veast_datasets) and four mam-
malian  datasets (http://'www.nchinlm . gov/projects/geo/gds).
Clustering results produced by DCCA for five veast datasets
are shown in Supplementary Figures 7-11 that are generated
using TreeView software (http://rana.lbl. gov/EisenSoftware
.htm). The superior performance of DOCCA  over other
clustering algorithms namely MIND in Bansal of af. (2004),
K-means (Han and Kamber, 2001; Jain and Dubes, 1988; Mitm
and Acharya, 2003), PAM (Han and Kamber, 2001; Mitra and
Acharya, 2003), DIANA (Han and Kamber, 2001), FCM
{Bezdek. 1981; Bezdek er af, 1984; Dunn, 1973), GK
{Gustafson and Kessel, 1979) algorithms and an NMF-based
algorithm (Kim and Tidor, 2003) is also observed using several
indices (described in the Supplementary Material). The datasets
used for comparative analysis are also described in the
Supplementary Material.

Figure 7 in Supplementary Material shows five clearly
distinct clusters produced by DCCA for Yeast ATP. For
Yeast PHO, Figure 8 in Supplementary Material shows 32
different clusters produced by DOCCA. Similardy, for Yeast
AFR. Yeast AFRt, Yeast data obtained by Cho e af.. the
numbers of clusters are (Supplementary Figs. 911} 67, 41 and
138, respectively. The number of clusters obtained by DOCA is
39 for Wild Type and 40 for [L-13 knocked out mouse asthma
data. while 14 for GDS1423 and 43 for GDS2745.

3.1 Performance comparison

For performance comparisons, we have used z-score. Table |
provides the values of z-score computed on the clusters
obtained by the aforesaid algorithms using the datasets.
z-score (Gibbons and Roth, 2002; Press er af, 2003) is
calculated by investigating the relation between a clustering
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result and the functional annotation of the genes in the
cluster. To calculate z-score for five veast datasets, Gibbons
ClusterJudge (Gibbons and Roth, 2002; Press ef al.. 2003) tool
is used. Saccharomyces Genome Database (SGDY) annotation
of the veast genes. along with the gene ontology developed
by the Gene Ontology Consortium (Ashburner er al., 2000;
Issel-Tarver ef al, 2002) has been used by Clusterfudge for
the calculation of z-score. ClusterJudge only supports yeast
datasets. For GD3958, GDS1423 and GDS2745, correspond-
ing annotation datasets GPL339, GPL9% and GPLYT (http://
www.nchi.nlm. gov/projects/geo/sds) have been used. We con-
sider GD3958 knocked out samples and wild type samples
separately for clustering. A higher value of z indicates that
genes would be better clustered by function, indicating a more
biologically relevant clustering result.

Table 1 shows that z-scores corresponding to DOCCA for all
nine datasetsare much largerthan that corresponding to the other
algorithms. This shows the results obtained by DCCA are much
maore biologically relevant than that generated by the others.

32 Functional enrichment: analysis and comparisons

The enriched functional categories for each cluster obtained by
the DCCA on nine datasets are listed in Supplementry Tables
3-29. Some of the enriched functional categories for Yeast ATP
Dataset obtained by MIND, K-means, PAM, FCM and GK
are provided in Supplementary Table 30. The functional
enrichment of each GO category in each of the clusters was
calculated by its Povalue. To compute the Povalue, we
employed the software Funcassociate (Berriz et al, 2003).
P-value represents the probability of observing the number of
genes from a specific GO functional category within each
cluster. A low P-value indicates that the genes belonging to the
enriched functional categories are biologically significant in the
corresponding clusters. In the present article, only functional
categories with P-value <50 x 1077 are reported in order to
restrict the size of the article.

320 Analysis Of the five clusters obtained for the Yeast
ATP dataset (Supplementary Table 3), the highly enriched
categories in cluster C; are the ‘non-membrane-bound orga-
nelle’ and the ‘intracellular non-membrane-bound organelle®
with Povalue of 1.1 107" each. The cluster ¢ contains
several enriched categories on ‘cytosolic ribosome’. The highly
enriched category in cluster Cy is the ‘cytosolic ribosome (sensu
Eukaryota) 805 ribosome’ with Pevalue of 5.2 % 107" In the
case of the Yeast PHO dataset (Supplementary Tables 4 and 3),
the cluster Oy contains several enriched categories on ‘biogen-
esis’. The highly enriched categories in cluster ) are the
‘ribosome biogenesis’ with P-value of 1.5 = 107%, the ‘cyto-
plasm organization and biogenesis” and the ‘ribosome biogen-
esis and assembly’ with P-value of 3.4 x 10~ each. The cluster
3 contains several emriched categories on ‘ribosome’. The
cluster 5 contains ‘cytosolic ribosome” with Povalue of
5.9 3 107" as the highly enriched category. The GO category
‘structural constituent of ribosome/ribosomal protein® is also
highly enriched in this cluster with P-value of 1 43 107 The
cluster €9 contains several enriched categories on “biosynth-
esis’. The highly enriched category in cluster Cq is the

Table 1. z=cores on the clusters obtained by varicus algorithms

D taset Grenes/conditions Method Z-EOTe K
Yeast ATP 6215/3 DOCA 219 5
MIND 4.56 i
K-means 183 5
PAM 189 5
DIANA —(LH25 5
FCM 1#.1 5
GE 1494 5
Yeast PHO GlL3/R DOCA X R 52
MIND (L H62 i
K-means 2 52
PAM 1% 52
DIANA 902 52
FCM 19.5 52
GEK 216 52
Yeast AFR GIR4 R DOoCA 2 67
MIND 104 5
K-means 215 67
PAM 1992 L)
DIANA 1.6 67
FCM 216 67
GE 227 67
Yeast AFRt G197 DoCA 14 41
MIND 15.7 5
K-means 62 41
PAM 274 41
DIANA 256 41
FCM 284 41
GK E1V L] 41
Yeast 645717 DOCA 440 4 134
Cho et af. MIND 392 &
K-means 444 134
PAM 465 13%
DIANA (5.5 138
FCM 154 13%
GE EL 138
GDSY95H 226006 DOCA 187 kL
Wildiype MIND 1.56 5
K-means 9.1 EL
PAM 103 £
DIANA 0915 L
FCM 129 kL)
GEK 153 kL
GDS95H 226006 DOCA 1749 4
Knocked out MIND 1.3% 4
K-means .7 4
PAM 11 4
DIANA —(L}131 4
FCM 113 40
GEK 14 6 40
GD51423 2XIHI4 DOoCA 7.1 14
MIND 124 T
K-means 316 14
PAM 54 14
DIANA 141 14
FCM . ) 14
GE ilh 14
GDS2T45 22645/6 DoCA T 41
MIND i4 4
K-means %3 43
PAM W5 41
DIAMNA 4.1 41
FCM b 41
GEK X4 43
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‘biosynthesis/anabolism’ with P-value of 2.5 % 107", The GO
category ‘cellular biosynthesis® is also highly enriched in this
cluster with P-value of 4.4 x 107",

Forthe Yeast AFR dataset (Supplementary Tables 6 and 7). the
highly enriched category in cluster €y is the ‘biosynthesis/
anabolism’ with P-value of 1.1 = 107", The GO category ‘cellular
biosynthesis’ is also highly enriched in this cluster with P-value of
1.9 3 107" The cluster 'y contains several enriched categories
on C‘biogenesis’. The ‘ribosome biogenesis” with P-value of
4.2 % 107", the ‘cytoplasm organization and biogenesis’ and the
‘ribosome hiogenesis and assembly’ with P-value of 1.1 % 107"
each are some enriched categories in the cluster O . The cluster
Cagcontains several enriched eategories on ‘ribosome’. The highly
enriched categories in the cluster sy are the ‘cytosolic ribosome
{sensu Eukaryota)/8035 dbosome” with P-value of 1.7 = 10 14 and
the ‘ribosome’ with P-value of 1.4 % 107",

As in the above datasets, for the Yeast AFRt dataset
{(Supplementary Tables 8 and 9), the cluster Cy contains several
enriched categories on ‘biogenesis’. The highly enriched cate-
gories in cluster Cy are the ‘cytoplasm organization and
biogenesis” and the ‘ribosome biogenesis and assembly” with
Pvalue of 6.1x 107" each, the ‘ribosome biogenesis’ with
Povalue of 2.2 = 107 The cluster ¢ contains several enriched
categories on ‘ribosome’. The highly enriched categories in cluster
Cy7 are the ‘nbonucleoprotein complex, RNP® with P-value of
1.4 % 107" and the ‘ribosome’ with P-value of 2.1 x 107

In the case of the Yeast Cho er al. dataset (Supplementary
Tables 10-12), thecluster ) contains several enriched categories
on ‘biogenesis’. The highly enriched categories in cluster C) are
the ‘ribosome biogenesis' with Povalue of 4.1 % 107, the
‘cytoplasm organization and biogenesis’ and the ‘ribosome
biogenesis and assembly® with P-value of 1.9 x 10~ each. The
cluster |4 contains several enriched categories on ‘ribosome”.
The highly enriched category in cluster 24 is the “cytosolic
ribosome’ with P-value of 1 = 107 "%, Two other highly enriched
categories in cluster Cy25 are the ‘ribosome” with P-value of
32 107" and the ‘structural constituent of ribosome/
ribosomal protein’ with P-value of 2.5 = 107",

The categories ‘ribosome’ (in Cy for Yeast ATP, C; for Yeast
PHO, 'y for Yeast AFR, Cy; for Yeast AFRt and in C)- for
Yeast Cho er al datasets) and ‘biogenesis’ (in C; for Yeast
ATP, C, for Yeast PHO, ), for Yeast AFR, ¢, for Yeast
AFRtand in ) for Yeast Cho er af. datasets) are enriched in at
least one of the clusters for all the veast datasets. Similarly the
category ‘biosynthesis” (in Oy for Yeast ATP, Oy for Yeast
PHO, 4 for Yeast AFR. )7 for Yeast AFRt and in C).5 for
Yeast Cho er al. datasets) is also enriched in at least one of the
clusters For all the yeast datasets. This similarity in results from
different datasets shows consistency of DCCA.

In the case of the GDS938 Wildtype dataset (Supplementary
Table 13), the highly enriched categories in cluster C; are the
‘motor activity' with P-value of 1.9x 107", the ‘transmem-
brane receptor protein sering/threonine kinase activity” and the
“transforming growth factor beta receptor activity” with P-value
of 2.5x 107" each. The highly enriched categories in cluster
a7 are the *hydrolase activity” with P-value of 2.4 % 107" and
the ‘“MHC class II receptor activity’ with Pvalue of 2.7 3 107"
In the case of the GDS958 [L-13 Knockedout dataset
{(Supplementary Table 14). the highly enriched categores in

cluster €y are the ‘hydrolase activity’ with P-value of
21x 107" and the ‘receptor activity' with Povalue
of 5.7= 107", The GO category ‘structural constituent of
ribosome” is highly enriched in cluster Oy with Pevalue of
1.1 107 and in cluster € with P-value of 7.3 = 1079,

For the GD31423 dataset (Supplementary Tables 15-26)., all
14 clusters are found enriched with a total of 1000 enriched
attributes. The highly enriched category in cluster Oy is the
‘multicellular organismal process’ with P-value of 3.3 = 1077

The cluster ¢, obtained from the GDS27435 dataset
{Supplementary Tables 27-29) contains several enriched
categories on ‘intracellular organelle’. The highly enriched
category in cluster ) is the ‘intmacellular membrane-bound
organelle’ with P-value of 1.0 = 107

From the results of Tables 329 in Supplementary M aterial,
we see that the clusters obtained by the DCCA shows a high
enrichment of functional categories.

3.2.2 Comparizons Here we describe the ability of detecting
functionally enriched clusters/categories by the aforesaid
clustering algorithms. Table 3 in Supplementary Material
shows three out of five clusters produced by DOCCA of Yeast
ATP dataset. contain functionally enriched categories.
Similarly, for GK (Supplementary Table 30), three out of five
clusters of Yeast ATP dataset are functionally enriched. but
total number of enriched categories for clusters generated by
DCCA (28) are greater than those generated by GK (23). For
MIND, K-means, PAM and FCM. among five clusters
generated from Yeast ATP dataset (Supplementary Table 30),
only two clusters contain [unctionally enriched categories.
DIANA could not find any enriched functional category. This
result. for Yeast ATP dataset, clearly shows that DCCA
produces better clustering solution than the other clustering
algorithms considered in our analysis. Similar investigations
were carried out for the other datasets using the aforesaid
algorithms. In all the cases, DCCA provides greater number of
enriched categories (Table 2) compared to the other algorithms.

We have also found that the NMF technigue by Kim and
Tidor {2003) is able to obtain 87 enriched attributes for Yeast
Cho et af. dataset. whereas DOCA is able obtain 187 enriched
attributes for the same dataset indicating superiority of DCCA
over NMF-based technique. In order to restrict the size of the
article, we have not included the detailed results.

4 CONCLUSIONS

We have presented here a nowvel clustering algorithm, called
DCCA, which is able to obtain clustering solution from
gene-expression dataset with very high biological significance.
DCCA is able to detect clusters containing genes with similar
variation in pattern of expression profiles, without taking the
expected number of clusters as an imput. The algorithm
continues clustering until all clusters contain only positively
cormlated sets of genes. Like some other algorithms, DCCA
also belongs to the category of hierarchical divisive clustering
algorithms. Analysis of the results shows that clustering
solution obtained by DOCCA is more biologically significant
than that obtained by some other algorithms, namely, MIND,
K-means, PAM, DIANA, FCM, GK and an NMF-based
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Table 2. Comparative score of various clusiering algorithms with
respect Lo ability of detecting Nunctionally enriched clusiers caegories.
Here we have considered the calegories for which Povalue < 50 = 1077

D taset Method Taotal Enriched Enriched
clusters clusters attributes
Yeast ATP DeCA 5 i H
MIND i 2 2
K-means 5 2 11
PAM 5 2 13
DIANA 5 0 0
FCM 5 2 15
GK 5 2 25
Yeast PHO DeCA 52 # 113
MIND i 0 0
K-meins 52 [l ot
PAM 52 6 #l
DIANA 52 2 17
FCM 52 5 73
GK 52 ) 1M
Yeast AFR DeCA 67 10 ot
MIND 5 2 1%
K-meins 67 T Tl
PAM 67 6 62
DIANA 67 0 0
FCM 67 ] o]
GE 67 # TH
Yeast AFR1L DeCA 41 T T
MIND 5 i 4
K-meins 41 [l 1
PAM 41 ) 9
DIANA 41 0 0
FCM 41 6 R
GK 41 ) 11
Yeast DCCA 134 1% 187
Chao et al. MIND 6 i 115
K-meams 134 14 143
PAM 138 15 157
DIANA 134 4 L
FCM 138 15 1T
GK 134 14 131
GDS95H DCCA L) 16 sl
Wildtype MIND 5 2 6
K-meins 3 11 khi}
PAM iy 13 41
DIANA 19 0 0
FCM EL 14 41
GK £ 14 4
GDS95H DCCA 40 11 57
Knocked out MIMND 4 0 0
K-meins 4 9 41
PAM 40 9 LS
DIANA 40 0 0
FCM 40 L 44
GK 40 10 51
GD51423 DCCA 14 14 10
MIND T i 126
K-meins 14 13 R36
PAM 14 14 911
DIANA 14 2 T
FCM 14 11 THH
GK 14 11 14
GD52T45 DCCA 41 iz . | ]
MIND 4 1 16
K-means 43 £l 174
PAM 43 n 187
DIANA 41 1 19
FCM 43 e 174
GK 41 il 192

algorithm. Despite these benefits of the DOCA, several issues
require further investigations. First, the computational cost
of the DOCCA for repairing any misplacement occurring
in clustering step needs to be reduced. Second. the quality of
the clusters obtained by DOCCA depends on the choice of
correlation coefficient. In this article, we have used Pearson
correlation coefficient as a similarity measure. However, other
measures with the similar properties could be used for further
study. Third, DCCA will not work il dataset contains less than
three samples. In this case calculated correlation value will be
either +1 or —1. Fourth, the concept of DCCA needs to be
modified in order to develop a suitable biclustering algorithm.

Conflict of Interest: none declared.

REFERENCES

Aldese,GLoer al. (AN02) Comsensis algonthms for the generation of all maximal
hicliques. In Tecfiea! Repors TR-DIMACS.

Alon,MN. er al (2005 Quadratic forms on graphs, In 370 ACM Svnposioon o
Theory of Comiparting ( STOC ).

Ashburmen, M. er o (20000 Tool for the unilication of biology, The gene ontology
conaartium. Ner, Gener., 28, 2523

Bansal, M. er wl (200:) Correlation clustering. Mok, Ledarn., Speci Tsie, 56,
Ra-113.

Ben-Dor AL ef ol (2002 Discovering local strocture in gene expression data: the
arder-preserving submatrix problem. Procesdings of e Sixeh Dbresifonad
Cowiference o Compaerariony Bidogy (RECOMBO2 ), pp. 49-57.

Bemiz, F.G. e o, (2003) Characienizing pene  seis with  Tuncamsociate.
Binimfomnarics, 19, 2502-2504.

Berdek 1.0 {198 1) Parrern Recogninion wirk Fezzy Qe iive Floverion Algorions.
Plenum Press, Mew Yaork.

Beadek 1.C. or ol (1984) FOM: Fuzzy c-means algorithm, Cerpacr. Geosed, 10,
191-203.

Charikar, M. and Winh A, {2004) Maximizing quadratic programs: extensding
erothendicck's ineguality. In Prceedbigs of the 450 TEEE Symposton o
Fonerker ks af” Covngpaeter Sedeviee (FOCS ), pp. 324-533.

Clarikar, M. er af. { 2003) Chstering with qualitative information. In Procesdings
af e ok TEEE Swiposinn on Foserdarions of Compacrer Seienee (FOCSK ),
pp. 3M-533.

Cheng.y . and ChuchGM. (2000) Biclustering of expression data, Prec. i,
Canif. Driredd, Sysr. Mad. Biod., 8 93-103.

Cho B . er el ( 198) A genome-wide tramscriptional analysis of the mitotic cell
cycle. Mol Calf, 2, 65-73.

Cohen, W. and RichmanJ. {2002 Learning to match and cluster large high-
dimensional data seis for data imtegration. In Eghle ACM SIGEDD
Direrierimned Conference on Knowledpe Discovery and Dara Mimng  KDD J.

Demaine, E.D. and  Immorkica, W, (2003) Correlation chstering with  partial
information. In  Proceedbigs of e an Tarerertioned Worksiop o
Appron narion Afperithony for Combamaroren O primization Proldems and T
Drersearimne Worksiop on Rendonzarion and Apprexdmoanimn Tecoogiees b
Conrgpueter Sefence (RANDOM-APPROX 2W03). Princeton, Mew Jersoy,
pp. 1-13.

Demaine, E.D er al (X)) Correlation chstenng in geneml weighted graphs.
Thesner, Compaer. Seil, 361, 172187,

Dembele Dy, amd Kastner, P (X003) Fuezy c-means method for clstering
microarmy data. Badformeies, 19 973980,

D, JC. {19730 A Tuzey relative of the sodata prooess and is we in detecting
compact well-sepamied chstes. S Cwlesmer, 3, 32-57.

Gtz G, er al. (XN Coupled two-way chstering analyas ol gene microarmy
data. Prve. Neetl Ao, Sef USA, 1207912084,

Gibbom F. and RothF. (302) Tedging the gquality of geme expesion-based
chsterng methods wing gene annotation. Gerwne Rex., 1L 15741581,
Gustafaon EE. and Bessel WO, (1979 Fuzey  clustering with a ey
covaricnce matrix. In Proceedbegs of the TEEE CDC. San Diego, Calilornia,

e Thl-Teb.

HamnJ. and Kamber, M. (20010) D Minng: Cooree pis aond Technbpes. Maorgan

Kaulmann, CA, USA

1365



A.Bhattacharya and R.K.De

Thmekd. er @l (200 Delining tmnscription modules sing large-scale gemne
expression data, Blifonanes, 20, 19932003,

lssek Tarer, L. er af (2002 Saccharmmyos genome database, Menfods By,
350, 129-346.

Jaim A K. and Dubes BC. (1988) Afpentons fie Clhisrering Dare. Prentice Hall,
Mew Jeraey.

Kim,DW. e ol (2005) Detecting clusters of different geometrical shapes in
microarray gene expression data, Bipfonanes, 2, 19271934,

Kim,P .M. and Tidor,B. (2003) Subsystem identification throwgh dimensiomality
redwction of large-scale geme expression data. Genone Bes, 13, 17061718,

Bluger,Y. ef af. (2003 Spocial bichstering of microamay camoer  dala:
co-clusternng gomes and conditions. Genone Res., T03-T16.

Lukashin A%, amnd Fuchs R, (2001) Amalysis of temporal gene exprossion
profikeschsiering by simulated annealing and determining the optimal
number of clusters, Bivinfermriices, 17, 405-414.

Mitra, 8. and Acharya,T. (2003) Derge Mg Madtbnedia, Seft Compaeiing, ad
Biariformmeiies. John Wiley, Mew Yaork.

Murali T.M. and Kasif5 (203) Extracting consemnved gene expression motifs
from gene expression data. In Prceeding of the Paclfe Symposinm on
Bivesnpaetivig, pp. TT-RE.

Prelic A, er al. (2008 A systematic comparison and evalwation of biclustering
methods for peme expression data, Bivbfienanies, 22, 112211249,

Pross, W, er ol (2003) Nwnerfead Recipos — The Arr of Seennfile Compad big.
Cambridge University Press, Cambridge.

Qi . erand. {2003) Bernel hizrarchical gene clistering from microarmy exp ression
data. Biodiformerries, 19, X697-2 104,

Sharan B er af (X03) Click and expander: a system lor clustering and viswalizing
g exprossion data. Bionfenanios, 19, 1TR7-17949,

Tamay. A, er al (2002) Dicovering statistically signilicam biclusters in gens
exprossion data, Biedifmanics, 5136-5 144,

XY, er . (202) Clestering gene expression data waing a graph-theomtic
approach: an application of minmum spanming troess. Bledifemarics, 18,
336545,

1366



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg

