IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 2, MARCH 1993

257

A Connectionist Model for Category Perception:
Theory and Implementation

Jayanta Basak, C. A. Murthy, Santanu Chaudhury, Member, IEEE, and Dwijesh Dutta Majumder

Abstract—A connectionist model for learning and recognizing
objects (or object classes) has been presented here. The learning
and recognition system uses confidence values for the presence
of a feature. The network can recognize multiple objects simul-
taneously when the corresponding overlapped feature train is
presented at the input. An error function has been defined and
it is minimized for obtaining the optimal set of object classes.
The model is capable of learning each individual object in the
supervised mode. The theory of learning is developed based
on some probabilistic measures. Experimental results have been
presented. The model can be applied for the detection of multiple
objects occluding each other.

Index Terms—neural network, confidence value, multiple ob-
Jject recognition, conditional probability, supervised learning, state
updation, bottom-up link, top-down link, hidden nodes.

I. INTRODUCTION

SSOCIATIONS between a set of features characterizing

objects or concepts or abstracts or otherwise, is an
important characteristic of human intelligence along with
our ability to recall from partial information. The problems
inheriting this property in fields of pattern recognition and
artificial intelligence are implementable with connectionist
models. But in the present state-of-the-art connectionist models
the simultaneous recall of multiple concepts is nonexistent. In
this paper we propose a model which realizes this objective.
A connectionist network, satisfying all the above requirements
can play a key role in designing problem solving systems
which can have general purpose reasoning capabilities for
various applications.

Various neural network models have been proposed so
far for producing the desired output pattern from the given
input pattern. The basic concepts of neural networks are
presented in various surveys [17], [3], [4], [7]. Carpenter
and Grossberg [2] have developed the adaptive resonance
theory for classifying the input patterns into different cate-
gories. Both supervised and unsupervised modes of learning
are possible in the adaptive resonance theory of network
models. The perceptron model [9] was developed to determine
classes using simple interclass boundary. To have nonlinear
boundary among the classes, multilayered perceptron and

Manuscript received October 22, 1991; revised June 4, 1992. This work
was supported in part by DoE/UNDP under project IND/85/072.

J. Basak, C. A. Murthy, and D. Dutta Majumder are with the National Center
for Knowledge Based Computing Electronics and Communication Sciences
Unit, Indian Statistical Institute, Calcutta 700 035, India.

S. Chaudhury is with the Department of Electrical Engineering, Indian
Institute of Technology, Hauz Khas, New Delhi, India.

the corresponding back-propagation rule was developed [8].
Amari [11] developed a self-organizing model for concept
formation and the corresponding orthogonal and covariance
learning techniques. Kohonen [19] developed a self-organizing
model for automatically producing the topologically correct
maps of the features of observable events. Anderson et al.
[1] have developed the brain-state-in-a-box model to produce
the association between the input and the output patterns and
applied for categorical perception. They also discussed the
probability learning technique in this model. Hopfield [12],
[13] proposed a simple but strong model for retrieving output
patterns from noisy input patterns. Various application specific
models, utilizing the self-organization behavior of the medels
and the capability ,of categorization, were also developed.
Fukushima [15] developed a multilayered network model for
visual pattern recognition which is capable of recognizing
characters in a position and size invariant way. Zemel et al.
[18] developed a multilayered model for object recognition
which learns the transformations among the input features and
the output objects using back-propagation techniques. Various
other application specific models also have been developed so
far. The research on neural networks as a optimization problem
solver was initiated by Hopfield and Tank [14]. After that,
various constraint satisfaction problems were solved by the
network models. Stochastic network models were developed
in this trend of research. Hinton et al. [10] developed a simple
but strong learning algorithm for Boltzmann machines.

But most of the methods developed so far are inherently
suitable for determining a particular category from the given
input pattern. But, as discussed earlier, a feature vector of the
observable categories may be generated due to presence of
more than one category. This really leads to the superposition
of feature vectors. In literature, there are very few works
which can really tackle such problems. Peng and Reggia
[10] proposed a model for medical diagnosis, by posing the
problem as a constraint satisfaction problem. In their work
the connection strengths are preassigned depending on the
conditional probability values of the diseases given the present
symptoms. But in their work there is no explicit algorithm
for learning these probability values. Also, in the work of
Zemel et al. [18], the multiple objects are not recognized
simultaneously. But a model which is capable of recognizing
the minimum possible set of categories (or object classes)
from the input pattern and able to learn the associations of the
patterns with the categories is still required to be developed. In
this paper a network model which meets both the requirements
of forming association and composition is presented. The

258

model is capable of learning in the supervised mode. It can
be applied for different applications like object recognition,
medical diagnosis, etc.

In Section II the general description and the formulation
of the problem are presented. The structure of the network
model and its dynamical behavior are presented in Section III.
Section IV deals with the learning issues and the complexity
of the network. Section V discusses the experimental results.
Section VI draws the conclusion and gives a line of future
research.

II. DESCRIPTION OF THE PROBLEM AND FORMULATION

The objective of this section is to provide a mathematical
formulation for identifying the categories (or object classes)
from a given set of input features. The problem can be looked
upon as a similarity-based induction hypothesis as posed by
Stanfill and Waltz [6]. The goal of this hypothesis is to make
decisions by looking for object classes in the given feature
set. Informally it can be said that if an object class be present
then the features of the object class should be present.! Each
feature can be associated to more than one object classes.
Initially, each feature should activate its corresponding object
classes (formation of initial hypotheses). On the otherhand,
each object class should support its constituent features.? If a
valid feature (present in the scene) does not get proper support
from its corresponding object classes, it would strengthen
the decision about its corresponding object classes more to
receive proper support. On the otherhand, if a feature, which
is not really present, gets a substantial support, it would try to
enervate the decisions about its corresponding object classes.
By this method of iterative reasoning the proper decision about
the presence or absence of the object classes can be performed.

The feature set can be looked upon as an input confidence
vector, where each confidence value represents the presence
or absence of the corresponding feature. In the same way the
set of objects can be looked upon as an output confidence
vector. The confidence values can be discrete, i.e., 0 or 1,
or continuous in the interval [0,1]. The formulations of the
problem for two different situations have been discussed in
the following subsections.

A. Formulation for Discrete Confidence Values

Let us assume that at most n features can appear in the input,
and there are at most k£ possible output object classes. Let the
entire set of features be {f1, f2, - -+, fn}, and the set of out-
put objects be {01, 02, -+ - , 0x }. The feature set for each object
can be represented as an input confidence vector

c=lci e, 00, Cn)

where ¢; € {0, 1} represents the confidence of feature f;, i.e.,

[0
R B!

lInpractical situation, occlusion may result in loss of feature. That is taken
care of in actual formulation.

if the feature f; is absent
if the feature f; is present.

2The word support is used lucidly. The concrete formulation is given later.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 2, MARCH 1993

Similarly, the set of objects can be described in terms of an
output confidence vector given as

¢ =[c],c5, -+,)

where ¢? € {0, 1} represents the confidence of object 0y, i.¢.,

._J0
=11

For each object class, there is a set of associated features.
Let F; be the feature set associated with the object class o; or
in other words it can be stated that if any object in the object
class o, be present in the scene then all the features in the set
F; are expected to be present. Therefore the set F' = U§:1Fj
represents the complete set of features under consideration. Let
the association of a feature with an object class be expressed
by a matrix a such that

if object o; is absent
if object o; is present.

(1 iffeR
M=o if fi g B
Mathematically,
maxkcfa” = ¢}, foralli, 1<i<n

i=1, -,

where ¢} is the confidence of feature ¢ due to different object
hypotheses. Observe that ¢; = ¢, for all ¢ when there is no
noise.

The formulation just described finds out the set of all
possible object hypotheses for a given input feature set by
simple logical reasoning. But the formulation does not deal
with the following prominent points. Firstly, it is very sensitive
to noise because if the confidence of any input feature becomes
zero due to presence of noise, it eliminates all the possible
object hypotheses corresponding to it. Secondly, the method
gives the complete set of possible objects. Possibly a proper
subset of objects could have explained the input feature train.
But the above method does not essentially find out the minimal
set. Thirdly, here it is assumed that the features are present in
the scene with either zero or full confidence which is very ideal
and may not be always possible in practical cases. To avoid
these problems, we have to consider continuous confidence
values in the interval of [0, 1], and find out the possible object
set with minimum cardinality satisfying the given input feature
vector.

B. Formulation for Continuous Confidence Values

In this section we are considering that the features can suffer
from noise, and therefore the confidence values will not be
perfectly 0 or 1, rather they will be in the interval [0,1].
Thus the confidence values here, to some extent, represent the
vagueness of the knowledge about the presence of the features.
If the confidence c¢; = 0.5, it indicates a don’t know condition
about the presence or absence of the feature. And if ¢; > 0.5,
then the possibility of the feature f; to be present is more than
the possibility that it is absent. Since the input confidences take
continuous values, the output confidences, as a consequence,
are continuous and in the interval [0, 1]. Hence the confidences
of the input features will not be perfectly matched to the
support from the output objects. The recognition problem

BASAK et al.: CONNECTIONIST MODEL FOR PERCEPTION: THEORY AND IMPLEMENTATION 259

in this case can be solved by finding the output confidence
values such that the error between the input confidences and
the support from the output objects is minimized. Thus an
optimization function needs to be defined such that it holds
both for discrete and continuous values. Such a function has
been defined below as

n 2
E, = 1/22 (l:nlna?: kc}’au - Ci) .

i=1

Observe that F; measures the square of the difference of the
input confidence and the feedback support over all the features.
The constant 1/2 is considered in the expression of E; for the
sake of normalization.

Note that in the output confidence vector obtained as the
solution of the above optimization problem will have elements
with high confidence values for all the object classes which are
supported by the input feature vector. But subsets of the set of
output objects thus inferred, in many situations, will account
for all the input features because a feature can support more
than one object. Among these subsets the one with minimum
cardinality can be taken as the simplest explanation of the input
vector. To ensure the minimum number of objects, the total
summation of the output confidence values is to be minimized.
So in addition to E'{, another factor is to be minimized, which
can be given as

k
By =1/2> ().
=1

The total optimization function that is to be minimized can
be taken as

E =r1E) + k2E

where k; and kg are two constants which determine the
relative importance of F1 and E,. In situations like English
character recognition no more than one character can occur
together, and therefore x5 should be large. On the other hand,
in industrial parts recognition more than one part is presented
frequently, and thereby ry should be kept small.®> The actual
form of optimization function becomes

n 2 k
E= 51/22 (l:r{l’ag)kc;’a,;i - ci> + 52/22 (c?)2. 1
=1

i=1

The function E can be minimized by the gradient descent
technique given below.

OF
Al = ——.
“ ocf
The solution obtained by this gradient descent technique will
at least be a suboptimal one. Thus the solution does not really
give the minimal set of objects explaining the input features,

3 Here the large and small are used only to bring the sense, and not how to
select them. It will be shown in the next section that x| and s are absorbed
in the network parameters, and the selection of parameters are described later.

rather it gives a more nonredundant set of objects covering all
the features. The above equation can be written as

n
Acy = k1 Y eqt — Kol 2

=1
where

R Ga)ay if cfay 2 ¢ Omi
T 0 otherwise.

Ym #1

Equation (2) can be physically interpreted. The value of ay;
will be 1 if the feature f; belongs to the object o, and will
be 0 if it does not. So ¢;; basically measures the difference of
the input confidence and the maximum feedback support.

III. NEURAL NETWORK MODEL

In the methodology described in Section II-B, the con-
fidence values of the objects are iteratively increased or
decreased depending on the support from the features. Note
that at each step the change in the confidence value of one
object does not depend on that of the other objects. As the
process of updation of confidence values of the objects are
inherently parallel, this iterative process can be successfully
implemented on a neural network (or connectionist model),
where the node activities totally depend on the local com-
putations. A network model has been designed here for this
particular problem solving paradigm. The model structure and
the state updations of the nodes are described in the following
subsections.

A. Structure of the Connectionist Model

The model proposed for solving the problem is shown
in Fig. 1. The network is three-layered model, where the
output layer consists of nodes whose activations represent the
confidences of the output objects. The total number of output
nodes denote the maximum number of objects the network
is able to recognize. In the input layer the node activations
represent the input confidence values of the features, and the
number of input nodes indicates the maximum dimension of
the input feature vector. The feature-object association matrix
[a] is embedded in the connection strengths in the network.
From (2) it is clear that the supports of a feature to different
objects are different, and this depends on the feedback support
from the objects. To incorporate this preferential support (e;;)
into the network, a set of hidden nodes is associated with
each input node. All these nodes constitute the hidden layer
lying between the input and output layer. Each hidden node
is connected to exactly one input node and exactly one output
node, and plays the key role of associating the input node with
the output node. The output nodes are actually instantiated
from the input layer only through the hidden nodes, and there
is no direct connection from the input layer to the output
layer. Each hidden node is connected to a single output node
through two kinds of links. The activations from the hidden
nodes proceed to the output nodes through the bottom-up links,
and the activations of the output nodes are fed back to the
hidden nodes through the top-down links. There is exactly
one unidirectional link from each input node to each hidden

260

<

(b)

Fig. 1. (a) A schematic diagram of the structure of the network model.
(b) Structure and interconnection of the hidden nodes associated with an
input node.

nodes associated with it, and the signal can flow from the input
nodes to the hidden nodes but not in the opposite direction. The
unidirectional links from the input layer to the hidden layer are
of fixed weights, and in the present work the weights are set
as unity. Each output node is associated with a negative self-
feedback. All the hidden nodes connected to a common input
node have lateral inhibitory connections among themselves
and each one has a self-excitatory feedback.

With the present model, whenever a feature train is pre-
sented at the input, the input layer activates the hidden nodes,
and activation propagates from the hidden nodes to the output
nodes through the bottom-up links. Due to the presence of
negative self-feedback in the output, the activations reduce
slightly in the output layer, and again propagate to the hidden
nodes through the top-down links. Since there is no path
from the hidden nodes to the input nodes, activations cannot
flow back to the input nodes. As soon as the hidden nodes
receive activations through the top-down links, they start
competing among themselves through the lateral inhibitory
connections. Due to presence of self-excitatory feedback, only
that particular hidden node with maximum activation through

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 2, MARCH 1993

top-down link will be the winner-take-all* [17] and remains
enabled, the other hidden nodes will be disabled. In this
way corresponding to each input node there will be at most
one enabled hidden node.” The difference of the activations
coming from the input node and through the top-down link to
the enabled node is propagated through the bottom-up link
to the corresponding output node. Again the same process
repeats. Each output node retains its activation for a period
over which the competition in the hidden layer takes place.
Each hidden node has functionally two parts, one of them
retains the activation coming from the output layer, the other
part competes and makes the node enabled or disabled. The
negative self-feedback in the output layer ensures that the
activations of output nodes getting no support from the hidden
layer will reduce to zero.

In this process, if the activation from input layer is less
than the feedback from output layer to any enabled hidden
node, the activation of the corresponding output node will be
negated. The effect is just opposite when the input activation
is higher than the feedback from output layer. Since the input
activations represent the input feature confidences, the effect is
just the same as that of e;; described in (2). The weights of the
top-down links emulate the factor a;;, and the weights of the
bottom-up links emulate the constant «, while the weights of
the self-feedback in the output layer emulate the constant k3.
With this network updation the output nodes corresponding
to the “true” objects explaining the feature train, will remain
highly activated, while activations of other output nodes will
disappear. The dynamic behavior of the output nodes are
explained in the next subsection.

B. Dynamic Behavior of Output Nodes

The dynamic behavior of the output nodes are described
mathematically in this section. Without loss of generality it can
be considered that the Ith object is represented by the /th output
node, and the ith feature is represented by the ith input node. In
input and output layers the nodes are numbered independently.
The hidden nodes are numbered according to the associated
input and output nodes, viz. the hidden node connected to ith
input node and /th output node will be numbered as an ordered
pair (7,0). The notations used here are given below.

vy output (or state) of /th output node;
u; instantaneous input to /th output node;

w;; weight of the bottom-up link from (¢,)th hidden node
to /th output node;
weight of the top-down link from [th output node to
(3,1)th hidden node;

w, weight of negative self-feedback of each output node;
c¢; input to ith input node.

The states of the output nodes are updated according to the
differential equation given as

duy ~
P Zwiz5il — W,y
i=1

2l

@)

4This is due to MAXNET principle.
SIf the feedback through top-down link is zero to all hidden nodes, then
there will be no winner-take-all-node corresponding to that input node.

BASAK er al.: CONNECTIONIST MODEL FOR PERCEPTION: THEORY AND IMPLEMENTATION 261

where §;; measures the difference of the input activation from
ith input node and the feedback from /th output node, provided
the (¢,{)th hidden node is enabled (winner-take-all node).
Mathematically,

C; — 21U
64 = i
il 0

The output v; is related to the instantaneous input u; by a
semilinear nondecreasing gain function g(-), ie., v; = g(w).
In the present work g(-) is chosen as an S-function given as

Vm#l

if 2101 Z ZmiVUm
otherwise.

g(u) =0, foru<0
= 1 (2u)"/ f
=5 (2u)", or0<u<0.5
1-L1@-20)" foros<u<l
=1 for u > 1.

k]

In the transfer function g(-), the value of € controls the gain of
the transfer function. The value of ¢ varies in the range [0, 1].
If € is O, then output takes values only 0 and 1. On the other
hand if € is 1, then the gain is simply a linear one.

The dynamic system described by (2) can be shown to
converge to stable states by having an energy function £(¢)
defined as

k

2
—1/22/\'(max z“vl—rl) %—1/210321’;2 ®

=1

where n is the number of input nodes and £ is the number of

output nodes. A} is a multiplication factor such that
if ZsilVs =

7
A; = Wis/zsi, max 2.

[

The change of energy with the parameter ¢ (time) can be
written as

o€ dvl
Z oy dt ©)
But,
0111 (Z 213 1z5lz—wsvz>
ie.,
o8 _ _du
Jdu; T T

So, (5) can be written as

de€ k dvr\?
il ;g‘v(m(d—t’) : ©)

From (6) it is evident that (de/dt) < O for all t+ > 0. As
t — oo, (d€/dt) — 0, and thereby the dynamic system
converges to the local energy minima.

Comparing the energy function £(¢) in (4) and the opti-
mization function F in (1), it is clear that the weights of
the top-down links play the same role as the quantity aj;
in (1). The weights of the top-down links should measure
the relative importance of the features with respect to the
objects. The factor A; to some extent imitates the constant

k1. Actually in the optimization function F, the effects of
the errors due to the mismatch of the input confidence and
the feedback support were taken to be the same for all
features. But in practice the situation should be different; if
a feature is very important with respect to some object, the
effect of the mismatch corresponding to that feature-object
association should be more. Actually, these preferential effects
of mismatch are taken care of in the energy function (by the
use of different weights in the bottom-up links), and thereby in
the dynamic behavior of the output nodes. How to select and
automatically learn the weights of the links will be discussed
in the next section.

IV. LEARNING THE OBJECT CATEGORIES

So far, the network structure and the dynamic behavior of
the network have been discussed. The network will be able
to correctly recognize the objects from the input feature train,
and thereby will be able to explain the input features with a
nonredundant set of objects in the output if and only if the
weights of the top-down and bottom-up links are set properly.
In the current work, supervised mode of learning has been
considered for obtaining the weights of these links. In this
learning mode, a single object (training sample) is presented
to the network at a time, and the input confidence vector of
the corresponding feature set is presented at the input. At the
output layer the node corresponding to the training sample
is enabled, and all other nodes are disabled. The weights of
the links are then modified according to the learning rules,
as discussed in the following subsections. The process of
learning is continued until the change in the weights becomes
insignificant and then the process is said to have converged.

In the process of learning, the links of the network are
also built up. Initially, there exists a pool of input nodes,
hidden nodes, and output nodes in the network. Whenever
a training sample is presented, one output node and some of
the input nodes are enabled. If there is no association between
the enabled output node and any enabled input node (i.e., both
of them are not connected to a common hidden node), then an
arbitrary hidden node (if it is not already associated with an
input—output pair) will be connected to that input and output
node (bottom-up and top-down links are created).

If corresponding to an input—output association, there al-
ready exists a hidden node, then the weights of the links are
modified. In the modification process, the rate of change of
weights should not be the same for all the links. This is due
to the fact that as the learning process goes on, the rate of
learning decreases which ensures the convergence (discussed
in Section IV-C). Therefore, if a link is created in the earlier
part of learning process, its rate will be decreased compared
to a newly created link. Each node (input and output) has
an attribute which determines for how much time the node
has been enabled. Henceforth, this attribute will be termed
as agility factor. Actually, agility factor decreases with the
amount of time for which node has been enabled. Although
each hidden node is enabled for a less amount of time
compared to its associated input node, it has no separate agility
factor, and this is the same as that of the associated input node.

262

The rate of learning of any link at any instant will be governed
by the agility factors of the nodes at its two ends. For learning
of the weights, a suitable measure of the weights of the links
are considered and discussed in the following subsections.

A. Measure of Weights

The importance of any feature with respect to an object
model primarily depends on two factors. Firstly, to what extent
the feature is consistent with respect to that particular object,
i.e., given the object is present, what is the likelihood that the
feature will appear in the input. Actually, this factor ensures
that if a feature is erratic and very prone to noise then it is
better not to associate much importance with that particular
feature-object association. This is supported by the fact that
the change in output confidence of any output object due to
mismatch in any input feature is proportional to ay; (2), where
ay; is 1 or O depending on whether the ith feature belongs to
the Ith object or not. If the value of a;; is extended to the
continuous domain in [0, 1] then qy; basically gives a measure
of the likelihood of the appearance of the ith feature with
respect to the [th object.

Secondly, the importance of a feature with respect to a
particular object means how likely the object is, given that
the feature is present. Therefore if a feature is consistent and
unique with respect to a particular object, then the feature
should have high importance with respect to that object. On the
otherhand, despite consistency, if the feature is shared evenly
by large number of objects, the importance of the feature will
be low with respect to any one of the objects.

Considering both the factors just described, the weights
of the bottom-up links are taken to be proportional to the
likelihood of the appearances of the features with respect to
the objects, and as well as the likelihood of the appearances
of the objects with respect to the features. A measure of
importance of any feature f; with respect to an object o; can
be given as

m(oy, fi) = my(or, fiyma (o, fi)

where m; gives a measure of the chance of the appearance of
o if f; is present and m; gives a measure of the chance of
the occurrence of f; given that o; is present. Without loss
of generality, m; and my can be considered to be semilinear
nondecreasing functions of the corresponding conditional prob-
abilities. Here we have taken mj(oy, fi) to be p(o/|f;) and
ma(os, f;) to be p(f:lor), where p(oi|f;) is the conditional
probability of occurrence of o; given that f; is present (similar
explanation for p(f;|o;)).?

As described in the dynamic behavior of the network in (3),
the effect of output activation is modulated by the weight of
the top-down link. The effect is the same as multiplying ¢
by ay; in (2). Actually if a feature is erratic with respect to an
object, it should not get proper support from the object, and
the weight of the top-down link measures the consistency of
the feature with respect to the object. Therefore the learning
process should be designed so that after convergence, the

SHere for simplicity of representation, o; has been used to denote the
occurrence of o;.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 2, MARCH 1993

weight of the top-down link, should capture the measure mso,
ie., zii < ma(oy, fi). Again ma(oy, fi) is 1 if feature f; is
fully consistent with object oy, i.e., a;; = 1 in case of perfect
features, as described in Section II-B. The weight of the top-
down link, therefore, can be taken exactly equal to ma(-), i.e.,
z1; = ma(oy, f;). The measure mo(-) actually gives a value
proportional to w;;/z;. In (3) describing the dynamic behavior
of the nodes, A;; is therefore proportional to m4 (o, f;), which
supports the discussion presented in Section II-B. We will
denote the measure ma(oy, fi) as Ay

In selection of the actual weights (i.e., after learning what
should be the weights), the weights of the bottom-up links are
selected in such a way that the total input going to an output
node, with perfect input feature train presented, be unity. This
is done because the gain function of each node is chosen as
an S-function, which saturates if the input is greater than or
equal to unity. In order that an output node does not saturate
for a noisy input confidence vector and reaches the edge of
saturation for a perfect input confidence vector, the sum of
all the bottom-up weights going to that output node must be
unity. For this purpose, the weights of the bottom-up links are
selected as

m(oy, fi)

;’1:1m(ols f]) '

If the feature set of an object is a subset of the feature set
of another object, and the probabilities of appearance, of both
the objects are same, then whenever the larger feature set is
presented during recognition mode, both the objects will be
fully activated. To prevent such a situation, the measure of
the weights of the bottom-up links are modified according to
Weber’s law as described in ART [2]. The modified measure
is given as

wip =

_ m(or, fi)
v+ 25 mlon, f5)

where v is a constant. It will be shown that v actually
determines the rate of learning also.

0

Wiy

B. Learning of the Weights

The weights of the links in the network are changed
in the supervised learning mode in such a way that they
become the same as the measures, as described above, after a
sufficient number of learning trials. The conditional probability
p(oy|f;) can be considered to be equal to N//N; (almost
everywhere) for large values of N/ and N;. N; represents
the total number of occurrences of feature f;, and Nl’ is the
number of occurrences of object o; given that feature f; has
occurred. Initially the ratio does not give actual probability
values, but if the measure is made equal to the ratio, then as
the number of presentations becomes very high, the measure
converges to the actual probability value. Therefore at any
instant of time ¢,

N,
N;

where N/ and N; are now interpreted as the respective number
of occurrences up to the instant ¢. Similarly, the weights of

Aa(t) =

BASAK et al.: CONNECTIONIST MODEL FOR PERCEPTION: THEORY AND IMPLEMENTATION 263

bottom-up links take the values given as

N!
2i(t) = —
lt() N,
where N is the total number of occurrences of object oy, and
N! is the number of occurrences of feature f; given the object
oy is present up to instant ¢. If the feature f; is present at time
instant ¢ + 1 then the value of A;(¢) changes as

N/+1 . . .
a(t+1) = __Nz‘vﬂ 1.f o 1.s present at 'mstant t+1
o) if o7 is absent at instant ¢ + 1

If the intervals of occurrences are considered instead of the
number of occurrences, then A;(t) can be written as

_T®
Au(t) = T
where T; is the total time for which the feature f; is presented,
and T} is the total interval for which o; was present given that
fi was present.

In the supervised learning process, every time a teaching
vector is presented at the output layer, a single output node
is enabled and the other nodes are disabled. Let the teaching
vector be denoted by

y(t) = (v (1), y2(t), -+, ur(t)]

i.e., for each output node there is a teaching input, which
changes over time ¢. If the feature f; is present for the interval
At then the value of A;(t) changes to
T + wt) - At

T+ At
The equation is valid if At is small enough, and if the teaching

input y;(t) is considered to remain unchanged over the interval
At. The change of A\;(t) can be written as

A/\il(t) = /\il(t + At) — /\il(t)

Ault + At) =

0 if C; = 0
Ady(t) = { T +yi(-at _ T o £0

T;+At T;

o AUTip(t) = T e

In the above expression it is considered that ¢; can take values
of 0 and 1 only. But the same expression can be taken to be
valid for fractional values of ¢; in the range of [0,1]. The
convergence of the above expression for continuous values of
c; will be given in the next section. The rate of change of
Ai(t) can be written as

AXa(t) _ (g — dalt))e
At T+ At

Letting At — 0, the differential change of \;(¢) with time
t becomes

dX;

el aiei(yr — Aa) 8)

where
G = 1/T,

a; decreases with the time of activation of the ith input node.
a; is actually the agility factor associated with the ¢th input
node. Initially in the network, agility factors for all nodes are
unity. As the nodes are enabled in the learning mode, the
agility factor decreases. The change of agility factor for the
ith input node in time At can be given as

0, ife; =0
Aai(t) = {1/1; (T, + At), if e #0.
Letting At — 0, the rate of change of «a;(t) becomes

d;i = —ad?e;. (C))

Considering the measure mq(oy, f;), the rate of change of
weight of the top-down links can be given as

Lo

dt

where of is the agility factor of the /th output node. The rate

of change of af can be given as
doy
dt

= a;’yl(c,- _ Zli) (10)

(1

2
o
=0 Y.

The total weights of the bottom-up links should be such
that for a set of inputs the output equals the teaching input
vector. Therefore the expression for w;; after convergence can
be written as

Xizug ™ ()

w 12)
¥+ 2 Aaies
i=1

wip =

The explanation for v is given in the previous section. The
gain g(-) is considered to be the same for all nodes. With this
expression for wj,, the total input (u;) to the /th output node
becomes

g (y) X8 Aaziic
v+ Z]"-zl Ajizizc;

By mathematical restructuring, the expression can be written
as

Uy =

_ Ywa
itz

YWil
Y= g(ut + 3)
21

The constant «y is considered to be very small. Using Taylor’s
expansion, and restoring up to second term, the expression
can be written as

w=g""(y)

’7%’1!]'(%1)
Y—or= Y
il 21

264
ic.,
w IRYE
il =
vg'(u)
where
g =y — 01

The factor €; measures the error between the teaching input
and the actual output at the /th output node. The required rate

of change of w; should be

Wil = i— Zli—l-i-/\ilil— .

dt ~g' (wr) dt dt

Let & = (&1/vg'(w)). Using (8) and (10), the above expres-
sion can be written as

I
II

1[}‘ #—
= (fliémi + af’(Z”))ciyz — (aic; + afy)wir -
li
(13)

In (13), the factor 1/~ determines the rate of learning. If
increases, the rate decreases, and vice-versa. Part I of (13)
indicates that the weight of a link changes with the product of
the activations of the nodes at the two ends, modulated by the
error at the output node. This, in fact, supports the Hebbian rule
of learning [16]. Part II shows a decay in the weight of the link,
which actually supports the associative decay of the weights
of the links [2]. In the next section we will be considering
the convergence of the weights of the links to the proposed
measures.

dw 2l
dt

C. Convergence of the Weights

In this section, convergence of the weights of the top-down
and bottom-up links have been considered. If the presentation
of the patterns are considered to be random then y(t) is a
stochastic process, and the appearances of the input activations
are also random, i.e., c(f)is a stochastic process. Initially the
agility factors for all the nodes are set to unity. The agility
factor of a node (input or output) decreases whenever it is
activated. Whenever an input—output association is formed
through a hidden node, the weight of the corresponding
top-down link is set to unity. In the learning process, if
the input—output association already exists in the network,
the weight of the corresponding top-down link will change
according to (10). The weight of the bottom-up links are
initially set to zero, and they increase according to (13). The
initial values of the link weights and the agility factors can be
summarized as follows:

2:(0) =1, w;(0) =0, a;(0) =1, a7 (0) =1

where ¢ = 0 indicates the association of ith input node
and /th output node is just formed. The convergence of the
bottom-up weights need not be proved separately, rather if
the convergence of A;; and z; can be shown, then it can be
said that w;; converges for a given . The convergence of the
weights, with the given initial conditions, can be proved both
for perfect binary inputs and noisy inputs.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 2, MARCH 1993

For perfect binary inputs, «; decreases and \;; changes
only when ¢; = 1. Let ¢; = 1 at the time intervals
(10, 71),(72,73), (T4, 7T5), - - - and so on. Let us denote the total
time for which ¢; = 1 as 7/, i.e,,

T = Z (T2r1 — Tor).

r=0

For nonzero probability of the ith feature, 7/ — oo as t — oco.
Since there is no change in the values of either @ or A
when ¢; # 1 (ie, ¢; = 0), Ay will converge as 7/ — 00
if A; converges for ¢ — oo, and vice versa. Therefore the
convergence of \; can be proved considering ¢; = 1 for all
t > 0. Equation (9) can be rewritten as

dai 2

T
Therefore a; = 1/(t + 1) with the initial value 1. From (9)
and (8), the equation for A;; can be rewritten as

di

doy; o;

_Ma-—y

From the above equation it is evident that A;; will solely
depend on the change of y;. Let 3 = 1 in the intervals
(to,t1), (t2,t3), (ta,t5), - - - and so on. Separately integrating
for yy = 1 and y; = 0, we have

log(1~«\n(i2r+1)> - log<ai(inr+x)

T (t2r) ai(t2r) Yr2>0
Xir(tarya)) — @i(tarya) } r=v
and log(,\zi(Tzrff)) = Iog(mﬁi%

From the above equation the sequence of values of \;; can
be written as

Ait(torsr) = 1 — 2821) (1 x (2,
it(t2rs1) o a;()tzr) (i(tar)) Yr > 0.
and Xi(tari2) = Sty Aaltersa)

By simple algebraic calculation, the value of A\;(t2x4+1) can
be written as
2k+1

Ai(tors1) = Z (=1)2kr+ angtk_Jr)l)'

r=0

Since «;(t) = 1/(t + 1), the above expression can be written
as

Yor_o(toks1 — tar)

Xit(tak41) = 1+ e

In the above expression the numerator represents the time for
which the Ith output node is active during supervised learning,
i.e., y; = 1 upto the time instant {2;4;. Therefore

kILII;O Ait(tor+1) = Pr(yr = 1le; = 1)

almost everywhere by strong law of large numbers [5]. This
ensures that A;;(¢) converges to the conditional measure pro-
posed in the previous section. By similar reasoning it can be
proved that

khl& z1i(tax+1) = Pr(e; = 1y = 1).

Therefore the product A;;z;; converges, and w;; converges.

BASAK et al.: CONNECTIONIST MODEL FOR PERCEPTION: THEORY AND IMPLEMENTATION 265

TABLE I
FEATURE VECTORS OF DIFFERENT OBIJECTS
objects features
object 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1
object 2 1 1 0 0 1 1 1 0 1 0 0 0 1 0
object 3 0 1 1 0 0 1 0 0 1 1 1 0 0 1
object 4 1 0 0 0 0 1 0 0 1 1 1 0 0 0
object 5 0 1 1 0 1 0 1 0 0 1 0 0 1 1
object 6 1 1 0 1 1 0 0 0 0 0 0 0 0 0
object 7 1 1 0 1 1 0 0 1 1 0 0 0 0 0
TABLE 11
PROBABILITIES OF APPEARANCES OF THE OBIECTS
objects 1 2 3 4 5 6 7
probabilities 0.1 0.14 0.16 0.2 0.1 0.15 0.15

If the input feature train is contaminated by noise (and also
the teaching input) then the reasoning about the presence or
absence of feature no more holds good. Then the convergence
of the weights can be proved by considering the inputs and
outputs to be continuous signals, i.e., in this case a signal
is considered to be present at each input node and at each
output node. If a perfect feature is present at an input node,
the activation at that node reaches its full strength (i.e., unity),
and if the feature is noisy, the activation is less than unity.
Similarly, if the feature is absent without any additive noise,
the activation at the corresponding input node is zero, and
for nonzero additive noise a nonzero activation is present at
that node. Thus after simple algebraic manipulations, it can
be shown that

_ Joci(nu(r)dr

Aalt) = 1+ [bei(r)dr (14

where the value of \;; at time instant ¢ is denoted as \;;(¢). In
(14) if ¢; and y, take values in {0, 1}, then the value of \;(¢)
converges to the conditional probability measure as ¢t — oo.
With similar considerations it can be shown that z;(¢) also
converges as t — oo, and thereby w;; converges.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The network has been simulated on SUN 3/60 workstations
and tested for different synthetic patterns. The experiment has
been performed in two stages. In the first stage the network
is allowed to learn the input patterns with suitable teaching
vector at the output nodes. After a suitable number of learning
trials the network is tested for recognition task in the second
stage. This section describes the results of these experiments
and analyses the results.

In learning stage, the pattern vectors to be learned are con-
sidered to have preassigned probabilities of appearances in the
network. Input vectors are applied to the input in a frequency
determined by their preassigned probability values. With each
input vector the information about the corresponding object is
stored, and from this stored information the output vector is
generated and then acts as the teaching vector in the supervised
mode of learning. In actual network formation, a hidden node

is connected in the network whenever a new input—output pair
appears. In the simulated network, for sake of simplicity, the
total number of hidden nodes is considered to be equal to the
product of the number of input and output nodes. Although
there may be a lot of redundant nodes in the hidden layer,
the performance of the network in terms of learning the input
vectors and recognizing the objects will not be affected at
all. The weights of the bottom-up links corresponding to the
uninstantiated hidden nodes happen to be zero and do not in
any way affect the recognition task. Only the time performance
of the network may degrade to some extent during recognition
on a sequential machine.

In the first set of experiments, the network is simulated with
fourteen input nodes and seven output nodes. Seven different
14-bit vectors are presented to the network during the learning
trials. The input vectors are shown in Table I. The preassigned
probability values of the seven objects are shown in Table II.
The objects are randomly presented to the network according
to their probability values. This is done by generating a random
number in the range [0, 1] by the system-built pseudo-random
number generator. If the number is such that P,_; < N < P,
where P, = S°F_ p;, (p; is the preassigned probability value
of the sth pattern) then the generated pattern is considered
to be the kth pattern. The network is trained with 15 000
learning trials and the corresponding results are shown in
Table III and Table IV. The value of +, determining the rate
of learning, is taken as 0.1, and the time step is chosen as
0.005. From Table III it is obvious that the weights of the
bottom-up links corresponding to features shared by a large
number of objects are comparatively small. Also, the weights
of the bottom-up links corresponding to the features shared by
a fewer number of objects are comparatively high. During the
learning trials the input vectors may be contaminated by noise.
In the present case, supervised learning is performed with
perfect input vectors. Therefore, if the weight of a top-down
link becomes unity, it remains unchanged.

In the second stage of the experiment, the noisy patterns
are presented at the input and the network is executed in the
recognition mode. Different synthetic patterns (may be caused
by one or more objects) with different noise levels are applied

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 2, MARCH 1993

TABLE 11l
WEIGHTS OF THE BOTTOM-UP LINKS (w;;)
Outputs ()
Inputs (7) 1 2 3 4 5 6 7

1 0.0 0.097 0.0 0.150 0.0 0.196 0.117
2 0.0 0.090 0.085 0.0 0.073 0.180 0.108
3 0.0 0.0 0.221 0.0 0.189 0.0 0.0
4 0.113 0.0 0.0 0.0 0.0 0.309 0.184
5 0.0 0.115 0.0 0.0 0.093 0.233 0.139
6 0.0 0.124 0.117 0.191 0.0 0.0 0.0

7 0.0 0.253 0.0 0.0 0.205 0.0 0.0

8 0.176 0.0 0.0 0.0 0.0 0.0 0.287
9 0.0 0.096 0.091 0.147 0.0 0.0 0.115
10 0.0 0.0 0.127 0.206 0.109 0.0 0.0
11 0.0 0.0 0.161 0.261 0.0 0.0 0.0
12 0.409 0.0 0.0 0.0 0.0 0.0 0.0
13 0.133 0.180 0.0 0.0 0.146 0.0 0.0
14 0.126 0.0 0.161 0.0 0.138 0.0 0.0

TABLE IV
WEIGHTS OF THE ToP-DOWN LINkS (:j,‘)
Outputs (i)
Inputs (j) 1 2 3 4 5 6 7

1 0.0 1.0 0.0 1.0 0.0 1.0 1.0

2 0.0 1.0 1.0 0.0 1.0 1.0 1.0

3 0.0 0.0 1.0 0.0 1.0 0.0 0.0

4 1.0 0.0 0.0 0.0 0.0 1.0 1.0

5 0.0 1.0 0.0 0.0 1.0 1.0 1.0

6 0.0 1.0 1.0 1.0 0.0 0.0 0.0

7 0.0 1.0 0.0 0.0 1.0 0.0 0.0

8 1.0 0.0 0.0 0.0 0.0 0.0 1.0
9 0.0 1.0 10 1.0 0.0 0.0 1.0
10 0.0 0.0 1.0 1.0 1.0 0.0 0.0
11 0.0 0.0 1.0 1.0 0.0 0.0 0.0
12 1.0 0.0 0.0 0.0 0.0 0.0 0.0
13 1.0 1.0 0.0 0.0 1.0 0.0 0.0
14 1.0 0.0 1.0 0.0 1.0 0.0 0.0

at the input. The results of the recognition task are shown
in Table V. The network is simulated for 500 iterations for
each instance of an input pattern with the self-feedback equal
to 0.1 and timestep = 0.05. Uniform noise is added to the
input by the system-built psendo-random number generator.
The power of the network is tested for overlapped patterns
of more than one object. The table shows that whenever
the overlapped pattern corresponding to objects 5 and 6 is
presented to the network, the network recognizes the objects
correctly without any error even with 30% of noise. When
the overlapped pattern corresponding to objects 3 and 4 is
presented to the network, it recognizes correctly both the
objects even with 10% noise in the input. But it fails to
recognize the object 4 in 6% of the cases when input is
contaminated with 20% of noise. This is due to the fact
that when the patterns of object 3 and 4 are superposed, the
object 4 retains only one distinctive feature which does not
belong to object 3 (feature 1). On the otherhand object 3 has
three distinctive features not belonging to object 4 (features 2,
3, and 14). Therefore the initial activation of object 3 is higher
than that of object 4, and in the iterative process of recognition,
object 3 gets support from the common features (features 6,

9, 10, and 11) and its own distinctive features as well. On
the otherhand object 4 gets support from only one distinctive
feature. If the input patterns are heavily contaminated by noise,
the initial activation of the objects will be very low. In the
process of iterative activation, object 4 sometimes does not
get much of the support from its single distinctive feature
and that is flagged in the output. The results also show that
the network fails to recognize object 4 in 16% of the cases
when the input is contaminated by 30% of noise. When the
overlapped pattern of objects 1 and 2 is presented, the network
recognizes the object 7 along with the objects 1 and 2 almost
47% of time with 10% noise. The chance of recognizing the
extra object increases with the percentage of noise. This is
due to the fact that the difference of the pattern of object 7
with the overlapped pattern of objects 1 and 2 is only in the
last three bits. The noise injected in the patterns acts both in
additive and subtractive fashion. In the initial settling process
of the network, the total percentage of error in the pattern of
object 7 and that in the pattern of object 1 and object 2 become
comparable. Therefore, the output of the node corresponding
to object 7 becomes high initially and therefore it is supported
by the features in the overlapped pattern, and the recognition of

BASAK et al.: CONNECTIONIST MODEL FOR PERCEPTION: THEORY AND IMPLEMENTATION

267

TABLE V
OuTPUTS WITH SUPERPOSED FEATURE VECTORS

recognition scor

noise level = 0.1

noise level = 0.2 noise level = 0.3

pattern true false extra true false extra true false extra
objects 3 and 4 100 0 0 94 0 0 84 0 0
objects 5 and 6 100 0 0 100 1] 0 100 0 0
objects 1 and 2 47 0 53 43 0 57 38 0 62
object 7 100 0 0 92 0 8 85 0 15

an extra object occurs. The fourth row of the table shows that
when the pattern of object 7 is presented to the network with
20% of noise, the object 6 is recognized along with object 7
in 8% cases. This is due to the fact that object 7 has two
extra features than object 6. Therefore whenever object 7 is
presented, all the features of object 6 is present in the scene.
But the formulation in (12) prevents the object 6 to become
fully active when the pattern of object 7 is presented. Again
the effectiveness of this discrimination will depend on the
constant y. With the chosen value of +, the effectiveness of this
restriction fails in 8% cases with 20% noise, and recognition
of an extra object occurs. As the noise increases, the chance of
recognizing object 6 along with object 7 increases. However,
recognition is not affected up to 10% noise in the input. The
results show that whenever an overlapped pattern is presented,
the genuine objects are always recognized and sometimes extra
objects are recognized depending on the noise level and the
nature of the patterns. But the results presented here deal with
patterns having a very high overlap. In almost all practical
situations, the patterns are expected to have much less overlap,
and such problems will seldom arise.

In the second set of experiments, the network is presented
with four different synthetic patterns representing four
different objects (as shown in Fig. 2). The objects are learned
by the network in supervised mode treating each pixel as
a separate feature. The objects could have been learned by
extracting out the different local features in the objects, but the
objective of this present work is to show the capability of the
network to learn and recognize multiple objects simultaneously
under a noisy environment. The normalized gray level of each
pixel is taken as the confidence of the corresponding feature.
The weights of the bottom-up and top-down links are set up
according to the pixel values in the images. After learning
trials are over, the images are superimposed and injected with
noise to produce the test patterns for recognition. The different
test patterns are shown in Figs. 3-6. Each of the images of
different objects consists of 2500 pixels. In the learning, the
network is iterated for 100 trials with the time step equal to
0.005 and v = 5. Here it is noteworthy that the value of
is much higher than that chosen in the previous experiment.
This is due to the fact that the number of features is much
higher in this case. Again since the normalized weights of the
bottom-up links are much less than that in the previous case
(because number of features are much higher) the learning
process converges quickly and only 100 learning trials are

Fig. 2.

@ (b)

Fig. 3. Superposed pattern of objects 1 and 2 (a) with 10% noise, (b) with
15% noise, (c) with 20% noise.

Four different objects presented at the input.

(b)

©
Fig. 4. Superposed pattern of objects 1 and 3 (a) with 10% noise, (b) with

15% noise, (c) with 20% noise.

©

(@)
Superposed pattern of objects 2 and 4 (a) with 10% noise, (b) with

(b)
Fig. 5.

15% noise, (c) with 20% noise.
‘ | — i

I E | | E
|
t—I L I
@ (b) ©

Fig. 6. Superposed pattern of objects 3 and 4 (a) with 10% noise, (b) with
15% noise, (c) with 20% noise.

o

necessary. The network is executed in recognition mode with
the self-feedback equal to 0.1, and the time step = 0.005.
The results after 25 iterations with different test patterns and

268
TABLE VI
RESPONSE AT THE OUTPUT LAYER WITH THE
INPUT PATTERN PRESENTED SHOWN IN FiG. 3
response at respective output nodes
objects nl. =0.1 nl. =0.15 nl. =02
object 1 0.89 0.88 0.87
object 2 0.91 0.90 0.88
object 3 0.02 0.04 0.05
object 4 0.10 0.12 0.13
TABLE VII

RESPONSES AT THE OUTPUT NODES WITH THE INPUT PATTERN SHOWN IN FIG. 4

response at respective output nodes

objects nl. =01 n.l. =0.15 nl. =02

object 1 0.89 0.88 0.87

object 2 0.09 0.10 0.10

object 3 0.95 0.94 0.93

object 4 0.02 0.04 0.05
TABLE VIII

RESPONSES AT THE OUTPUT NODES WITH THE INPUT PATTERN SHOWN IN FIG. 5

response at respective output nodes

objects nl. =0.1 nl. =0.15 nl. =0.2

object 1 0.07 0.08 0.10

object 2 0.91 0.90 0.88

object 3 0.02 0.04 0.05

object 4 0.96 0.94 0.93
TABLE IX

RESPONSES AT THE OUTPUT NODES WITH THE INPUT PATTERN SHOWN IN FIG. 6

response at respective output nodes

objects nl. =01 nl. =0.15 nl. =0.2
object 1 0.02 0.04 0.05
object 2 0.12 0.13 0.14
object 3 0.95 0.94 0.93
object 4 0.96 0.94 0.93

different noise levels are presented in Tables VI-IX. From
the results it is clear that as the noise increases the output of
the “true” objects decreases, and that of the “false” objects
increases.

The network can be applied to actual object recognition,
where the local features or primitives would form the input
feature vector to the network.

VI. DISCUSSION

A model for learning and recognizing the objects (viewed
as feature vectors) and the corresponding connectionist imple-
mentation has been presented so far. In the derivation of the
learning rules some measures for the weights of the links are
derived from the optimization function, and correspondingly
the learning rules are derived. Although the derivation of
the learning rules does not assume any explicit biological

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 2, MARCH 1993

functionality, ultimately it shows that the learning rules support
the Hebbian rule [16] and the associative decay phenomenon
[2]. The strong points of the present work lie in two parts.
Firstly, it gives an explicit formulation and the corresponding
network structure for recognizing multiple objects simultane-
ously which is mostly guided by the memory based reasoning
[6]. Secondly, it derives the learning rules by defining explicit
measures for the weights, which really draws a connecting
link between the probabilistic measures and the connectionist
learning paradigms.

The present network model is comparable to other existing
network models and superior to some of them. If the agility
factors of the nodes always happen to be unity, then the
learning rules basically reduce to the learning rules in the
Carpenter/Grossberg’s model operated in supervised mode. In
the present model, since the probabilities of appearances of
the objects are considered, this is supposed to be stronger in
learning the object classes adaptively. The comparisons with
other network models are already presented in the introduction.

In Section III it has been noted that the network is capable
of learning the object classes in supervised mode. The unsuper-
vised mode of learning can also be implemented in this net-
work model. During unsupervised mode also, as discussed in
supervised mode, it is considered that a single object is present
in the scene. Then in a noiseless condition, the output node
corresponding to the presented object will have maximum
output (equal to unity) in the stable condition, and all other
outputs will be zero. On the other hand, if the presented
input does not match with any exemplar pattern of the objects
stored in the network then outputs of all the output nodes
will be much less than unity. Even under a noisy condition,
if a single object is present then the output of the node
representing that object will be much higher than the other
output nodes, although it completely depends on the amount
of noise present. If the maximum output in the output layer is
found to be greater than a certain threshold (can be referred
as vigilant threshold) then the input pattern can be considered
to represent the object corresponding to maximum output. On
the other hand, if the maximum output is less than the vigilant
threshold, the input pattern can be considered to represent a
new object and a completely new output node can be allocated
for the pattern.

The model is also extendible to multiple layers. In the
development of the model the features are considered to be
independent. But in practical problems, like object recognition,
a group of features occur together in different objects. The
group of features can be found out and considered as a macro-
feature or subpart of the different objects. Again for objects
having movable parts (i.e., nonrigid objects) these subparts
can be found by extracting out the common subset of features
in different instances of the same object. The macrofeatures
or subparts can appear in a larger group of features and
thus form a hierarchy. In the formation of the network if
an intermediate node be allocated to each macrofeature, a
multi-layered hierarchical network model will be formed for
learning and recognizing the objects. Presently we are involved
in the extension of the model to the hierarchical model with
unsupervised category formation capability.

BASAK et al.: CONNECTIONIST MODEL FOR PERCEPTION: THEORY AND IMPLEMENTATION 269

[t

(2]

3l
(4]
(5]
(6}
7
(8

19

[10]
[11]
(12

[13)

[14]
[15]
[16]
17
[18]

[19]

[20]

REFERENCES

J. A. Anderson, J. W. Silverstein, S. R. Ritz, and R. S. Jones “Distinctive
features, categorical perception, and probability learning,” Psych. Rev.,
vol. 84, pp. 413451, 1977.

G. A. Carpenter and S. Grossberg, “A massively parallel architecture for
a self-organizing neural pattern recognition machine,” Computer Vision,
Graphics and Image Processing, vol. 37, pp. 34-115, 1987.

J.A. Feldman, “Dynamic connections in neural networks,” Biol. Cy-
bern., vol. 46, pp. 27-39, 1982.

J.A. Feldman and D.H. Ballard, “Connectionist models and their
properties,” Cognitive Science, vol. 6, pp. 205-254, 1982.

R.B. Ash, Real Analysis and Probability. London, U.K.: Academic
Press, 1972.

C. Stanfill and D. Waltz, “Toward memory-based reasoning,” Commun.
ACM, vol. 29, pp. 1213-1228, 1986.

S.E. Fahlmann and G. E. Hinton, “Connectionist architecture for artifi-
cial intelligence,” IEEE Computer, vol. 20, pp. 100-109, 1987.

D.E. Rumelhart and J. L. McClelland, Parallel Distributed Processing:
Explorations in Microstructures of Cognition (Ed.), Vol. 1. Cambridge,
MA: Bradford Books/MIT Press, 1986.

F. Rosenblatt, “The perceptron: A probabilistic model for informa-
tion storage and organization in the brain,” Psychol. Rev., vol. 65,
pp- 386-408, 1958.

D.H. Ackley, G.E. Hinton, and T.J. Sejnowski, “A learning algorithm
for Bolzmann machines,” Cognitive Science, vol. 9, pp. 147-169, 1985.
S.1. Amari, “Neural theory of association and concept formation,” Biol.
Cybern., vol. 26, pp. 175-185, 1977.

J.J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” in Proc. Nat. Academy Sciences,
1982, pp. 2554-2558.

J.J. Hopfield, “Neurons with graded response have collective computa-
tional properties like those of two state neurons,” in Proc. Nat. Academy
Sciences, 1984, pp. 3088-3092.

J.J. Hopfield and D.W. Tank, “Neural computation of decision in
optimization problems,” Biol. Cybern., vol. 52, pp. 141-152, 1985.

K. Fukushima, “Neural network model for selective attention in vi-
sual pattern recognition and associative recall,” Appl. Opt., vol. 26,
pp. 4985-4992, 1987.

D.O. Hebb, The Organization of Behavior. New York: Wiley, 1949.
R.P. Lippmann, “An introduction to computing with neural nets,” JEEE
Acout., Speech, Signal Processing, vol. 4, pp. 4—22, 1987.

R.S. Zemel, M.C. Mozer, and G.E. Hinton, “TRAFFIC: A model of
object recognition based on transformation of feature instances,” Tech.
Rep. CRG-TR-7, University of Toronto, Toronto, 1988.

T. Kohonen, Self-Organization and Associative Memory. Berlin, Ger-
many: Springer-Verlag, 1988,

Y. Peng and J. A. Reggia, “A connectionist model for diagnostic problem
solving,” IEEE Syst., Man, Cybern., vol. 19, pp. 285-298, 1989.

Jayanta Basak was born on September, 1965. He
completed his undergraduate course in electronics
and telecommunication engineering from Jadavpur
University in 1987. He received the M.E. degree
in computer science and engineering from Indian
Institute of Science (IISc), Bangalore in 1989.

He worked as a Computer Engineer in the
FGCS/KBCS project at the Indian Statistical
Institute, Calcutta from 1989 to April 1992. He
joined as a programmer in the same Institute in
April 1992. His current research interests are neural
networks and Computer Vision.

C.A. Murthy was born in Ongole, India in
1958. He received the B. Stat (Hons), the M.Stat,
and the Ph.D. degree from the Indian Statistical
Institute (ISI) Calcutta.

He worked in the National Centre for Knowledge
Based Computing. Currently he is employed as
a lecturer in the Electronics and Communication
Science Unit (ECSU), ISL. His fields of interest in-
clude pattern recognition, cluster analysis, computer
vision, fuzzy sets, and neural networks.

Santanu Chaudhury (M’91) received the B.Tech
degree in electronics and electrical communication
engineering in 1984 and the Ph.D. degree in com-
puter science and engineering in 1989 from the
Indian Institute of Technology, Kharagpur, India.
From 19891992 he was with the Nodal Centre for
Knowledge Based Computing, ECSU, ISI, Calcutta.
From 1990 to 1991 a faculty member in the Depart-
ment of Electronics and Electrical Communication
Engineering L1.T, Kharagpur.

Currently, he is as assistant professor in the
Department of Electrical Engineering, I.L.T, Delhi, India. His current research
interests are connectionist networks for computer vision problems, document
image understanding, image interpretation, and object recognition.

Dwijesh Dutta Majumder received the
M.Sc(Tech.) from Calcutta University (C.U.). In
1962 he received the Ph.D. degree in memory
technology from the same university. In 1955
he joined Electronic Computer Division of ISL
From 1972 until 1992 he was head ECBU in ISI.
He has published more than 300 research papers
and six books in the fields of memory technol-
ogy, speech and other pattern recognition, image
analysis, computer vision, artificial intelligence,
numeral modeling, cybernetics, and knowledge
based computing.

Dr. Majumder is chairman of National Centre for Knowledge Based
Computing, Professor Emeritus of ISI, Distinguished HCL Professor of IIT,
and Emeritus Scientist of CSIR. He is a fellow of INSA, INAE, 1.A.SC, IETE,
and CSI and is a member of the Governing Boards of International Association
of Pattern Recognition, the World Organization of Cybernetics Systems and
the International Fuzzy Systems Association.

	1.pdf
	2.pdf

