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Unsupervised Feature Selection
Using Feature Similarity

Pabitra Mitra, Student Member, IEEE, C.A. Murthy, and Sankar K. Pal, Fellow, IEEE

Abstract—In this article, we describe an unsupervised feature selection algorithm suitable for data sets, large in both dimension and
size. The method is based on measuring similarity between features whereby redundancy therein is removed. This does not need any
search and, therefore, is fast. A new feature similarity measure, called maximum information compression index, is introduced. The
algorithm is generic in nature and has the capability of multiscale representation of data sets. The superiority of the algorithm, in terms
of speed and performance, is established extensively over various real-life data sets of different sizes and dimensions. It is also
demonstrated how redundancy and information loss in feature selection can be quantified with an entropy measure.

Index Terms—Data mining, pattern recognition, dimensionality reduction, feature clustering, multiscale representation, entropy

measures.

1 INTRODUCTION

N important problem related to mining large data sets,

both in dimension and size, is of selecting a subset of
the original features [1]. Preprocessing the data to obtain a
smaller set of representative features, retaining the optimal
salient characterstics of the data, not only decreases the
processing time but also leads to more compactness of the
models learned and better generalization. When class labels
of the data are available we use supervised feature
selection, otherwise unsupervised feature selection is
appropiate. In many data mining applications, class labels
are unknown, thereby indicating the significance of
unsupervised feature selection there.

Conventional methods of feature selection involve evalu-
ating different feature subsets using some index and selecting
the best among them. The index usually measures the
capability of the respective subsets in classification or
clustering depending on whether the selection process is
supervised or unsupervised. A problem of these methods,
when applied to large data sets, is the high-computational
complexity involved in searching. The complexity is expo-
nential in terms of the data dimension for an exhaustive
search. Several heuristic techniques have been developed to
circumvent this problem. Among them the branch and bound
algorithm, suggested by Devijver and Kittler [2], obtains the
optimal subset in expectedly less than exponential computa-
tions when the feature evaluation criterion used is monotonic
in nature. Greedy algorithms like sequential forward and
backward search [2] are also popular. These algorithms have
quadratic complexity, but they perform poorly for nonmo-
notonic indices. In such cases, sequential floating searches [3]
provide better results, though at the cost of a higher
computational complexity. Beam search variants of the
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sequential algorithms [4] are also used to reduce computa-
tional complexity. Recently, robust methods for finding out
the optimal subset for arbitrary evaluation indices are being
developed using genetic algorithms (GAs) [5]. GA based
feature selection methods [6] are usually found to perform
better than other heuristic search methods for large and
medium sized data sets; however, they also require consider-
able computation time for large data sets. Other attempts to
decrease the computational time of feature selection include
probabilistic search methods like random hill climbing [7],
SCHEMATA+ [8], and Las Vegas Filter (LVF) approach [9].
Comparison and discussion of some of the above methods for
many real-life data sets may be found in [6].

Since the interest of the article lies with unsupervised
feature selection, we discuss here some of the existing
methods which can be broadly classified into two categories.
Methods in one such category involve maximization of
clustering performance, as quantified by some index. These
include sequential unsupervised feature selection algorithm
[10], wrapper approach based on expectation maximization
(EM) [11], maximum entropy based method [12], and the
recently developed neuro-fuzzy approach [13]. The other
category considers selection of features based on feature
dependency and relevance. The principle is that any feature
carrying little or no additional information beyond that
subsumed by the remaining features, is redundant and
should be eliminated. Various dependence measures like
correlation coefficients [14], measures of statistical redun-
dancy [15], or linear dependence [16], [17] have been used.
Recently, the Relief algorithm [18] and its extensions [19]
which identify statistically relevant features have been
reported. Another algorithm based on conditional indepen-
dence uses the concept of Markov blanket [20]. All these
methods involve search and require significantly high
computation time for large data sets. In [21], an algorithm
which does not involve search and selects features by
hierarchically merging similar feature pairs is described.
However, the algorithm is crude in nature and performs
poorly on real-life data sets. It may be noted that principal
component analysis (PCA) [2] also performs unsupervised
dimensionality reduction based on information content of
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features. However, PCA involves feature transformation and
obtains a set of transformed features rather than a subset of
the original features.

In the present article, we propose an unsupervised
algorithm which uses feature dependency/similarity for
redundancy reduction, but requiring no search. The method
involves partitioning of the original feature set into some
distinct subsets or clusters so that the features within a cluster
are highly similar while those in different clusters are
dissimilar. A single feature from each such cluster is then
selected to constitute the resulting reduced subset. A new
similarity measure, called maximal information compression
index, is used in clustering. Its comparison with two other
measures, namely correlation coefficent and least-square
regression error is made. It is also demonstrated how
“representation entropy” can be used for quantifying re-
dundancy in a set.

The nature of both the proposed clustering algorithm and
the newly introduced feature similarity measure is geared
toward two goals—minimizing the information loss (in terms
of second order statistics) incurred in the process of feature
reduction, and minimizing the redundancy present in the
reduced feature subset. The feature selection algorithm owes
its low-computational complexity to two factors—1) unlike
most conventional algorithms, search for the best subset
(requiring multiple evaluation of indices) is not involved and
2) the new feature similarity measure can be computed in
much less time compared to many indices used in other
supervised and unsupervised feature selection methods.
Since the method achieves dimensionality reduction through
removal of redundant features, it is more related to feature
selection for compression rather than for classification.

Superiority of the algorithm, over four related methods,
namely branch and bound algorithm, sequential floating
forward search, sequential forward search, and stepwise
clustering, is demonstrated extensively on nine real-life data
of both large and small sample sizes and dimensions ranging
from 4 to 649. Comparison is made on the basis of both
clustering/classification performance and redundancy re-
duction. Effectiveness of the maximal information compres-
sion index and the effect of scale parameter are also studied.

The organization of the article is as follows: In the next
section, we describe measures of similarity between a pair
of features. In Section 3, we present the proposed feature
selection algorithm using the similarity measure and
discuss some of its characterstics. In Section 5 we provide
experimental results along with comparisons.

2 FEATURE SIMILARITY MEASURE

In this section, we discuss some criteria for measuring
similarity between two random variables, based on linear
dependency between them. In this context, we propose a
new measure, called maximal information compression index,
to be used for feature selection.

There are broadly two possible approaches for measuring
similarity between two random variables. One is to nonpar-
ametrically test the closeness of probability distributions of
the variables. Walds-Wolfowitch test and other run test [22]
may be used for this purpose. However, these tests are
sensitive to both location and dispersion of the distributions,
hence not suited for the purpose of feature selection. Another
approach is to measure the amount of functional (linear or

higher) dependency between the variables. There are several
benefits of choosing linear dependency as a feature similarity
measure. It is known that if some of the features are linearly
dependent on the others, and if the data is linearly separable
in the original representation, the data is still linearly
separable if all but one of the linearly dependent features
are removed [16]. As far as the information content of the
variables is concerned, second order statistics of the data is
often the most important criterion after mean values [22]. All
the linear dependency measures that we will discuss are
related to the amount of error in terms of second order
statistics, in predicting one of the variables using the other.
We discuss below two existing [22] linear dependency
measures before explaining the proposed maximal information
compression index.

Correlation Coefficient(p). The most well-known measure
of similarity between two random variables is the correla-
tion coefficient. Correlation coefficient p between two
random variables z and y is defined as

plz,y) = coviny)
var(x)var(y)

where var( ) denotes the variance of a variable and cov( )
the covariance between two variables. If = and y are
completely correlated, i.e., exact linear dependency exist,
p(z,y) is 1 or —1. If x and y are totally uncorrelated, p(z,y) is
0. Hence, 1 — |p(x, y)| can be used as a measure of similarity
between two variables x and y. The following can be stated
about the measure:

. 0<1—|p(z,y) <1

2. 1—|p(z,y)] =0 if and only if « and y are linearly
related.

31— |o(a.y)| = 1 - [p(y. )| (symmetric).

4. Ifu=2% and v= yT_b for some constants a,b,c,d,

then 1— |p(z,y)] =1 — |p(u,v)| i.e., the measure is
invariant to scaling and translation of the variables.

5. The measure is sensitive to rotation of the scatter

diagram in (z,y) plane.

Though correlation coefficient contains many desirable
properties as a feature similarity measure, properties 4 and
5, mentioned above, make it somewhat unsuitable for
feature selection. Since the measure is invariant to scaling,
two pairs of variables having different variances may have
the same value of the similarity measure, which is not
desirable as variance has high information content. Sensi-
tivity to rotation is also not desirable in many applications.

Least Square Regression Error (e). Another measure of the
degree of linear dependency between two variables  and y
is the error in predicting y from the linear model y = a + bx.
a and b are the regression coefficients obtained by
minimizing the mean square error

el y)’ = = 3 (el 1))

e(z,y); = yi — a — bx;. The coefficients are given by a = yand
b= e and the mean square error e(z,y) is given by
e(z,y) = var(y)(1 — p(z,y)*). If y and « are linearly related
e(zr,y) =0, and if z and y are completely uncorrelated
e(z,y) = var(y). The measure €? is also known as the residual
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Fig. 1. Nature of errors in linear regression: (a) Least-square fit (e) and (b) least-square projection fit (\s).

variance. It is the amount of variance of y unexplained by the
linear model. Some properties of the e are:

0 < e(z,y) < var(y).

e(xz,y) = 0 if and only if x and y are linearly related.
e(z,y) # e(y, z) (unsymmetric).

If u=z/c and v=y/d for some constant a,b,c,d,
then e(z,y) = d’e(u,v), i.e., the measure e is sensitive
to scaling of the variables. It is also clear that e is
invariant to translation of the variables.

5. The measure e is sensitive to rotation of the scatter

diagram in = — y plane.

Note that the measure e is not symmetric (property 3).
Moreover, it is sensitive to rotation (property 5).

Now, we suggest a measure of linear dependency which
has many desirable properties for feature selection not
present in the above two measures.

Maximal Information Compression Index (X\2). Let ¥ be the
covariance matrix of random variables z and y. Define,
maximal information compression index as Xo(x,y) = smallest
eigenvalue of %, i.e.,

=

2X(z, y) = (var(z) + var(y)

—y/(var(a) + var(y))? ~ tvar(z)var(y)(1 - pla,1)?)

The value of X, is zero when the features are linearly
dependent and increases as the amount of dependency
decreases. It may be noted that the measure ), is nothing
but the eigenvalue for the direction normal to the principle
component direction of feature pair (z,y). It is shown in [2]
that maximum information compression is achieved if a
multivariate (in this case bivariate) data is projected along
its principal component direction. The corresponding loss
of information in reconstruction of the pattern (in terms of
second order statistics) is equal to the eigenvalue along the
direction normal to the principal component. Hence, X, is
the amount of reconstruction error committed if the data is
projected to a reduced (in this case reduced from two to
one) dimension in the best possible way. Therefore, it is a
measure of the minimum amount of information loss or the
maximum amount of information compression, possible.

The significance of Ay can also be explained geometri-
cally in terms of linear regression. It can be easily shown

[22] that the value of ), is equal to the sum of the squares of
the perpendicular distances of the points (x,y) to the best fit
line y = a + bz, obtained by minimizing the sum of the
squared perpendicular distances. The coefficients of such a
best fit line are given by d = Zcotf + g and b = —cotd, where

var(z)® — var(y)

The nature of errors and the best fit lines for least-square
regression and principal component analysis are illustrated
in Fig. 1. X, has the following properties:

0 < Xo(z,y) < 0.5(var(z) + var(y)).

Xo(x,y) = 0if and only if = and y are linearly related.

Aoz, y) = Ao (y, ) (symmetric).
;

b Ss

If u=2% and v=2 for some constant a,b,c,d, then
Xa(x,y) # A2(u,v), ie., the measure is sensitive to
scaling of the variables. Since the expression of A,
does not contain mean, but only the variance and
covariance terms, it is invariant to translation of the
data set.

5. )Xo is invariant to rotation of the variables about the
origin (this can be easily verified from the geometric
interpretation of Ay considering the property that the
perpendicular distance of a point to a line does not
change with rotation of the axes).

The measure )\, possesses several desirable properties like
symmetry (property 3), sensitivity to scaling (property 4), and
invariance to rotation (property 5). It is a property of the
variable pair (z, y) reflecting the amount of error committed if
maximal information compression is performed by reducing
the variable pair to a single variable. Hence, it may be suitably
used in redundancy reduction.

3 FEATURE SELECTION METHOD

The task of feature selection involves two steps, namely,
partitioning the original feature set into a number of
homogeneous subsets (clusters) and selecting a representa-
tive feature from each such cluster. Partitioning of the
features is done based on the &-NN principle using one of
the feature similarity measures described in Section 2. In
doing so, we first compute the k nearest features of each
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Fig. 2. Feature clusters.

feature. Among them the feature having the most compact
subset (as determined by its distance to the farthest
neighbor) is selected, and its k neighboring features are
discarded. The process is repeated for the remaining
features until all of them are either selected or discarded.
While determining the k nearest-neighbors of features, we
assign a constant error threshold (¢) which is set equal to the
distance of the kth nearest-neighbor of the feature selected in
the first iteration. In subsequent iterations, we check the
Ao value, corresponding to the subset of a feature, whetheritis
greater than e or not. If yes, then we decrease the value of k.
Therefore, k may be varying over iterations. The concept of
clustering features into homogeneous groups of varying sizes
isillustrated in Fig. 2. The algorithm may be stated as follows:

Algorithm:
Let the original number of features be D, and the original
feature set be O = {F},i =1,...,D}. Represent the dissim-
ilarity between features F; and F; by S(F}, F;). Higher the
value of S is, the more dissimilar are the features. The
measures of linear dependency (e.g., p,e, A2) described in
Section 2 may be used in computing S. Let r¥ represent the
dissimilarity between feature F;, and its kth nearest-
neighbor feature in R. Then
Step 1: Choose an initial value of k£ < D — 1. Initialize the
reduced feature subset R to the original feature set O,
ie., R+ O.
Step 2: For each feature F; € R, compute 7.
Step 3: Find feature F}, for which 7% is minimum.
Retain this feature in R and discard k nearest features of Fj.
(Note: Fy denotes the feature for which removing k nearest-
neighbors will cause minimum error among all the features
in R). Let ¢ = 7).
Step 4: If k > cardinality(R) — 1: k£ = cardinality(R) — 1.
Step 5: If k= 1: Go to Step 8.
Step 6: While % > ¢ do:
(@ k=Fk—1.
rf} =infpepr
(“k” is decremented by 1, until the
“kth nearest-neighbor” of at least one of
the features in R is less than e-dissimilar
with the feature)
(b) If k£ = 1: Go to Step 8.
(if no feature in R has less than e-dissimilar

k
i

“nearest-neighbor” select all the remaining
features in R)
End While
Step 7: Go to Step 2.
Step 8: Return feature set R as the reduced feature set.

Remarks:

Computational Complexity. The algorithm has low-computa-
tional complexity with respect to both number of features
and number of samples of the original data. With respect to
the dimension (D), the method has complexity O(D?).
Among the existing search based schemes only sequential
forward and backward search have complexity O(D?),
though each evaluation is more time consuming. Other
algorithms like plus-I-take-r, sequential floating search and
branch and bound algorithm [2] have complexity higher
than quadratic. Most probabilistic search algorithms also
require more than quadratic number of evaluations.

The second factor which contributes to the speedup
achieved by the proposed algorithm is the low-computa-
tional complexity of evaluating the linear dependecy
measures of feature similarity. If the data set contains [
samples, evaluation of the similarity measure for a feature
pair is of complexity O(l). Thus, the feature selection
scheme has overall complexity O(D?]). Almost all other
supervised and unsupervised feature evaluation indices
(e.g., entropy, class seperability, K-NN classification accu-
racy) have at least O(I?) complexity of computation.
Moreover, evaluation of the linear dependency measures
involves computation using one-dimensional variables
only, while the other measures often involve distance
computations at higher dimensions. All these factors
contribute to the large speedup achieved by the proposed
algorithm compared to other feature selection schemes.

Notion of Scale in Feature Selection and Choice of k. In our
algorithm £ controls the size of the reduced set. Since &
determines the error threshold (e), the representation of the
data at different degrees of details is controlled by its
choice. This characterstic is useful in data mining where
multiscale representation of the data is often necessary. Note
that the said property may not always be possessed by
other algorithms where the input is usually the desired size
of the reduced feature set. The reason is that changing the
size of the reduced set may not necessarily result in any
change in the levels of details. In contrast, for the proposed
algorithm, k acts as a scale parameter which controls the
degree of details in a more direct manner.

Nonmetric Nature of Similarity Measure. The similarity
measures used in the proposed algorithm need not be a
metric. Unlike conventional agglomerative clustering algo-
rithms, it does not utilize metric property of the similarity
measures. Also, unlike the stepwise clustering method [21]
used previously for feature selection, our clustering algo-
rithm is partitional and nonhierarchical in nature.

4 FEATURE EVALUATION INDICES

Now, let us describe some indices that have been
considered for evaluating the effectiveness of the selected
feature subsets. The first three indices, namely class
seperability, K-NN classification accuracy, and naive Bayes
classification accuracy, do need class information of the
samples while the remaining three namely, entropy, fuzzy
feature evaluation index, and representation entropy, do
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E: Entropy, FFEI:

TABLE 1
Comparison of Feature Selection Algorithms for Large-Dimensional Data Sets

Data set Method Evaluation Criteria CPU

E | FFEI| S | KNNA (%) | BayesA (%) | Time (sec)

Mean SD Mean SD

Isolet SFS 0.52 | 0.41 | 1.09 | 95.02 0.89 | 92.03 0.52 | 14.01 x10*
d=310 SWC 0.71 | 0.55 | 2.70 | 72.01 0.71 | 68.01 0.44 431
D=617 Relief-F 0.70 | 0.52 | 2.24 | 95.81 0.81 | 95.52 0.47 | 5.03 x10°
k=305 Proposed | 0.50 | 0.40 | 1.07 | 96.00 0.78 | 95.01 0.52 440
Mult. Feat. | SFS 0.67 | 0.47 | 0.45 | 77.01 0.24 | 75.02 0.14 | 5.00 x10*
d=325 SWC 0.79 | 0.55 | 0.59 | 52.00 0.19 | 50.05 0.10 401
D=649 Relief-F 0.71 | 0.50 | 0.52 | 78.37 0.22 | 75.25 0.11 1.10 x103
k=322 Proposed | 0.68 | 0.48 | 0.45 | 78.34 0.22 | 75.28 0.10 451
Arrhythmia | SFS 0.74 | 0.44 | 0.25 | 52.02 0.55 | 50.21 0.43 1511
d=100 SWC 0.82 | 0.59 | 0.41 | 40.01 0.52 | 38.45 0.38 70
D=195 Relief-F 0.78 | 0.55 | 0.27 | 56.04 0.54 | 54.55 0.40 404
k=95 Proposed | 0.72 | 0.40 | 0.17 | 58.93 0.54 | 56.00 0.41 74

305

Fuzzy Feature Evaluation Index, S: Class Separability, KNNA: k-NN classification accuracy, BayesA: naive Bayes classification

accuracy, and SD: standard deviation. SFS: Sequential Forward Search and SWC: Stepwise Clustering. d: number of selected features, D: number
of original features and k: parameter used by the proposed method.

not. Before we discuss them, we mention, for convenience,
the following notations: Let [ be the number of sample
points in the data set, ¢ be the number of classes present in
the data set, D be the number of features in the original
feature set O, d be the number of features in the reduced
feature set R, o be the original feature space with
dimension D, and j be the transformed feature space
with dimension d.

1.

Class Separability [2]. Class seperability S of a data set
is defined as S = trace(S; ' Sy). Sy is the within class
scatter matrix and S, is the between class scatter
matrix, defined as:

Su = Y mBE{(X — u)(X — ) lwi} =Y m%,
=1 =t

c

Sy = Y (= M) (n; — M,)"

=1
M, = E{X}=> mu,
=1

(1)

where 7; is the a priori probability that a pattern
belongs to class w;, X is the feature vector, y; is the
sample mean vector of class w;, M, is the sample
mean vector for the entire data points, ¥; is the
sample covariance matrix of class w;, and E{.} is the
expectation operator. A lower value of the separ-
ability criteria S ensures that the classes are well
separated by their scatter means.

K-NN Classification Accuracy. Here, we have used the
K-NN rule for evaluating the effectiveness of the
reduced set for classification. Cross-validation is
performed in the following manner—we randomly
select 10 percent of the data as training set and classify
the remaining 90 percent points. Ten such indepen-
dentrunsare performed and the average classification
accuracy on test set is used. The value of K, chosen for
the K-NN rule, is the square root of the number of data
points in the training set.

Naive Bayes Classification Accuracy. A Bayes maximum
likelihood classifier [2], assuming normal distribution
of classes, is also used for evaluating the classification
performance. Mean and covariance of the classes are
estimated from a randomly selected 10 percent
training sample, and the remaining 90 percent of the
points are used as test set. Ten such independent runs
are performed and the average classification accuracy
on test set is provided.

Entropy [10]. Let the distance between two data
points p, ¢ be

Moo N2

D= PJ 4]

= [Z <max; — min; ’

= i J

where z,; denotes feature value for p along
jth direction, and max;, min; are the maximum and
minimum values computed over all the samples along
jth axis, M is the number of features. Similarity
between p, ¢ is given by sim(p, ) = e “Pr, where aisa
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TABLE 2

Comparison of Feature Selection Algorithms for Medium-Dimensional Data Sets

Data set Method Evaluation Criteria CPU
E | FFEI | S | KNNA (%) | BayesA (%) | Time (sec)
Mean SD Mean SD
BB 0.50 | 0.30 | 0.28 | 90.01 0.71 | 88.17 0.55 1579
Spambase | SFFS 0.50 | 0.30 | 0.28 | 90.01 0.72 | 88.17 0.55 1109
SES 0.52 | 0.34 | 0.29 | 87.03 0.68 | 86.20 0.54 121.36
d=29 SWC 0.59 | 0.37 | 0.41 | 82.04 0.68 | 79.10 0.55 11.02
D=57 Relief-F 0.59 | 0.36 | 0.34 | 87.04 0.70 | 86.01 0.52 70.80
k=27 Proposed | 0.50 | 0.30 | 0.28 | 90.01 0.71 | 88.19 0.52 13.36
BB 0.67 | 0.47 | 0.29 | 78.02 0.47 | 62.27 0.41 1019
Waveform | SFFS 0.68 | 0.48 | 031 | 77.55 045 | 62.22 0.41 627
SES 0.69 | 0.49 | 0.37 | 74.37 0.44 | 59.01 0.42 71.53
d=20 SWC 0.72 | 0.55 | 0.41 | 62.03 0.40 | 47.50 0.40 8.01
D=40 Relief-F 0.73 | 054 | 038 | 74.88 0.41 | 62.88 0.40 50.22
k=17 Proposed | 0.68 | 0.48 | 0.30 | 75.20 0.43 | 63.01 0.40 8.28
BB 0.65 | 0.44 | 0.07 | 75.96 0.35 | 65.10 0.28 150.11
Ionosphere | SFFS 0.65 | 0.44 | 0.08 | 74.73 0.37 | 65.08 0.31 50.36
SES 0.65 | 0.44 | 0.10 | 69.94 0.32 | 62.00 0.27 10.70
d=16 SWC 0.66 | 0.47 | 0.22 | 62.03 0.32 | 59.02 0.25 1.04
D=32 Relief-F 0.62 | 047 | 0.15| 7290 0.34 | 64.55 0.27 8.20
k=11 Proposed | 0.64 | 0.43 | 0.10 | 78.77 0.35 | 65.92 0.28 1.07
BB: Branch and Bound, SFFS: Sequential Floating Forward Search.
positive constant. A possible value of ais %.@is the Hpg =1-— D‘jf’z;17 if dpg < Dpawr
=0, otherwise.

average distance between data points computed over
the entire data set. Entropy is defined as:

L1
Z Z sim(p, q) % log sim(p, q) @)

p=1 g=1
+ (1 —sim(p, q)) x log (1 — sim(p, q))).

If the data is uniformly distributed in the feature
space, entropy is maximum. When the data has well-
formed clusters uncertainty is low and so is entropy.
Fuzzy Feature Evaluation Index [13]. Fuzzy feature
evaluation index (FFEI) is defined as:

FFEI = 1—1 ZZ

p q%p (3)
[ (= 19 + 1S (1 = uf)].

where 1, and pf, are the degrees that both patterns
p and ¢ belong to the same cluster in the feature
spaces o and ), respectively. Membership func-
tion f1,, may be defined as

dy, is the distance between patterns p and ¢, and
Dz 1S the maximum separation between patterns
in the respective feature spaces.

The value of FFEI decreases as the intercluster/
intracluster distances increase/decrease. Hence, the
lower the value of FFEI, the more crisp is the cluster
structure. Note that the first two indices, class
seperability and K-NN accuracy, measure the effec-
tiveness of the feature subsets for classification,
while the indices entropy and fuzzy feature evalua-
tion index evaluate the clustering performance of the
feature subsets. Let us now describe a quantitative
index which measures the amount of redundancy
present in the reduced subset.

Representation Entropy [2]. Let the eigenvalues of the
d x d covariance matrix of a feature set of size d be
Xyj=1,...,d. Let
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TABLE 3
Comparison of Feature Selection Algorithms for Low-Dimensional Data Sets
Data set | Method Evaluation Criteria CPU
E | FFEI | S | KNNA (%) | BayesA (%) | Time (sec)
Mean SD Mean SD
BB 0.65 | 0.40 | 0.90 | 64.03 0.41 | 63.55 0.40 | 4.01 x10*
Forest SFFS 0.64 | 0.39 | 0.81 | 67.75 0.43 | 66.22 0.41 | 3.02 x10*
SES 0.64 | 0.41 | 0.98 | 62.03 0.41 | 61.09 0.40 | 7.00 x10?
d=5 SWC 0.68 | 045 | 1.00 | 54.70 0.37 | 53.25 0.35 50.03
D=10 Relief-F 0.65 | 0.40 | 0.90 | 64.03 0.41 | 63.55 0.40 | 2.80 x10*
k=5 Proposed | 0.65 | 0.40 | 0.90 | 64.03 0.41 | 63.55 0.40 55.50
BB 0.59 | 036 | 1.84 | 9490 0.17 | 94.45 0.14 3.39
Cancer | SFFS 0.59 | 0.36 | 1.84 | 94.90 0.17 | 94.45 0.14 6.82
SES 0.61 | 037 | 2.68 | 92.20 0.17 | 91.05 0.15 1.16
d=4 SWC 0.60 | 0.37 | 2.69 | 90.01 0.19 | 89.11 0.17 0.10
D=9 Relief-F 0.59 | 036 | 1.84 | 94.90 0.17 | 94.25 0.17 0.91
k=5 Proposed | 0.56 | 0.34 | 1.70 | 95.56 0.17 | 94.88 0.17 0.10
BB 0.55 | 0.34 | 22.0 | 96.80 0.14 | 97.33 0.10 0.56
Iris SFFES 0.55 | 0.34 | 22.0 | 96.80 0.14 | 97.33 0.10 0.71
SES 0.57 | 035 | 27.0 | 92.55 0.17 | 93.10 0.14 0.25
d=2 SWC 0.60 | 037 | 29.2 | 92.19 0.19 | 93.02 0.17 0.01
D=4 Relief-F 0.55 | 0.34 | 22.0 | 96.80 0.14 | 97.33 0.10 0.14
k=2 Proposed | 0.55 | 0.34 | 22.0 | 96.80 0.14 | 97.33 0.10 0.01

)\~j has similar properties like probability, namely,
0< ):]- <1 and E?:l )\j = 1. Hence, an entropy
function can be defined as

HR = 72):]' log )~\]‘. (4)

The function Hp attains a minimum value (zero)
when all the eigenvalues except one are zero or, in
other words, when all the information is present
along a single coordinate direction. If all the
eigenvalues are equal, i.e., information is equally
distributed among all the features, Hr is maximum
and so is the uncertainty involved in feature
reduction. The above measure is known as represen-
tation entropy. It is a property of the data set as
represented by a particular set of features, and is a
measure of the amount of information compression
possible by dimensionality reduction. This is equiva-
lent to the amount of redundancy present in that
particular representation of the data set. Since the
proposed algorithm involves partitioning of the
original feature set into a number of homogeneous
(highly compressible) clusters, it is expected that

representation entropy of the individual clusters are
as low as possible, while that of the final reduced set
of features has low redundancy, i.e., a high value of
representation entropy.

It may be noted thatamong all the d-dimensional subspaces
of an original D-dimensional data set, the one corresponding
to the Karhunen-Loeve coordinates [2] (for the first d
eigenvalues) has the highest representation entropy, i.e., is
least redundant. However, for large-dimensional data sets K-
L transform directions are difficult to compute. Also, K-L
transform results, in general, transformed variables and not
exact subsets of the original features.

5 EXPERIMENTAL RESULTS AND COMPARISONS

Organization of the experimental results is as follows: First,
the characterstics of the nine data sets used are discussed
briefly. Then, performance of the proposed algorithm in
terms of the feature evaluation indices, discussed in
Section 4, is compared with five other feature selection
schemes. Next, we have studied the redundancy reduction
aspect of the algorithm quantitatively along with compar-
isons. Effect of varying the parameter k, used in feature
clustering, is also studied.
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Fig. 3. Variation in classification accuracy with size of the reduced
subset for—(a) Multiple features, (b) ionosphere, and (c) cancer data
sets. The vertical dotted line marks the point for which results are
reported in Tables 1, 2, and 3.

Three categories of real-life public domain data sets are
used: low-dimensional (D < 10), medium-dimensional
(10 < D <£100), and high-dimensional (D > 100), contain-
ing both large and relatively smaller number of points. They
are available from the UCI Machine Learning Repository
[23]. Their characterstics are described below.

1. Isolet. The data consists of several spectral coefficients
of utterances of English alphabets by 150 subjects.

There are 617 features all real in the range [0,1],
7,797 instances, and 26 classes.

2. Multiple Features. This data set consists of features of
handwritten numerals (“0”-“9”) extracted from a
collection of Dutch utility maps. There are total
2,000 patterns, 649 features, and 10 classes.

3. Arrhythmia. It contains 452 samples, each having
279 attributes. Among the attributes 195 are real
valued and are used for our experiments. The
attributes represent parameters of ECG measure-
ments and the task is to classify a patient into one
of the 16 classes of cardiac Arrhythmia.

4.  Spambase. The task is to classify an email into spam or
nonspam category. There are 4,601 instances, 57 con-
tinuous valued attributes denoting word frequencies,
and 2 classes.

5. Waveform. This consists of 5,000 instances having
40 attributes each. The attributes are continuous
valued, and some of them are noise. The task is to
classify an instance into one of the three categories of
waves.

6. Ionosphere. The data represents autocorrelation func-
tions of radar measurements. The task is to classify
them into two classes denoting passage or obstruc-
tion in ionosphere. There are 351 instances and
34 attributes, all continuous.

7. Forest Cover Type. This is a GIS data set representing
the forest covertype of a region. There are 54 attributes
out of which we select 10 numeric valued attributes.
There are 581,012 instances and eight classes.

8. Wisconsin Cancer. The popular Wisconsin breast
cancer data set contains nine features, 684 instances,
and two classes.

9. Iris. The data set contains 150 instances, four
features, and three classes of Iris flowers.

5.1 Comparison: Classification and Clustering
Performance

Four indices, namely, entropy (2), fuzzy feature evaluation
index (3), class seperability (1), and K-NN and naive Bayes
classification accuracy are considered to demonstrate the
efficacy of the proposed methodology and for comparing it
with other methods. Four unsupervised feature selection
schemes considered for comparison are:

1. Branch and Bound Algorithm (BB) [2]. A search
method in which all possible subsets are implicitly
inspected without exhaustive search. If the feature
selection criterion is monotonic BB returns the
optimal subset.

2. Sequential Forward Search (SFS) [2]. A suboptimal
search procedure where one feature at a time is
added to the current feature set. At each stage, the
feature to be included in the feature set is selected
from among the remaining available features so that
the new enlarged feature set yields a maximum
value of the criterion function used.

3. Sequential Floating Forward Search (SFFS) [3]. A
near optimal search procedure with lower computa-
tional cost than BB. It performs sequential forward
search with provision for backtracking.
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TABLE 4
Comparison of Feature Selection Algorithms for Large Data Sets when Search Algorithms Use FFEI as the Selection Criterion

Data set Method Evaluation Criteria CPU
FFEI | E KNNA (%) | BayesA (%) | Time (sec)
Mean SD Mean SD
Isolet SFS 0.40 | 0.54 | 0.98 | 95.81 0.82 | 92.19 0.72 | 28.01 x10?
d=310, D=617 | Proposed | 0.40 | 0.50 | 1.07 | 96.00 0.78 | 95.01 0.52 440
Mult. Feat. SFS 0.44 | 0.67 | 0.44 | 77.71 0.44 | 75.81 0.17 | 9.20 x10*
d=325, D=649 | Proposed | 0.48 | 0.68 | 0.45 | 78.34 0.22 | 75.28 0.10 451
Arrhythmia SFS 0.40 | 0.77 | 0.21 | 53.22 0.59 | 52.25 0.44 2008
d=100, D=195 | Proposed | 0.40 | 0.72 | 0.17 | 58.93 0.54 | 56.00 0.41 74
BB 0.40 | 0.65 | 0.90 | 64.03 0.41 | 63.55 0.40 | 9.21 x10*
Forest SFFS 0.40 | 0.66 | 0.83 | 67.01 0.45 | 66.00 0.44 | 7.52 x10*
SFS 0.43 | 0.66 | 1.01 | 61.41 0.44 | 60.01 0.41 | 17.19 x10?
d=5, D=10 Proposed | 0.40 | 0.65 | 0.90 | 64.03 0.41 | 63.55 0.40 55.50

4. Stepwise Clustering (using correlation coefficient)
(SWC) [21]. A nonsearch based scheme which
obtains a reduced subset by discarding correlated
features.

In our experiments, we have mainly used entropy (2) as the
feature selection criterion with the first three search
algorithms.

Comparisons in terms of five indices was made for
different sizes of the reduced feature subsets. Tables 1, 2,
and 3 provide such a comparative result corresponding to
high, medium, and low-dimensional data sets when the
size of the reduced feature subset is taken to be about half
of the original size as an example. Comparison for other
sizes of the reduced feature set is provided in Fig. 3
considering one data set from each of the three categories,
namely, multiple features (high), ionosphere (medium),
and cancer (low). The CPU time required by each of the
algorithms on a Sun UltraSparc 350 MHz workstation are
also reported in Tables 1, 2, and 3. Since the branch and
bound (BB) and the sequential floating forward search
(SFFS) algorithms require infeasibly high computation time
for the large data sets, we could not provide the figures for
them in Table 1. For the classification accuracies (using K-
NN and Bayes), both mean and standard deviations (SD)
computed for ten independent runs are presented.

Compared to the search-based algorithms (BB, SFFS, and
SFS), the performance of the proposed scheme is compar-
able or slightly superior, while the computational time
requirement is much less for the proposed scheme. On the
other hand, compared to the similarity based SWC method
the performance of the proposed algorithm is much
superior, keeping the time requirement comparable. It is
further noted that the superiority in terms of computational
time increases as the dimensionality and sample size
increase. For example, in the case of low-dimensional data
sets the speedup factor of the proposed scheme compared

to BB and SFFS algorithms is about 30-50, for Forest data
which is low-dimensional but has large sample size the
factor is about 100, for medium-dimensional data sets, BB
and SFFS are about 100 times slower and SFS about ten
times slower, while for the high-dimensional data sets SFS
is about 100 times slower, and BB and SFFS could not be
compared as they require infeasibly high run time.

It may be noted that the aforesaid unsupervised feature
selection algorithms (namely, BB, SFFS, SFS) usually
consider “entropy” as the selection criterion. Keeping this
in mind detailed results are provided in Tables 1, 2, and 3.
However, we have also run the experiments using another
unsupervised measure, namely, fuzzy feature evaluation
index (FFEI) (3). Table 4 shows, as an illustration, the results
only for the four large data sets (Isolet, Multiple Features,
Arrhythmia, and Forest Covertype). These results corrobo-
rate the findings obtained using entropy.

In a part of the experiments, we compared the perfor-
mance with a supervised method Relief-F, which is widely
used. Wehave used 50 percent of the samples as design set for
the Relief-F algorithm. Results are presented in Tables 1, 2,
and 3. The Relief-F algorithm provides classification perfor-
mance comparable to the proposed scheme inspite of using
class label information. Moreover, it has much higher time
requirement, specially for data sets with large number of
samples, e.g., the Forest data. Its performance in terms of the
unsupervised indices is also poor.

Statistical significance of the classification performance
of the proposed method compared to those of the other
algorithms is tested. Means and SD values of the accuracies,
computed over 10 independent runs, are used for this
purpose. A generalized version of paired ¢-test suitable for
both inequal means and variances is used. The above
problem is the classical Behrens-Fisher problem in hypoth-
esis testing, a suitable test statistic is described and tabled in
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Representation Entropy Hj, of Subsets Selected Using Some Algorithms

TABLE 5

Data set BB | SFFS | SFS | SWC | Relief-F | Proposed
Isolet - - 291 | 2.87 2.89 3.50
Mult. Ftrs. - - 2.02 | 1.90 1.92 3.41
Arrhythmia - - 2.11 | 2.05 2.02 3.77
Spambase 202 190 | 1.70 | 1.44 1.72 2.71
Waveform 1.04 | 1.02 | 0.98 | 0.81 0.92 1.21
Tonosphere 1.71 ) 1.71 | 1.70 | 0.91 1.52 1.81
Forest 091 | 0.82 | 0.82 | 0.77 0.91 0.91
Cancer 0.71 ] 0.71 | 0.55 | 0.55 0.59 0.82
Iris 047 | 047 | 041 | 0.31 0.47 0.47
TABLE 6

Redundacy Reduction Using Different Feature Similarity Measures

Similarity Measure: Ay | Similarity Measure: e | Similarity Measure: p

HY, H;, HY, H; HY, Hj,
Isolet 0.001 3.50 0.007 3.01 0.003 3.41
Mult. Ftrs. | 0.002 3.41 0.008 2.95 0.007 3.01
Arrhythmia | 0.007 3.77 0.017 2.80 0.010 3.41
Spambase 0.04 2.71 0.07 2.01 0.05 2.53
Waveform 0.10 1.21 0.14 1.04 0.11 1.08
Ionosphere 0.05 1.81 0.07 1.54 0.07 1.54
Forest 0.10 0.91 0.17 0.82 0.11 0.91
Cancer 0.19 0.82 0.22 0.71 0.19 0.82
Iris 0.17 0.47 0.22 0.31 0.17 0.47

HY,: Average representation entropy of feature groups, Hj;,: representation entropy of selected subset, \,: maximal information compression index,

e: least-square regression error, and p: correlation coefficients.

[24] and [25], respectively." It is observed that the proposed
method has significantly better performance compared to
the SWC algorithm for all the data sets, and the SFS
algorithm for most of the data sets. For the other algorithms,
namely Relief-F, BB, and SFFS, the performance is compar-
able, i.e., the difference of the mean values of the
classification scores is statistically insignificant.

5.2 Redundancy Reduction: Quantitative Study

As mentioned before, the proposed algorithm involves
partitioning the original feature set into certain number of
homogeneous groups and then replacing each group by a
single feature, thereby resulting in the reduced feature set.

1. The test statistic is of the form v = , where Z,,Z, are the

)\1,9'1+)\2.s:;
means, s1,ss the standard deviations, and A\ = 1/ny, Ay = 1/ny, ny,n, are

the number of observations.

Representation entropy (Hp), defined in Section 4, is used to
measure the redundancy in both the homogeneous clusters
and the final selected feature subset. Hz when computed
over the individual clusters should be as low as possible
(indicating high redundancy among the features belonging
to a single cluster), while giving as high value as possible
for the selected subset (indicating minimum redundancy).
Let us denote the average value of Hp computed over the
homogeneous groups by H f? and the value of Hy for the
final selected subset by H7,.

Table 5 shows the comparative results of the proposed
method with other feature selection algorithms in terms of
Hj,. It is seen that the subset obtained by the proposed
scheme is least redundant having the highest H7, values.

To demonstrate the superiority of the maximal information
compression index Xy, compared to the other two feature
similarity measures (p and e) used previously, we provide
Table 6, where we have compared both H}, and Hj, values



MITRA ET AL.: UNSUPERVISED FEATURE SELECTION USING FEATURE SIMILARITY 311

obtained using each of the similarity measures, in our
clustering algorithm. It is seen from Table 6 that, X» has
superior information compression capability compared to
the other two measures as indicated by the lowest and
highest values of HY, and Hj, respectively.

5.3 Effect of Parameter &

In our algorithm, the size of the reduced feature subset and
hence, the scale of details of data representation is
controlled by the parameter k. Fig. 4 illustrates such an
effect for three data sets—multiple features, ionosphere,
and cancer, considering one data from each of the high,
medium, and low categories. As expected, the size of the
reduced subset decreases overall with increase in k.
However, for medium and particularly large-dimensional
data (Fig. 4a), it is observed that for certain ranges of & at the
lower side, there is no change in the size of the reduced
subset, i.e., no reduction in dimension occurs. Another
interesting fact observed in all the data sets considered is
that, for all values of k in the case of small dimensional data
sets, and for high values of k in the case of medium and
large-dimensional data sets, the size of the selected subset
varies linearly with k. Further, it is seen in those cases,
d + k =~ D, where d is the size of the reduced subset and D is
the size of the original feature set.

6 CONCLUSIONS AND DISCUSSION

An algorithm for unsupervised feature selection using
feature similarity measures is described. The novelty of the
scheme, as compared to other conventional feature selection
algorithms, is the absence of search process which contributes
to the high-computational time requirement of those feature
selection algorithms. Our algorithm is based on pairwise
feature similarity measures, which are fast to compute. It is
found to require several orders less CPU time compared to
other schemes. Unlike other approaches, which are based on
optimizing either classification or clustering performance
explicitly, here we determine a set of maximally independent
features by discarding the redundant ones. This enhances the
applicability of the resulting features to compression and
other tasks like forecasting, summarization, and association
mining in addition to classification/clustering. Another
characterstics of the proposed algorithm is its capability for
multiscale representation of data sets. The scale parameter k
used for feature clustering efficiently parametrizes the
tradeoff between representation accuracy and feature subset
size. All these make it suitable for a wide variety of data
mining tasks involving large (in terms of both dimension and
size) data sets.

Besides formulating the novel clustering algorithm, we
have defined a feature similarity measure called maximal
information compression index. One may note that the
definition of the said parameter is not new, it is its use in
feature subset selection framework which is novel. The
superiority of this measure for feature selection is estab-
lished experimentally. It is also demonstrated through
extensive experiments that representation entropy can be
used as an index for quantifying both redundancy reduc-
tion and information loss in a feature selection method.

In the present article, we have measured the information
loss in terms of second order statistics. The similarity measure
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Fig. 4. Variation in size of the reduced subset with parameter k
for—(a) multiple features, (b) ionosphere, and (c) cancer data.

used for the feature selection algorithm is selected /defined
accordingly. One may modify these measures suitably in case
even higher order statistics are used. In this regard, modifica-
tions of correlation indices [22] which measure higher order
polynomial dependency between variables may be consid-
ered. Also, the similarity measure is valid only for numeric
features; its extension to accomodate other kinds of variables
(e.g., symbolic, categorical, hybrid) may also be investigated.
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