

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 6, DECEMBER 2000 891

hyperplane i (i = 1; 2; � � � ; H when H hyperplanes are encoded in the

chromosome) with respect to the N coordinate axes, and one perpen-

dicular distance variable, di indicating its perpendicular distance from

the origin. Let Hmax represent the maximum number of hyperplanes

that may be required to model the decision boundary of a given data

set. It is specified a priori. Let the angle and perpendicular distance

variables be represented by b1 and b2 bits, respectively. Then lH , the

number of bits required to represent a hyperplane, and lmax, the max-

imum length that a string can have, are as follows:

lH =(N � 1) � b1 + b2 (1)

lmax =Hmax � lH : (2)

Let string i representHi hyperplanes. Then its length is li = Hi�lH .

Initial population is created in such a way that the first and the second

strings encode the parameters of Hmax and 1 hyperplanes, respec-

tively, to ensure sufficient diversity in the population. For the remaining

strings, the number of hyperplanes Hi is generated randomly in the

range [1, Hmax], and the li bits are initialized randomly to 1s and 0s.

C. Fitness Computation

As mentioned in Section II, the fitness function (which is maximized)

is defined in such a way that

• a string with smaller value of misclassifications is considered

to be fitter than a string with a larger value, irrespective of the

number of hyperplanes i.e., it primarily minimizes the number of

misclassified points, and then

• among two strings providing the same number of misclassifica-

tions, the one with the smaller number of hyperplanes is consid-

ered to be fitter.

The number of misclassified points for a string i encoding Hi hy-

perplanes is found as follows : Let the Hi hyperplanes provide Mi dis-

tinct regions which contain at least one training data point. (Note that

although Mi � 2H , in reality it is bounded by the size of the training

data set.) For each such region and from the training data points that

lie in this region, the class of the majority is determined, and the region

is considered to represent (or be labeled by) the said class. Points of

other classes that lie in this region are considered to be misclassified.

The sum of the misclassifications for all the Mi regions constitutes the

total misclassification missi associated with the string. Accordingly,

the fitness of string i may be defined as

�t i =(n�missi)� �Hi 1 � Hi � Hmax (3)

=0; otherwise (4)

where n = size of the training data set and � = (1=Hmax).
Let us now explain how the first criterion is satisfied. Let two strings i

and j have number of misclassificationsmissi andmissj , respectively,

and the number of hyperplanes encoded in them be Hi andHj , respec-

tively. Letmissi < missj andHi > Hj . (Note that since the number

of misclassified points can only be integers,missj � missi+1.) Then,

�t i =(n�missi)� �Hi;

�t j =(n�missj)� �Hj :

The aim now is to prove that �t i > �tj , or that �t i � �tj > 0.

From the above equations, �t i��t j = missj�missi��(Hi�Hj).
If Hj = 0, then �tj = 0 [from (4)] and therefore �t i > �tj . When

1 � Hj � Hmax, we have �(Hi � Hj) < 1 since (Hi � Hj) <
Hmax. Obviously, missj � missi � 1. Therefore, �t i � �tj > 0,

or, �t i > �tj . The second criterion is also fulfilled since �t i < �tj
when missi = missj and Hi > Hj .

D. Genetic Operators

Among the operations of selection, crossover and mutation, the se-

lection operation used here may be one of those used in conventional

GAs, while crossover and mutation need to be newly defined for VGA.

These are now described in detail.

1) Crossover: Two strings, i and j, having lengths li and lj , re-

spectively, are selected from the mating pool. Let li � lj . Then string

i is padded with #s so as to make the two lengths equal. Conventional

crossover like single point crossover, two point crossover [2] is now

performed over these two strings with probability �c. The following

two cases may now arise:

• All the hyperplanes in the offspring are complete. (A hyperplane

in a string is called complete if all the bits corresponding to it are

either defined (i.e., 0s and 1s) or #s. Otherwise it is incomplete.)

• Some hyperplanes are incomplete.

In the second case, let u = number of defined bits (either 0 or 1) and

t = total number of bits per hyperplane = (N � 1) � b1 + b2 [from

(1)]. Then, for each incomplete hyperplane, all the #s are set to defined

bits (either 0 or 1 randomly) with probability u=t. In case this is not

permitted, all the defined bits are set to #. Thus each hyperplane in the

string becomes complete. Subsequently, the string is rearranged so that

all the #s are pushed to the end, or, in other words, all the hyperplanes

are transposed to the beginning of the strings. The information about

the number of hyperplanes in the strings is updated accordingly.

2) Mutation: In order to introduce greater flexibility in the method,

the mutation operator is defined in such a way that it can both increase

and decrease the string length. For this, the strings are padded with

#s such that the resultant length becomes equal to lmax. Now for each

defined bit position, it is determined whether conventional mutation [2]

can be applied or not with probability�m. Otherwise, the position is set

to # with probability �m . Each undefined position is set to a defined

bit (randomly chosen) according to another mutation probability �m .

These are described in Fig. 1.

Note that mutation may result in some incomplete hyperplanes, and

these are handled in a manner similarly as was done for the crossover

operator. For example, the operation on the defined bits, i.e., when

k � li in Fig. 1, may result in a decrease in the string length, while

the operation on #s, i.e., when k > li in the figure, may result in an

increase in the string length. Also, mutation may yield strings having

all #s indicating that no hyperplanes are encoded in it. Consequently,

this string will have fitness = 0 and will be automatically eliminated

during selection.

As in conventional GAs, the operations of selection, crossover and

mutation are performed here over a number of generations till a user

specified termination condition is attained. Elitism is incorporated such

that the best string seen up to the current generation is preserved in

the population. The best string of the last generation, thus obtained,

along with its associated labeling of regions provides the classification

boundary of the n training samples. After the design is complete, the

task of the classifier is to check, for an unknown pattern, the region in

which it lies, and to put the label accordingly.

III. IMPLEMENTATION AND RESULTS

The effectiveness of VGA in automatically determining the value of

H of the classifier is demonstrated here for a variety of data sets which

range in dimensions from two to nine, and in complexity from simple,

disjoint classes to complicated, overlapping classes. The recognition

scores of the VGA-classifier are also compared with those of the fixed

length GA-classifier, and Bayes maximum likelihood classifier, k-NN

rule and MLP. Three data sets are utilized for performing these exper-

iments. These comprise a two-dimensional artificial data sets, ADS 1

892 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 6, DECEMBER 2000

[1], and two real life data sets, namely, three-dimensional Vowel [1],

[7] and and nine-dimensional Cancer [8].

For the experiments, the population size and crossover probability

are kept fixed at 20 and 0.8, respectively. �m and �m are fixed at

0.1. The values of b1 and b2 are chosen to be 8 and 16, respectively. We

have chosen the mutation probability value �m to vary approximately

in the range of [0.015, 0.333]. The range is divided into eight equis-

paced values. Initially �m has a high value (= 0.333), which is slowly

decreased in steps to 0.015 and then increased in steps to 0.333. The

GA-classifier and VGA-classifier are implemented with 100 and 200

iterations executed with each value of �m, respectively, thereby giving

a maximum of 1500 and 3000 iterations, respectively. (Since the search

space for VGAs, comprising all combinations of one to Hmax hyper-

planes, is larger than that of GAs, the former is executed longer.) The

initial high value of the mutation probability ensures sufficient diversity

in the population which is desired, as at this stage, the algorithm knows

very little about the nature of the search space. As generations pass, it

becomes necessary that the space be searched in detail without abrupt

changes in population. Consequently, we decrease the mutation prob-

ability value gradually until it is sufficiently small. It may so happen

that in spite of this, the best string obtained so far has a large Hamming

distance from the actual optimal string. This may very well happen for

deceptive problems [2]. Thus, if we continue with the small mutation

probability value, it may be too long before the best string is found. So

to avoid being stuck at a local optima, the value is again gradually in-

creased. Even if the best string had been found earlier, we lose nothing

since the best string is always preserved in subsequent generation of

strings. Ideally the process of decreasing and then increasing the muta-

tion probability value should continue, but here we have restricted the

cycle to just one due to practical limitations.

The process is terminated if the maximum number of iterations has

been executed or a string with zero misclassification is attained. Note

that the probability values are taken to be somewhat high since, due to

space constraints, the population size had to be kept low. It is known in

the literature [9] that, in order to get good performance, the probability

values should be high if the population size is low.

A. Performance of the VGA-Classifier

Tables I and II show the number of hyperplanesHV GA as determined

automatically by the VGA-classifier for modeling the class boundaries

of ADS 1, Vowel and Cancer data sets when the classifier is trained with

10% and 50% samples, respectively. Two different values of Hmax,

viz., 6 and 10, are used for this purpose. The overall recognition scores

obtained during testing of the VGA-classifier along with their compar-

ison with those of the corresponding fixed length version (i.e., GA-clas-

sifier with H = 6 and 10) are also shown. The scores provided here

are the average values obtained over five different runs of the algo-

rithms. The purpose of this exercise is to compare the performance of

the VGA-classifier and GA-classifier starting with the same number of

hyperplanes, i.e., Hmax for VGA-classifier and H for GA-classifier.

The results demonstrate that in all the cases, the VGA-classifier is

able to evolve an appropriate value of HV GA from Hmax. In addi-

tion, its recognition score on the test data set is found, on an average,

to be higher than that of the GA-classifier. There is only one excep-

tion to this for the Vowel data when 10% of the samples is used for

training (Table II). In this case, Hmax = 6 does not appear to be a

high enough value for modeling the decision boundaries of overlap-

ping Vowel classes with VGA-classifier. This is also reflected in both

the tables, where the scores for VGA-classifier with Hmax = 6 are less

than those with Hmax = 10.

In all the cases where the number of hyperplanes for modeling

the class boundaries is less than 6, the scores of VGA-classifier with

Hmax = 6 are found to be superior to those with Hmax = 10. This

Fig. 1. Mutation operation for string i.

TABLE I
H AND THE COMPARATIVE OVERALL

RECOGNITION SCORES (%) DURING TESTING (WHEN 10% OF THE DATA SET IS

USED FOR TRAINING AND THE REMAINING 90% FOR TESTING)

TABLE II
H AND THE COMPARATIVE OVERALL RECOGNITION SCORES (%)

DURING TESTING (WHEN 50% OF THE DATA SET IS USED FOR TRAINING

AND THE REMAINING 50% FOR TESTING)

is so because with Hmax = 10, the search space is larger than that

for Hmax = 6, which makes it difficult for the classifier to arrive at

the optimum arrangement quickly or within the maximum number

of iterations considered here. (Note that it may have been possible to

further improve the scores and also reduce the number of hyperplanes,

if more iterations of VGA were executed.)

In general, the scores of the GA-classifier (fixed length version) with

H = 10 are seen to be lower than those with H = 6 because of two

reasons; overfitting of the training data and difficulty of searching a

larger space. The only exception is with Vowel for training with 50%

data where the score for H = 10 is larger than that for H = 6. This is

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 6, DECEMBER 2000 893

expected, in view of the overlapping classes of the data set and the sig-

nificantly large size of the training data. One must note in this context

that the detrimental effect of overfitting on the generalization perfor-

mance increases with decrease in the size of the training data.

As an illustration, the decision boundary obtained by the VGA-clas-

sifier for ADS 1, when 10% of the data set is chosen for training, is

shown in Fig. 2.

B. Comparison with Existing Methods

For the purpose of comparing the performance of the VGA-clas-

sifier with those of Bayes maximum likelihood classifier (which is

well known for discriminating overlapping classes), k-NN classifier

and MLP (which are well known for discriminating nonoverlapping,

nonlinear regions by generating piecewise linear boundaries), we have

provided Table III when 10% data is used for training. For MLP we con-

sidered two hidden layers with three different values (5, 10 and 20) of

the number of nodes in each layer. Bayes maximum likelihood classi-

fier is implemented assuming normal distribution of classes, with un-

equal dispersion matrices and a priori probabilities. For k-NN rule we

assumed k =
p
n, n being the total number of training samples. (It is

known that as the number of training patterns n goes to infinity, if the

values of k and k/n can be made to approach infinity and 0, respec-

tively, then the k-NN classifier approaches the optimal Bayes classifier

[10]. One such value of k for which the limiting conditions are satisfied

is
p
n.)

Comparing Tables I and III, the VGA-classifier is found to provide the

best performance for ADS 1. In the case of Cancer, its performance is

found to be comparable to that of k-NN classifier, the one providing the

best result for the data set. For Vowel, the Bayes classifier is found to

provide the best recognition score (which conforms to earlier findings

made in [7]), followed by the score of the VGA-classifier.

Besides this, the VGA-classifier is seen to be able to automatically

approximate different kinds of class boundaries through the evolution

of H . This makes it applicable to various types of data sets.

IV. RELATION BETWEEN VGA-Classifier AND MLP: DETERMINATION

OF NETWORK ARCHITECTURE

It is known in the literature that MLP with hard limiting nonlineari-

ties approximates the decision boundary by piecewise linear surfaces.

The parameters of these surfaces are encoded in the connection weights

and threshold biases of the network. Similarly, the VGA-classifier also

generates decision boundaries by appropriately fitting a number of hy-

perplanes in the feature space. The parameters are encoded in the chro-

mosomes. Thus a clear analogy exists between these two models.

Both the methods start from an initial randomly generated state (the

set of initial random weights in MLP). They also iterate over a number

of generations while attempting to decrease the classification error in

the process. The obvious advantage of the GA based method over that

of the MLP is that the GA-classifier performs concurrent search for a

number of sets of hyperplanes, each representing a different classifica-

tion in the feature space. On the other hand, the MLP deals with only

one such set. Thus it has a greater chance of getting stuck at a local op-

timum, which the GA-classifier can overcome. Moreover, VGA-clas-

sifier does not assume any fixed value of the number of hyperplanes,

while MLP assumes a fixed number of hidden nodes and layers. This

results in the problem of over fitting with an associated loss of gener-

alization capability for MLP.

Fig. 2. ADS 1 along with the VGA boundary for H = 10.

TABLE III
COMPARATIVE RECOGNITION SCORES (%) WHEN 10% DATA IS USED

FOR TRAINING

TABLE IV
COMPARATIVE RESULTS OF VGA-Classifier, MLP DERIVED USING NCA AND

SOME MLPS USING CONVENTIONAL BACK-PROPAGATION (* INDICATES THE

ARCHITECTURE OBTAINED USING NCA)

894 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 6, DECEMBER 2000

A. Network Construction Algorithm

Since our aim is to model the equation of hyperplanes, we use the

hard limiting function

f(x) =
+1 if x � 0

�1 if x < 0

in the neurons of the MLP. In this connection, let wk
ij denote the con-

nection weight on the link between the jth neuron in layer (k� 1) and

the ith neuron in layer k. Also, let �ki denote the input bias to the ith
neuron in layer k.

Let us assume that the VGA-classifier provides HV GA hyperplanes,

designated by fHyp1; Hyp2; � � � ; HypH g, r regions, designated

by fR1; R2; � � � ; Rrg, and k classes, designated by fC1; C2; � � � ; Ckg.

(Note that more than one region may be labeled with a particular

class, indicating that r � k.) Let the parameters of the HV GA

hyperplanes be (�h1 ; �
h
2 ; � � � ; �

h
N�1; dh); h = 1; 2; � � � ; HV GA. Let

Ri (i = 1; 2; � � � ; k) be the region representing class Ci, and let it be

a union of ri regions given by Ri = Rj [Rj [� � � [Rj ; 1 �

ji1; j
i
2; � � � ; j

i
r � r. Note that each Ri is disjoint.

The network construction algorithm (NCA) is a four step process

where the number of neurons, their connection weights and the

threshold values are determined. The steps are described below.

Step 1: Allocate N neurons in the input layer 0, where N is the

dimensionality of the input vector. The neurons in this layer

simply transmit the value in the input links to all the output

links.

Step 2: Allocate HV GA neurons in layer 1. Each neuron is

connected to the N neurons of layer 0. Let the equa-

tion of the ith hyperplane (i = 1; 2; � � � ; HV GA) be

ci1x1 + ci2x2 + � � � + ciNxN � d = 0, where ciN�p =
cos�iN�(p+1) sin�iN�p sin�iN�(p�1) � � � sin�iN�1,

p = 0; 1; � � � ; (N � 1). Then the corresponding weights

on the links to the ith neuron in layer 1 from those in layer

0 are w1

ij = cij ; j = 1; 2; � � � ; N , and the bias or threshold

is �1i = �di, since it is added to the weighted sum of the

inputs to the neurons.

Step 3: Allocate r neurons in layer 2 corresponding to the

r regions. If the ith region Ri (i = 1; 2; � � � ; r)
lies on the positive side of the jth hyperplane Hypj
(j = 1; 2; � � � ; HV GA), then w2

ij = +1, otherwise

w2

ij = �1, and �2i = �(HVGA � 0:5).
Step 4: Allocate k neurons in output layer, layer 3, corresponding

to the k classes. The task of these neurons is to combine

all the distinct regions that actually correspond to a single

class. Let the ith class (i = 1; 2; � � � ; k) be a combination of

ri regions. That is, Ri = Rj [Rj [� � � [Rj . Then

the ith neuron of layer 3, (i = 1; 2; � � � ; k), is connected

to neurons ji1; j
i
2 � � � j

i
r of layer 2 and, w3

ij = 1;8j 2

fji1; j
i
2 � � � j

i
r gwhereas w3

ij = 0;8j 62 fji1; j
i
2 � � � j

i
r g and

�3i = ri � 0:5.

For any given point, at most one output neuron, corresponding to its

class, will be high. Also, none of the output neurons will be high if an

unknown pattern, lying in a region with unknown classification (i.e.,

there were no training points in the region) becomes an input to the

network.

The NCA guarantees that the total number of hidden layers (ex-

cluding the input and output layers) will be at most two. In this context,

Kolmogorov’s Mapping Neural Network Existence Theorem must be

mentioned. The theorem states that any continuous function can be im-

plemented exactly by a three layer, including input and output layers,

feedforward neural network. The proof can be found in [11]. However,

nothing has been stated about the selection of connection weights and

the neuronal functions.

1) Post Processing Step: The structure of the network obtained

from the application of NCA may be further pruned. Any neuron in

layer 3 (output layer) that has an input connection from only one

neuron in layer 2 may be eliminated. Consequently, this step may

result in a neuron in layer i being connected to a neuron in layer i+2.

In the extreme case, when all the neurons in the output layer (layer 3)

get their inputs from exactly one neuron in layer 2, the output layer

can be totally eliminated, and layer 2 becomes the output layer. This

reduces the number of layers from three to two. This situation will

arise when r = k, i.e., a class is associated with exactly one region

formed by the HV GA hyperplanes.

B. Implementation and Results

The performance of the VGA-classifier (and consequently that of the

MLP derived using NCA) with Hmax = 10 is compared with that of a

conventional MLP having the same architecture as provided by NCA,

but trained using the back propagation (BP) algorithm with the neu-

rons executing the sigmoid function. For the purpose of comparison,

we have also considered here three more typical architectures for the

conventional MLP having two hidden layers with 5, 10, and 20 nodes

in each layer, respectively. As earlier, the learning rate and momentum

factor were kept fixed at 0.8 and 0.2, respectively. Table IV summarizes

the results obtained for ADS 1, Vowel and Cancer data. The number of

hyperplanes (HVGA) and regions (r) obtained by the VGA-classifier

starting from Hmax = 10 are mentioned in columns 2–3. “Arch.” in the

table denotes the MLP architecture (i.e., the number of nodes in each

of the four layers). Note that the number of nodes in the input layer is

the same as the number of input features of the data set, and similarly,

the number of nodes in the output layer is the same as the number of

classes present in the data set. Values ofHV GA and r correspond to (or

determine) the number of nodes in the first and second hidden layers of

the MLP obtained by NCA. These are shown in the last row of column

5 for each data (marked with asterisk). Note that we have not included

the recognition scores for MLPs using hard limiters (obtained by the

application of NCA) since it will be identical to those of the VGA-clas-

sifier.

From Table IV it is found that for ADS 1 and Vowel, the VGA-clas-

sifier, and hence the MLP derived using NCA, provide significantly

better performance than the conventional MLPs considered here. For

Cancer, the MLP whose architecture is derived using NCA, but trained

using BP (i.e., entry in the last row of column 5 for Cancer) provides

the best result. The same version of the MLP is also found to provide

the best performance among the other conventional MLPs for all the

data sets (except Vowel). For the Vowel data, it is evident from the table

that as the network size becomes larger, the overall recognition score

of the MLP using sigmoid function improves. Thus the reason of poor

performance of the MLP whose architecture is derived using NCA may

be that it is not sufficiently large to be able to model the complex over-

lapping class boundaries of Vowel.

The Arch. values of the MLPs mentioned in the last row of column

5 for each data set are the ones obtained without the application of the

post processing step. For example in the case of ADS 1 data, the number

of hyperplanes and regions is 3 and 5 (columns 2–3), respectively.

Keeping analogy with this, the Arch. value is mentioned to be 2:3:5:2.

In practice, after post processing, the said values became 2:3:4:2. Sim-

ilarly, for Vowel and Cancer data, the values after post processing were

found to be 3:6:2:6 and 9:2:3:2, respectively.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 6, DECEMBER 2000 895

V. CONCLUSIONS

The concept of variable string lengths has been utilized in GAs for

developing a pattern classifier (called VGA-classifier) that can deter-

mine the required number of hyperplanes automatically in order to ap-

proximate the class boundaries of any data set in <N . New genetic

operators are defined for handling variable length chromosomes. The

fitness function takes care of minimization of the number of misclassi-

fied samples as well as the required number of hyperplanes.

Experimental results on different kinds of data (with nonlinear, over-

lapping class boundaries and dimensions ranging from two to nine) in-

dicate that given a value of Hmax, the VGA-classifier is able not only

to automatically evolve an appropriate value of H for a given data set,

but also to result in improved performance as compared to its fixed

length version. The performance of the classifier is also found to be

comparable to, sometimes better than, those of the k-NN rule, Bayes

maximum likelihood classifier and MLP.

The VGA-classifier is found to determine automatically the architec-

ture and the associated connection weights of MLP. The method guar-

antees that the architecture will involve at most two layers (excluding

the input and output layers), with the neurons in the first and second

hidden layers being responsible for hyperplane and region generation,

and those in the output for providing a combination of regions for the

classes. This investigation will augment the application domain of the

VGA-classifier to those areas where MLP has widespread use.

Since the principle of VGA-classifier is used for developing NCA,

it becomes mandatory to consider hard limiting neurons in the derived

MLP. Although this makes the network rigid and susceptible to noise

and corruption in the data, one may use NCA for providing a possible

appropriate structure of conventional MLPs.

REFERENCES

[1] S. K. Pal, S. Bandyopadhyay, and C. A. Murthy, “Genetic algorithms for
generation of class boundaries,” IEEE Trans. Syst., Man, Cybern., vol.
28, no. 6, pp. 816–828, 1998.

[2] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Reading, MA: Addison-Wesley, 1989.
[3] S. K. Pal and P. P. Wang, Genetic Algorithms for Pattern Recogni-

tion. Boca Raton, FL: CRC, 1996.
[4] D. E. Goldberg, K. Deb, and B. Korb, “Do not worry, be messy,” in Proc.

4th Int. Conf. Genetic Algorithms, R. K. Belew and J. B. Booker, Eds.
San Mateo, CA, 1991, pp. 24–30.

[5] S. K. Pal and D. Bhandari, “Selection of optimal set of weights in a
layered network using genetic algorithms,” Inform. Sci., vol. 80, pp.
213–234, 1994.

[6] V. Maniezzo, “Genetic evolution of the topology and weight distribution
of neural networks,” IEEE Trans. Neural Networks, vol. 5, no. 1, pp.
39–53, 1994.

[7] S. K. Pal and D. D. Majumder, “Fuzzy sets and decision making ap-
proaches in vowel and speaker recognition,” IEEE Trans. Syst., Man,

Cybern., vol. SMC-7, pp. 625–629, 1977.
[8] O. L. Mangasarin, R. Setiono, and W. H. Wolberg, “Pattern recogni-

tion via linear programming: Theory and application to medical diag-
nosis,” in Large-Scale Numerical Optimization, T. F. Coleman and Y.
Li, Eds. Philadelphia, PA: SIAM, 1990, pp. 22–30.

[9] J. J. Grefenstette, “Optimization of control parameters for genetic algo-
rithms,” IEEE Trans. Syst., Man, Cybern., vol. SMC-16, pp. 122–128,
1986.

[10] K. Fukunaga, Introduction to Statistical Pattern Recognition. New
York: Academic, 1972.

[11] R. Hecht-Nielsen, “Kolmogorov’s mapping neural network existence
theorem,” in Proc. 1st IEEE Int. Conf. Neural Networks, vol. 3, San
Diego, CA, 1987, pp. 11–14.

Using Cluster Skeleton as Prototype for Data Labeling

Yuhui Yao, Lihui Chen, and Yan Qiu Chen

Abstract—A new approach, designed for clustering data whose un-
derlying distribution shapes are arbitrary, is presented. This study is

concerned with the use of the skeleton of a cluster as its prototype, which
can represent the cluster more closely than that of using a single data point.

The given data set is then partitioned into those skeleton-represented clus-
ters without any prior knowledge nor assumptions of hidden structures.

A novel function called cluster characteristic function (CCF) has been
constructed and the associated theorems have been proposed and proved

that the proper number of clusters can be determined with the approach.

Index Terms—cluster characteristic function, clustering, fuzzy c-means,
skeleton clustering, unsupervised learning.

I. INTRODUCTION

Clustering refers to the process of grouping samples so that the

samples are similar within each group and different between any

two groups. It attempts to discover the inherent structure in a data

set. It is unsupervised learning and no priori information on the data

distribution can be assumed. In recent years, many schemes have

been proposed for solving this intrinsically difficult problem. These

methods can be sorted into four major categories:

2) prototype-based central point clustering;

3) learning-network-based central point clustering;

4) shell-clustering;

5) graph clustering.

Prototype-based central point clustering attempts to use the central

point of a cluster as the prototype to represent the cluster and then la-

bels all samples with those prototypes. The first published method is

hard c-means proposed by Duda and Hart [1]. Later modifications and

improvements include:

2) Fuzzy c-means, proposed by Bezdek [2]. Although fuzzy

c-means can find a partition of data for a fixed number c of

clusters, it needs a good cluster index [18], [19] to automatically

determine the optimal number of clusters. It is computationally

expensive since it needs to perform the clustering for a range

of c values. Furthermore, reliable validity measures are quite

difficult to attain, and the number of clusters that optimizes a

particular validity may not always be “correct” [4].

3) Possibilistic c-means, a mode-seeking algorithm, proposed by

Krishnapuram and Keller [3].

4) Statistical models such as probabilistic mixtures, proposed by

Titterington [5].

5) Vector quantization approaches such as the generalized Lloyd

algorithm [6].

6) Maxim Clustering Entropy Principle models such as least biased

fuzzy clustering method, proposed by Gerardo Beni and Xiaomin

Liu [7].

Learning-network-based central point clustering uses learning

networks to achieve data labeling. During the process of training,

the network updates all the vector weights and lets them to be

Manuscript received October 29, 1999; revised June 23, 2000. This paper was
recommended by Associate Editor W. Pedrycz.

The authors are with the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore 639798.

Publisher Item Identifier S 1083-4419(00)08805-1.

1083–4419/00$10.00 © 2000 IEEE

	1.pdf
	2.pdf

