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Fig. 1. Three-layered MLP.

Rough set-theoretic techniques are utilized for extracting crude

domain knowledge, that is then encoded among the connection

weights. Methods are derived to model 1) convex decision

regions with single object representatives and 2) arbitrary

decision regions with multiple object representatives. A three-

layered fuzzy MLP [8] is considered. The input is modeled

in terms of the 3 -dimensional linguistic feature space while

the output consists of class membership values. The feature

space gives us the condition attributes and the output classes

the decision attributes, so as to result in a decision table. This

table, however, may be transformed, keeping the complexity

of the network to be constructed in mind. Rules are then

generated from the (transformed) table by computing relative

reducts. The dependency factors of these rules are encoded as

the initial connection weights of the fuzzy MLP. The network

is next trained to refine its weight values.

The knowledge encoding procedure, unlike most other

methods [10], [11], involves a nonbinary weighting mecha-

nism based on a detailed and systematic estimation of the

available domain information. It may be noted that the appro-

priate number of hidden nodes is automatically determined.

The classification performance is found to be better than the

conventional and fuzzy versions of the MLP. The model is

capable of handling input in numerical, linguistic and set

forms, and can tackle uncertainty due to overlapping classes.

A brief description of the fuzzy MLP used is provided

in Section II. The basics of rough set theory are presented

in Section III. In Section IV, we describe the knowledge

encoding methodology. The model is implemented on real-

life speech data as well as synthetic data (in Section V)

for classification. Comparison is provided with the standard

Bayes’ classifier, -nearest neighbors ( -NN) classifier, clas-

sification and regression tree [17], and the conventional and

fuzzy versions of the MLP (involving no initial knowledge).

The paper is concluded in Section VI.

II. FUZZY MLP MODEL

In this section we describe, in brief, the fuzzy MLP [8]

which is used for designing the knowledge-based network.

Consider the layered network given in Fig. 1. The output of

a neuron in any layer other than the input layer

is given as

(1)

where is the state of the th neuron in the preceding

th layer and is the weight of the connection

from the th neuron in layer to the th neuron in

layer . For nodes in the input layer, corresponds to

the th component of the input vector. Note that

, as depicted in Fig. 1. The mean square

error in output vectors is minimized by the backpropagation

algorithm using a gradient descent with a gradual decrease of

the gain factor.

A. Input Vector

An -dimensional pattern is

represented as a 3 -dimensional vector [18]

(2)

where the values indicate the membership functions of the

corresponding linguistic -sets low, medium, and high along

each feature axis and refer to the activations of

the 3 neurons in the input layer. The three overlapping -sets

along a feature axis are depicted in Fig. 2.

When the input feature is numerical, we use the -fuzzy sets

(in the one-dimensional form), with range [0, 1], represented as

for

for

otherwise

(3)

where is the radius of the -function with as the

central point.

When the input feature is linguistic, its membership

values for the -sets low , medium , and high

are quantified as

low
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Fig. 2. Overlapping linguistic �-sets.

medium

high

where , , , , , indicate the centers and

radii of the three linguistic properties along the th axis,

and , , denote the cor-

responding feature values at which the three linguistic

properties attain membership values of 0.95.

For example, the linguistic feature low is represented

by three components corresponding to the membership

values of the three -sets low , medium and high

(Fig. 2). means a membership of 0.95 for

. refers to the membership

attained by the -set for that which caused -

set to have a membership value of 0.95. Similarly,

refers to the membership attained

by the -set for that which caused -set to have a

membership value of 0.95.

B. Output Representation

Consider an -class problem domain such that we have

nodes in the output layer. Let the -dimensional vectors

and denote the

mean and standard deviation, respectively, of the numerical

training data for the th class . The weighted distance of

the training pattern from the th class is defined as

for (4)

where is the value of the th component of the th pattern

point.

The membership of the th pattern in class , lying in the

range [0, 1], is defined as [19]

(5)

where positive constants and are the denominational

and exponential fuzzy generators controlling the amount of

fuzziness in this class-membership set.

Then, for the th input pattern, the desired output of the th

output node is defined as

(6)

According to this definition a pattern can simultaneously

belong to more than one class, and this is determined from

the training set used during the learning phase.

III. ROUGH SET PRELIMINARIES

Let us present some requisite preliminaries of rough set

theory. For details one may refer to [12] and [13].
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An information system is a pair , where is

a nonempty finite set called the universe and a nonempty

finite set of attributes. An attribute can be regarded as a

function from the domain to some value set .

An information system may be represented as an attribute-

value table, in which rows are labeled by objects of the

universe and columns by the attributes.

With every subset of attributes , one can easily

associate an equivalence relation on :

for every

Then .

If , the sets and

, where denotes the equivalence class

of the object relative to , are called the -lower and

-upper approximation of in and denoted ,

respectively.

is -exact or -definable in if .

It may be observed that is the greatest -definable set

contained in , and is the smallest -definable set

containing . Let us consider the following simple example.

Consider an information system , where the do-

main consists of the students of a school, and there is a

single attribute —that of “belonging to a class.” Then is

partitioned by the classes of the school.

Now take the situation when an infectious disease has spread

in the school, and the authorities take the two following steps.

1) If at least one student of a class is infected, all the

students of that class are vaccinated. Let denote the

union of such classes.

2) If every student of a class is infected, the class is

temporarily suspended. Let denote the union of such

classes.

Then . Given this information, let the following

problem be posed: Identify the collection of infected students.

Clearly, there cannot be a unique answer. But any set that

is given as an answer, must contain and at least one student

from each class comprising .

In other words, it must have as its lower approximation

and as its upper approximation.

is then a rough concept/set in the information system

.

Further, it may be observed that any set given as another

answer, is roughly equal to , in the sense that both are

represented (characterized) by and .

We now define the notions relevant to knowledge reduction.

The aim is to obtain irreducible but essential parts of the

knowledge encoded by the given information system—these

would constitute reducts of the system. So one is, in effect,

looking for maximal sets of attributes taken from the initial

set ( , say), which induce the same partition on the domain

as . In other words, the essence of the information remains

intact, and superfluous attributes are removed. Reducts have

been nicely characterized in [13] by discernibility matrices

and discernibility functions. A principal task in our proposed

methods will be to compute reducts relative to a particular

kind of information system, and relativized versions of these

matrices and functions shall be the basic tools used in the

computation.

Let and in the

information system . By the discernibility matrix

[denoted ] of is meant an -matrix such that

(7)

A discernibility function is a Boolean function of

Boolean variables corresponding to the attributes

, respectively, and defined as follows:

(8)

where is the disjunction of all variables with .

It is seen in [13] that is a reduct in if and

only if is a prime implicant (constituent of the

disjunctive normal form) of .

The next concept that we shall require during rule gener-

ation, is that of dependency factor. It may well happen for

, that depends on , i.e., —so that

information due to the attributes in is derivable from that

due to the attributes in . This dependency can be partial, in

which case one introduces a dependency factor ,

card POS

card
(9)

where POS , and card denotes cardinality

of the set.

We are concerned with a specific type of information system

, called a decision table. The attributes in such

a system are distinguished into two parts, viz. condition and

decision attributes. Classification of the domain due to decision

attributes could be thought of as that given by an expert. One

may now want to deal with consistent decision tables, such that

a decision attribute does not assign more than one value to an

object, or for that matter, to objects indiscernible from each

other with respect to the given (condition) attributes. Formally

we have the following.

Let be the sets of condition and decision

attributes of , respectively. The rank of a decision attribute

, is the cardinality of the image of the

function on the value set . One can then assume that

.

The generalized decision in corresponding to is then

defined as a function such that

and , denoting

the power set. A decision table with is called

consistent (deterministic) if card for any ,

or equivalently, if and only if POS . Otherwise, is

inconsistent (nondeterministic).

Knowledge reduction now consists of eliminating super-

fluous values of the condition attributes by computing their

reducts, and we come to the notion of a relative reduct.

An attribute is -dispensable in , if

POS POS ; otherwise is -indispensable

in . If every attribute from is -indispensable in , is

-independent in . A subset of is a -reduct in if

is -independent in and POS POS .
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Relative reducts can be computed by using a -

discernibility matrix. If , it is an

matrix [denoted ], the th component of

which has the form

and (10)

for .

The relative discernibility function is constructed from

the -discernibility matrix in an analogous way as from

the discernibility matrix of [cf. (7) and (8)]. It is once more

observed that [13] is a -reduct in if and only

if is a prime implicant of .

IV. NETWORK CONFIGURATION USING ROUGH SETS

Here we formulate two methods for rule generation and

knowledge encoding for configuring a network. Method I

works on the assumption that each object of the domain of

discourse corresponds to a single decision attribute. On the

other hand, Method II is able to deal with multiple objects

corresponding to one decision attribute. From the perspective

of pattern recognition, this implies using a single prototype to

model a (convex) decision region in case of Method I. For

Method II, this means using multiple prototypes to serve as

representatives of any arbitrary decision region.

The crude domain knowledge, so extracted, is encoded

among the connection weights, leading to the design of a

knowledge-based network. Such a network is found to be

more efficient than the conventional versions for the following

reason. During learning an MLP searches for the set of

connection weights that corresponds to some local minima. In

other words, it searches for that set of weights that minimizes

the difference between the target vector and the actual output

(obtained by the MLP). Note that there may be a large

number of such minimum values corresponding to various

good solutions. If we initially set these weights so as to be near

one such good solution, the searching space may be reduced

and learning thereby becomes faster. The architecture of the

network becomes simpler due to the inherent reduction of the

redundancy among the connection weights.

A block diagram in Fig. 3 illustrates the entire procedure

for both the methods.

A. Method I

Let be a decision table, with and its

sets of condition and decision attributes, respectively. In this

method we assume that there is a decision attribute

corresponding to each object , in the sense that all

objects other than are indiscernible with respect to .

1) Rule Generation: For each -reduct

(say), we define a discernibility matrix [denoted ] from

the -discernibility matrix [given by (10)] as follows:

(11)

for .

Now for each object of , we consider the discernibility

function which is defined as

(12)

where is the disjunction of all members of .

is brought to its conjunctive normal form (CNF) . For

, then gives rise to a dependency rule , viz.

, where corresponds to the object .

It may be noticed that each component of induces an

equivalence relation on as follows. If a component is a

single attribute , the relation is taken. If a component of

the CNF is a disjunct of attributes, say , we

consider the transitive closure of the union of the relations

. Let denote the intersection of all these

equivalence relations.

The dependency factor for is then given by

(13)

where POS , and is the lower

approximation of with respect to .

2) Knowledge Encoding: Here, we formulate a methodol-

ogy for encoding initial knowledge in the fuzzy MLP of [8],

following the above algorithm.

Let us consider the case of feature for class in

the -class problem domain. The inputs for the th repre-

sentative sample are mapped to the corresponding three-

dimensional feature space of ), ,

and , by (2). Let these be represented by ,

, and , respectively. We consider only those attributes

which have a numerical value greater than some threshold

. This implies clamping those features

demonstrating high membership values with a one, while the

others are fixed at zero. In this manner an 3 -dimensional

attribute-value (decision) table can be generated from the -

dimensional data set.

As sketched in the previous section, one generates the

dependency rules for each of the classes, such that the

antecedent part contains a subset of the 3 attributes, along

with the corresponding dependency factors.

Let us now design the initial structure of the three-layered

fuzzy MLP. The input layer consists of the 3 attribute values

and the output layer is represented by the classes. The hidden

layer nodes model the disjuncts in the antecedents of the

dependency rules. For each disjunct, corresponding to one

output class (one dependency rule), we dedicate one hidden

node. Only those input attributes that appear in a disjunct are

connected to the appropriate hidden node, which in turn is

connected to the corresponding output node. Each conjunct

is modeled at the output layer by joining the correspond-

ing hidden nodes. Note that a single attribute (involving no

disjuncts) is directly connected to the appropriate output node

via a hidden node.

Next we proceed to the description of the initial weight

encoding procedure. Let the dependency factor for a particular

dependency rule for class be by (13). The weight

between a hidden node and output node is set at
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(a)

(b)

Fig. 3. Block diagram of the rule generation and knowledge encoding procedure. (a) Method I. (b) Method II.

, where refers to the number of conjunctions

in the antecedent of the rule and is a small random number

taken to destroy any symmetry among the weights. Note that

and each hidden node is connected to only one output

node. Let the initial weight so clamped at a hidden node be

denoted as . The weight between an attribute [where

corresponds to low , medium or high ] and

hidden node is set to , such that is the

number of attributes connected by the corresponding disjunct.

Note that . The sign of the weight is set to positive

(negative) if the corresponding entry in row , column

is 1 (0). Thus, for an -class problem domain we have at

least hidden nodes. All other possible connections in the

resulting fuzzy MLP are set as small random numbers. It is to

be mentioned that the number of hidden nodes is determined

from the dependency rules.
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The connection weights, so encoded, are then refined by

training the network on the pattern set supplied as input.

B. Method II

Let be a decision table, with and

its sets of condition and decision attributes,

respectively.

1) Rule Generation: We divide the decision table

into tables , ,

corresponding to the decision attributes , where

and

The size of each is first reduced with

the help of a threshold on the number of occurrences of the

same pattern of attribute values. This will be elicited in the

sequel. Let the reduced decision table be denoted by , and

be the set of those objects of that occur in

.

Using (11) and (12), for each -reduct (say), we define

the discernibility matrix and for every object

, the discernibility function . Then is

brought to its CNF One thus obtains a dependency rule ,

viz. , where is the disjunctive normal form (DNF)

of , . It may then be noticed that the

dependency factor for each is one [by (13)].

2) Knowledge Encoding: The knowledge encoding scheme

is similar to that described in Section IV-A. As this method

considers multiple objects in a class (unlike Method I), we

generate a separate 3 -dimensional attribute value table

for each class (where indicates the number of objects

in ).

Let there be sets of objects in the table

having identical attribute-values, and card

, such that and .

The attribute-value table can now be represented as an

3 array. Let denote the distinct elements

among such that . We

apply a heuristic threshold function defined by

(14)

All entries having frequency less than are eliminated from

the table, resulting in the reduced attribute-value table. Note

that the main motive of introducing this threshold function lies

in reducing the size of the resulting network. We attempt to

eliminate noisy pattern representatives (having lower values

of ) from the reduced attribute-value table. The whole

approach is, therefore, data dependent. The dependency rule

for each class is obtained by considering the corresponding

reduced attribute-value table. A smaller table leads to a simpler

rule in terms of conjunctions and disjunctions, which is then

translated into a network having fewer hidden nodes. The

objective is to strike a balance by reducing the network

complexity and reaching a good solution, perhaps at the

expense of not achieving the best performance.

While designing the initial structure of the fuzzy MLP, we

consider the union of the rules of the classes. Here the

hidden layer nodes model the first level (innermost) operator

in the antecedent part of a rule, which can be either a conjunct

or a disjunct. The output layer nodes model the outer level

operator, which can again be either a conjunct or a disjunct.

As mentioned earlier, the dependency factor of any rule is

one in this method. The initial weight encoding procedure is

the same as described before. Since each class has multiple

objects, the sign of the weight is set randomly.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Here we implement the two methods on real-life and

artificial data. The initial weight encoding scheme is

demonstrated and recognition scores are presented. The

data sets are available on the internet at http://isical.ac.in/

sushmita/data/vowsy.html.

The speech data Vowel [20] deals with 871 Indian Telugu

vowel sounds. These were uttered in a consonant-vowel-

consonant context by three male speakers in the age group

of 30–35 years. The data set (depicted in two dimensions

for ease of understanding) has three features: , , and

corresponding to the first, second, and third vowel formant

frequencies obtained through spectrum analysis of the speech

data. Fig. 4 provides the projection in the – plane,

depicting the six vowel classes— . These over-

lapping classes shall be denoted by , respectively,

in the sequel.

The synthetic data Pat consists of 880 pattern points in the

two-dimensional space – , as depicted in Fig. 5. There

are three linearly nonseparable pattern classes. The figure is

marked with classes 1 and 2 , while class 3

corresponds to the background region.

The training set considered 50% of the data selected ran-

domly from each of the pattern classes. The remaining 50%

data constituted the test set. It is found that the knowledge-

based model converges to a good solution with a small

number of training epochs (iterations) in both cases. Note

that the Vowel data consists of convex classes which may be

modeled by single representative points (objects). However,

the synthetic data set Pat consists of concave and disjoint

classes that can only be modeled by multiple representative

points (objects). As Method I considers single object classes

only, the synthetic data could not be used there. On the other

hand, both data sets are used in Method II which considers

multiple objects in a class.

A. Method I

The rough set-theoretic technique is applied on the vowel

data to extract some knowledge which is initially encoded

among the connection weights of the fuzzy MLP. The data

is first transformed into the 3 -dimensional linguistic space

of (2). A threshold of is imposed on the resultant

input components such that if and zero



1210 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

Fig. 4. Vowel data.

Fig. 5. Synthetic data Pat.

TABLE I
ATTRIBUTE-VALUE TABLE (VOWEL)

otherwise. The resulting information is represented in the form

of a decision table as in Table I.

Let us explain this transformation by an example. Let a

sample pattern from class have numerical components

, , . This is mapped to the

nine-dimensional linguistic space with components ,

, , , , ,

, , . Application of yields

a nine-dimensional vector (0, 1, 0, 1, 1, 0, 1, 0, 0). Let class

consist of pattern vectors. Each of them is transformed

to this nine-dimensional form with binary components. We

select the most representative template, i.e., the one with the

maximum number of occurrences, from this set of templates

to serve as object .

consists of six objects , the condition attributes

are , , , , , , , , and the decision

attribute set consists of the six vowel classes .

Each entry in row , column corresponds to the input

for class . Note that these inputs are used only for the

knowledge encoding procedure. During the refinement phase,

the network learns from the original 3 -dimensional training

set with (2).

The decision table is abbreviated by putting all the decision

attributes in one column [this does not result in any ambiguity,

as we assume that object corresponds to the decision

attribute only ].

The -reducts obtained are as follows:

Let us consider the reduct set . Then

the discernibility function (in CNF) for ,
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Fig. 6. Initial weight encoding for the class c2 by Method I. remaining weights are initialized to small random values.

TABLE II
RECOGNITION SCORES (%) FOR VOWEL

obtained from the discernibility matrix [using (11)

and (12)] are

The dependency factors for the resulting rules

are , , 1, 1, 1, 1, using (13).

In the same way we consider the remaining -reducts and

find the corresponding rules and their dependency factors.

These factors are encoded as the initial connection weights

of the fuzzy MLP. Let us now explain the process by an

example. Consider the rule , viz.

with dependency factor . Here we require two

hidden nodes corresponding to class to model the operator

. The two links from the output node representing class

to these two hidden nodes are assigned weights of

to keep the weights equally distributed. From Table I we find

that the entries for , , in case of class are 0, 0,

1, respectively. The attributes and , connected by the

operator , are combined at one hidden node with link weights

of , , respectively, while the link weight for

attribute is clamped to (since there is no further

bifurcation). The resultant network is finally refined during

training using a training set. The performance of the network

is tested on the remaining test set. Fig. 6 illustrates the weight

encoding procedure for class .

Table II shows the results obtained with a three-layered

knowledge-based network whose connection weights are ini-

tially encoded as explained earlier. It is observed that this

method works more efficiently with a smaller network. There-

fore, we demonstrate the results corresponding to six hidden

nodes (the lower bound in this case) only. The performance

(at the end of 150 sweeps) was compared with those of a con-

ventional MLP and a fuzzy MLP [8], having the same number

of hidden nodes but with no initial knowledge encoding. It

was seen that the conventional MLP with six hidden nodes is

unable to classify the data. Hence this is not included in the

table. The performance of the Bayes’ classifier for multivariate

normal patterns, using different covariance matrices are for

each pattern class, is demonstrated. The choice of normal

densities for the vowel data has been found to be justified [21].

The performance of the package Quest [17], implementing

classification and regression trees [22], is also provided. The

rough-fuzzy MLP is observed to generalize better than all the

models for the test set, considering the overall scores (Net).

It may also be noticed that this method generated -reducts

of different sizes. In the table, indicates a

collection of -reducts with components (attributes).
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TABLE III
ATTRIBUTE-VALUE TABLE FOR CLASS C6 (VOWEL)

TABLE IV
REDUCED ATTRIBUTE-VALUE TABLE FOR CLASS C6 (VOWEL)

B. Method II

This method is applied to both the data sets Vowel and Pat.

A threshold of was used for the Vowel data. It can

be observed from Fig. 5 that the synthetic data set is uniformly

distributed over the entire feature space. Therefore, setting a

threshold greater than 0.5 caused problems here, such that for

certain objects all three input components corresponding to a

feature became clamped at zero. To circumvent this, we set

at 0.5 for Pat.

1) Vowel Data: Each class had a separate attribute value

table consisting of multiple objects. Let us consider class

as an example. The first column of Table III corresponds to

the objects which have the attribute-values indicated in the

respective rows. We observe that the rows correspond to 20,

9, 7, 5, 4, 4, 2, 2, 1, 1, 1 objects, respectively.

After applying the threshold of (14), objects are

eliminated from the table. Hence the reduced attribute-value

table (Table IV) now consists of four rows only.

The discernibility matrix for class is

The discernibility function for is

The disjunctive normal form of is

The resultant reducts are

The reduced attribute value table for reduct is

M1 L3 M3

y1 0 1 0

y2 1 1 0

y3 1 0 0

y4 1 0 1

The reduced discernibility matrix for is

The discernibility functions for each object

are

A dependency rule thus generated for class is

i.e.

The other rules for are

Similarly, we obtain 1, 2, 1, 1, 2 dependency rules for

classes , , , , , respectively. The dependency factor

of each rule is one. So, considering all possible combinations

we generate 12 sets of rules for the six classes. This leads to

12 possible network encodings.

A sample set of dependency rules generated for the six

classes is

This corresponds to the network represented in column 1 (of

rough-fuzzy MLP) in Table V.

To encode the rule for class we require one hidden node

for modeling the conjunct. The corresponding output node

is connected to the hidden node with initial link weight of



BANERJEE et al.: ROUGH FUZZY MLP 1213

TABLE V
RECOGNITION SCORES (%) FOR VOWEL

Fig. 7. Initial weights encoding by Method II. remaining weights are initial-
ized to small random values.

TABLE VI
ATTRIBUTE-VALUE TABLE FOR CLASS C2(PAT)

. Then the input attribute pair is connected

to this hidden node with link weights . A

sample network is illustrated in Fig. 7.

Table V demonstrates sample results obtained by the three-

layered knowledge-based network, at the end of 150 sweeps.

Unlike Method I, in all the cases Method II constructed

a network with six hidden nodes and six input nodes. Its

performance improves on that of the fuzzy and conventional

versions of the MLP, Bayes’ classifier, Quest and Method I

(as observed from Table II).

2) Synthetic Data: The attribute-value table for class is

depicted in Table VI. The rows correspond to 16, 12, 9, 8, 3,

2, 1 objects, respectively. Application of (14) results in the

elimination of objects . The -reducts generated

are , , , . We obtain four

-reducts for each of the other two classes. Considering all

possible combinations, we generate 64 sets of rules for the

three classes. This results in 64 possible network encodings.

A sample set of dependency rules for the three classes is

and

This corresponds to column 2 of Table VII.

The subnetwork for class consists of three hidden nodes,

each with initial output link weight of . The

input attribute pair is connected to the first of

these hidden nodes with link weights . The

remaining attributes and are

connected to the next two hidden nodes with link weights

.

Table VII provides a sample set of results obtained by a

three-layered knowledge-based network. Note that we have

simulated all 64 networks. In all cases the algorithm generated

six hidden nodes. The performance was compared with that

of a conventional and fuzzy MLP (all at the end of 1000

sweeps), -NN classifier and Quest [17]. The conventional

MLP failed to recognize class (e.g., the scores for classes

, , and are 87.1, 0.0, 51.6, respectively, for the test

set). The rough-fuzzy MLP generalizes better than the fuzzy

MLP (with one hidden layer having six hidden nodes) for the

test patterns considering the overall scores (Net). However,

the -NN classifier and Quest (classification and regression

tree) are found to provide better performance. Note that the

-NN classifier is reputed to be able to generate piecewise

linear decision boundaries and is quite efficient in handling

concave and linearly nonseparable pattern classes. It may

also be mentioned that the fuzzy MLP with more hidden

layers/nodes provides results better than that of the -NN [23].

However, we are restricted here in using six hidden nodes for

maintaining parity with the rough-fuzzy MLP. It is revealed

under investigation that the method of knowledge extraction

using rough sets can lead to over-reduction for the data shown

in Fig. 5.
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TABLE VII
RECOGNITION SCORES (%) FOR PAT

Remarks:

1) Method I is based on the assumption that there is one

decision attribute corresponding to each object, i.e., the

classes are considered to be convex with single represen-

tative points. This method is not a special case of Method

II, though the latter deals with multiple representative

points for each class. For example, in Method I we

simultaneously generated six rules corresponding to six

vowel clauses from the same attribute-value table. On

the other hand, Method II involves separate attribute-

value tables for each of the six vowel classes. Therefore,

a rule corresponding to one class is generated at a time

from one such table. This cannot be boiled down to

Method I as a special case.

2) We have transformed the decision table constructed

from the initial data by dividing it into subtables, each

corresponding to a decision attribute of the given system.

The initial table gave rise to discernibility functions

[computed by (12)] with too large a number of com-

ponents and hence, a network with a huge number of

hidden nodes. The computational complexity of such

a network was not considered to be feasible. On the

contrary, the subtables resulted in the generation of

discernibility functions with less components and thus

finally, a less cumbersome (more efficient) network.

3) Each decision table considered so far is clearly consis-

tent.

4) Any comparative study of the performance of our model

should consider the fact that here the appropriate number

of hidden nodes is automatically generated by the rough-

set theoretic knowledge encoding procedure. On the

other hand, both the fuzzy and conventional versions of

the MLP are required to empirically generate a suitable

size of the hidden layer(s). Hence, this can be considered

to be an added advantage.

VI. CONCLUSIONS

A methodology integrating rough sets with fuzzy MLP

for designing a knowledge-based network is presented. The

effectiveness of rough set theory is utilized for encoding the

crude domain knowledge through concepts like discernibility

matrix and function, reducts, and dependency factors. Two

algorithms, applicable to convex and concave decision regions,

are derived. This investigation not only demonstrates a way of

integrating rough sets with neural networks and fuzzy sets, but

also provides methods that are capable of generating the ap-

propriate network architecture and improving the classification

performance. The incorporation of fuzziness at various levels

of fuzzy MLP also helps the resulting knowledge-based system

to efficiently handle uncertain and ambiguous information both

at the input and the output.

As was remarked earlier, a study of an integration, in-

volving only neural nets and rough sets, was presented by

Yasdi [15]. However, only one layer of adaptive weights was

considered while the input and output layers involved fixed

binary weights. Max, Min and Or operators were applied at

the hidden nodes. Besides, the model was not tested on any

real problem and no comparative study was provided to bring

out the effectiveness of this hybrid approach. We, on the other

hand, consider here an integration of the three paradigms,

viz., neural nets, rough sets and fuzzy sets. The process of

rule generation and mapping of the dependency factors to the

connection weight values is novel to our approach. Moreover,

the three-layered MLP used has adaptive weights at all layers.

These are initially encoded with the knowledge extracted from

the data domain in the form of dependency rules, and later

refined by training. Effectiveness of the model is demonstrated

on both real-life and artificial data.

Our objective was to demonstrate the effectiveness of the

rough-fuzzy MLP on difficult classification problems. The data

set used involves the overlapping classes of the Vowel data

and the linearly nonseparable, nonconvex, disjoint classes of

the Pat data. Both cases could not be suitably classified by

the conventional MLP. The fuzzy MLP splits the feature

space into overlapping linguistic partitions, thereby han-

dling more local information about the input. The output is

modeled in terms of class membership values, appropriately

taking care of fuzzy/overlapping classes. This accounts for

the suitability of the fuzzy MLP in classifying these data.

Incorporation of rough set-theoretic concepts for encoding the

initial knowledge of the fuzzy MLP enabled the generation of

the appropriate network topology using nonempirical means.

Certain benchmark problems like the classification of Fisher’s

Iris data [24] have also been attempted. As the conventional

MLP was sufficiently accurate in classifying this data, there

was no noticeable improvement in the network performance
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by incorporating the more complicated rough-fuzzy concept.

This suggests that the rough-fuzzy MLP can be effectively

used for handling cases where the conventional MLP fails.

Rough set-theoretic techniques are easily applicable to

attribute-value tables with binary entries. This encouraged us

to transform the continuous-valued data to this form. However,

we are currently engaged in extending the algorithm to work

directly on real numbers lying in [0, 1]. This forms the next

part of our research.

There are several other related approaches for classification,

other than neural networks. These include the ID3 algorithm

[25] and classification and regression trees [22], [17]. ID3

can be very effective under certain conditions, specially if the

data consists of nonnumeric feature values [25]. Numeric data

needs to be optimally quantized to become applicable. This is

not a trivial problem. Application of ID3 to the 3 -dimensional

linguistic feature space is an interesting alternative, to the

neuro-rough approach, for future investigation. Handling of

noisy classification problems, where the distributions of ob-

servations from the different classes overlap, is difficult using

the classification and regression trees [26]. This is evident from

Table II. Another interesting direction of future research would

be to incorporate the fuzzy membership concept in such tree

structures, to circumvent this problem.

ACKNOWLEDGMENT

The authors thank the anonymous referees for their helpful

criticism.

REFERENCES

[1] Proc. 3rd Wkshp. Rough Sets Soft Comput. (RSSC’94), San Jose, CA,
Nov. 1994.

[2] Proc. 4th lnt. Conf.n Soft Comput. (IIZUKA96), Iizulka, Fukuoka, Japan,
Oct. 1996.

[3] L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing,”
Commun. ACM, vol. 37, pp. 77–84, 1994.

[4] J. C. Bezdek and S. K. Pal, Eds., Fuzzy Models for Pattern Recognition:

Methods that Search for Structures in Data. New York: IEEE Press,
1992.

[5] Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Sept. 1996.

[6] L. A. Zadeh, “Fuzzy sets,” Inform. Contr., vol. 8, pp. 338–353, 1965.

[7] R. P. Lippmann, “An introduction to computing with neural nets,” IEEE

Acoust., Speech, Signal Processing Mag., vol. 4, pp. 4–22, 1987.

[8] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets and classifi-
cation,” IEEE Trans. Neural Networks, vol. 3, pp. 683–697, 1992.

[9] S. Mitra and S. K. Pal, “Fuzzy multilayer perceptron, inferencing and
rule generation,” IEEE Trans. Neural Networks, vol. 6, pp. 51–63, 1995.

[10] L. M. Fu, “Knowledge-based connectionism for revising domain theo-
ries,” IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 173–182, 1993.

[11] G. G. Towell and J. W. Shavlik, “Knowledge-based artificial neural
networks,” Artificial Intell., vol. 70, pp. 119–165, 1994.

[12] Z. Pawlak, Rough Sets, Theoretical Aspects of Reasoning About Data.

Dordrecht, The Netherlands: Kluwer, 1991.

[13] A. Skowron and C. Rauszer, “The discernibility matrices and functions
in information systems,” in Intelligent Decision Support, Handbook of

Applications and Advances of the Rough Sets Theory, R. Slowı́nski, Ed.
Dordrecht, The Netherlands: Kluwer, 1992, pp. 331–362.

[14] R. Slowı́nski, Ed., Intelligent Decision Support, Handbook of Appli-

cations and Advances of the Rough Sets Theory. Dordrecht: Kluwer,
1992.

[15] R. Yasdi, “Combining rough sets learning and neural learning method
to deal with uncertain and imprecise information,” Neuro-Computing,

vol. 7, pp. 61–84, 1995.

[16] A. Czyzewski and A. Kaczmarek, “Speech recognition systems based
on rough sets and neural networks,” in Proc. 3rd Wkshp. Rough Sets and

Soft Computing (RSSC’94), San Jose, CA, 1994, pp. 97–100.

[17] W. Y. Loh and Y. S. Shih, “Quest user guide,” Dept. Statist., Univ.
Wisconsin, Madison, Tech. Rep., 1996.

[18] S. K. Pal and D. P. Mandal, “Linguistic recognition system based on
approximate reasoning,” Inform. Sci., vol. 61, pp. 135–161, 1992.

[19] S. K. Pal and D. Dutta Majumder, Fuzzy Mathematical Approach to

Pattern Recognition. New York: Wiley, 1986.

[20] , “Fuzzy sets and decision making approaches in vowel and
speaker recognition,” IEEE Trans. Syst., Man, Cybern., vol. 7, pp.
623–629, 1977.

[21] S. K. Pal, “Studies on the application of fuzzy set-theoretic approach in
some problems of pattern recognition and man-machine communication
by voice,” Ph.D. dissertation, Univ. Calcutta, India, 1978.

[22] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification

and Regression Trees. Monterey, CA: Wadsworth and Brooks/Cole,
1984.

[23] S. K. Pal and S. Mitra, “Fuzzy versions of Kohonen’s net and MLP-
based classification: Performance evaluation for certain nonconvex
decision regions,” Inform. Sci., vol. 76, pp. 297–337, 1994.

[24] R. A. Fisher, “The use of multiple measurements in taxonomic problem,”
Ann. Eugenics, vol. 7, pp. 179–188, 1936.

[25] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks. Read-
ing, MA: Addison-Wesley, 1989.

[26] B. D. Ripley, Pattern Recognition and Neural Networks. New York:
Cambridge Univ. Press, 1996.

Mohua Banerjee was born in 1965. She received
the Ph.D. degree in pure mathematics from the
University of Calcutta, India, in 1995.

From 1995 to 1997, she was a Research Associate
at the Machine Intelligence Unit, Indian Statistical
Institute, Calcutta. Currently, she is working as a
Lecturer in the Department of Mathematics, Indian
Institute of Technology, Kanpur. Her main interests
include pure and applied logics, rough set theory,
and its applications to approximate reasoning, fuzzy
set theory, and category theory. She has had the

occasion to work with distinguished scientists including Z. Pawlak (the
proposer of rough set theory) while on academic visits to Poland. She has
lectured on rough sets and interacted with researchers in various institutes in
India and abroad.

Dr. Banerjee was awarded the Indian National Science Academy Medal for
Young Scientists in 1995.

Sushmita Mitra received the B.Sc. (Hons.) degree
in physics and the B.Tech. and M.Tech. degrees in
computer science from the University of Calcutta
in 1984, 1987, and 1989, respectively. She received
the Ph.D. degree in computer science by the Indian
Statistical Institute, Calcutta, in 1995.

Since 1995, she has been an Associate Professor
of the Indian Statistical Institute, Calcutta, which
she joined in 1989. From 1978 to 1983, she was a
recipient of the National Talent Search Scholarship
from the National Council for Educational Research

and Training, India. From 1992 to 1994, she was in the European Laboratory
for Intelligent Techniques Engineering, Aachen, as a German Academic
Exchange Service (DAAD) Fellowship holder. Her research interests include
pattern recognition, fuzzy sets, artificial intelligence, neural networks, and
soft computing.

Dr. Mitra was awarded the 1994 IEEE TNN Outstanding Paper Award for
a paper published in the IEEE TRANSACTIONS ON NEURAL NETWORKS.



1216 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

Sankar K. Pal (M’81–SM’84–F’93) received the
M.Tech. and Ph.D. degrees in radiophysics and
electronics from the University of Calcutta, India, in
1974 and 1979, respectively. In 1982, he received
another Ph.D. degree in electrical engineering along
with DIC from Imperial College, University of
London.

In 1986, he was awarded a Fulbright Postdoctoral
Visiting Fellowship to work at the University of Cal-
ifornia, Berkeley, and the University of Maryland,
College Park. In 1989 he received an NRC-NASA

Senior Research Award to work at the NASA Johnson Space Center, Houston,
TX, USA. He is a Distinguished Scientist and Founding Head of Machine
Intelligence Unit at the Indian Statistical Institute, Calcutta. He was appointed
a Distinguished Visitor of IEEE Computer Society for the Asia-Pacific Region.
His research interests mainly include pattern recognition, image processing,
neural nets, genetic algorithms, and fuzzy sets and systems. He is a coauthor
of the book Fuzzy Mathematical Approach to Pattern Recognition (New
York: Wiley, 1986) and a coeditor of three books: Fuzzy Models for Pattern

Recognition (New York: IEEE Press, 1992), Genetic Algorithms for Pattern

Recognition (Boca Raton, FL, CRC, 1996), and Rough-Fuzzy Hybidization:

New Trend in Decision Making (New York: Springer-Verlag, 1998).
Dr. Pal is a Fellow of the Indian National Science Academy, the Indian

Academy of Sciences, the National Academy of Sciences of India, and the
Indian National Academy of Engineering. He received the 1990 Shanti Swarup
Bhatnagar Prize in engineering sciences, the Jawaharlal Nehru Fellowship,
the Vikram Sarabhai Research Award, and the NASA Tech Brief Award,
all in 1993. He received the IEEE TRANSACTIONS ON NEURAL NETWORKS

Outstanding Paper Award in 1994, the NASA Patent Application Award in
1995, and in 1997, the IETE–Ram Lal Wadhwa Gold Medal. He is a Memberof
the Executive Advisory Editorial Board for the IEEE TRANSACTIONS ON

FUZZY SYSTEMS and the International Journal of Approximate Reasoning,
North Holland, and an Associate Editor of the IEEE TRANSACTIONS ON

NEURAL NETWORKS, Fuzzy Sets and Systems, Pattern Recognition Letters,
Neurocomputing, Applied Intelligence, Information Sciences, International

Journal of Knowledge Based Intelligent Engineering Systems, and Far-East

Journal of Mathematical Sciences. He was also the Guest Editor of an IEEE

Computer special issue on Neural Networks: Theory and Practice, March
1996, and JIETE special issue on Neural Networks, July–October, 1996.


	1....Rough.pdf
	2-14...Rough fuzzy.pdf

