


BHAMIDIPATI AND PAL: STEMMING VIA DISTRIBUTION-BASED WORD SEGREGATION 351

and present the experimental results in Section V. We draw our

conclusions in Section VI.

II. STEMMING AND RELATED WORK

Documents are generally represented in terms of the words

they contain, as in the vector-space model [9]. Many of these

words are similar to each other in the sense that they denote the

same concept(s), i.e., they are semantically similar. Generally,

morphologically similar words have similar semantic interpre-

tations, although there are several exceptions to this, and may

be considered equivalent. The construction of such equivalence

classes is known as stemming. A number of stemming algo-

rithms or stemmers, which attempt to reduce a word to its stem

or root form, have been developed. Thus, the document may

now be represented by the stems rather than by the original

words. As the variants of a term are now conflated to a single

representative form, it also reduces the dictionary size, which

is the number of distinct terms needed for representing a set

of documents. A smaller dictionary size results in savings in

storage space and processing time.

Stemming is often used in information retrieval because of

the various advantages it provides [2]. The literature is divided

on this aspect, with some authors finding stemming helpful for

retrieval tasks [2], while others did not find any advantage [10].

However, they are all unanimous regarding the other advantages

of stemming. Not only is the storage space for the corpus and

retrieval times reduced but recall is also increased without much

loss of precision. Moreover, the system has the option for query

expansion to help a user refine his/her query.

A. Different Stemming Algorithms

Various stemmers are available for several languages, includ-

ing English. The most prominent ones are those introduced

by Lovins, Dawson, Porter, Krovetz, Paice/Husk and Xu, and

Croft. We now provide a brief description of some of these

algorithms.

1) Truncate(n): This is a trivial stemmer that stems any

word to the first n letters. It is also referred to as n-gram

stemmer [7]. This is a very strong stemmer. However, when n
is small, e.g., one or two, the number of overstemming errors is

huge. For this reason, it is mainly of academic interest only. In

this paper, we have chosen n to be 3, 4, and 5 and refer to them

as trunc3, trunc4 and trunc5, respectively.

2) Lovins Stemmer: The Lovins stemmer [11] was devel-

oped by Lovins and is a single-pass longest match stemmer. It

performs a lookup on a table of 294 endings, which have been

arranged on a longest match principle. The Lovins stemmer

removes the longest suffix from a word. Once the ending is

removed, the word is recoded using a different table that makes

various adjustments to convert these stems into valid words.

However, it is highly unreliable and frequently fails to form

words from the stems or to match the stems of like-meaning

words.

3) Dawson Stemmer: The Dawson stemmer [12], which

was developed by Dawson, extends the Lovins stemmer. This is

also a single-pass longest match algorithm, but it uses a much

more comprehensive list of around 1200 suffixes, which were

organized as a set of branched character trees for rapid access.

In this case, there is no recoding stage, which had been found

to be unreliable.

4) Porter Stemmer: Porter proposed the Porter stemmer [6],

which is based on the idea that the suffixes in the English

language (approximately 1200) are mostly made up of a com-

bination of smaller and simpler suffixes. It has five steps, and

within each step, rules are applied until one of them passes

the conditions. If a rule is accepted, the suffix is removed

accordingly, and the next step is performed. The resultant stem

at the end of the fifth step is returned.

5) Paice/Husk Stemmer: The Paice/Husk stemmer [13] is a

simple iterative stemmer and uses just one table of rules; each

rule may specify either deletion or replacement of an ending.

The rules are grouped into sections that correspond to the final

letter of the suffix, making the access to the rule table quicker.

Within each section, the order of the rules is significant. Some

rules are restricted to words from which no ending has yet

been removed. After a rule has been applied, processing may

be allowed to continue iteratively or may be terminated.

6) Krovetz Stemmer: The Krovetz stemmer [14] was de-

veloped by Krovetz and makes use of inflectional linguistic

morphology. It effectively and accurately removes inflectional

suffixes in three steps: the conversion of a plural to its singular

form, the conversion of past to present tense, and the removal

of -ing. The conversion process first removes the suffix and

then through the process of checking in a dictionary for any

recoding, returns the stem to a word. It is a light stemmer in

comparison to the Porter and Paice/Husk stemmers.

7) Co-Occurrence-Based Stemmer by Xu and Croft: Xu and

Croft [7] observed that most stemmers perform understemming

or overstemming, or even both. Strong stemmers generally

perform overstemming only. Xu and Croft came up with an

algorithm that would refine the stemming performed by a strong

stemmer. To this end, they computed the co-occurrences of

pairs of words that belong to the same equivalence class. For

each pair, they also computed the expected number of co-

occurrences, which would account for words that occur together

randomly. Thus, they obtained a measure that is similar to the

mutual information measure defined as

em(wi, wj) = max

(

n(i, j) − En(i, j)

ni + nj

, 0

)

where ni and nj are the frequencies of wi and wj , respec-

tively, and n(i, j) is the number of times the two words co-

occur. E denotes the expected value. This measure ignores

any co-occurrences that may be attributed to pure chance. If

em(wi, wj) is significantly greater than zero, they conclude that

in the given corpus, the two words indeed appear together and

may be retained in the same equivalence class.

Splitting the equivalence classes in an optimal way how-

ever is computationally very expensive. When the equivalence

classes are large, Xu and Croft opt for a suboptimal solution

obtained by a connected component-labeling algorithm applied

after achieving the thresholds of the em scores.



352 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

8) Dictionary-Based Stemmers: There have also been

dictionary-based stemmers [2], [15], [16] that improve on an

existing stemmer by employing knowledge obtained from a

dictionary. Word co-occurrences in a dictionary are considered

to imply the relations between words.

9) Probabilistic Stemmers: Given a word in a corpus, the

most likely suffix–prefix pair that constitutes the word is com-

puted [17]. Each word is assumed to be made up of a stem

(suffix) and a derivation (prefix), and the joint probability of

the (stem, derivation) pair is maximized over all possible pairs

constituting the word. The suffix and prefix are chosen to be

nonempty substrings of the given word, and it is not clear what

should be done in the case when a word should be stemmed to

itself.

10) Refinement of an Existing Stemmer: In some cases,

errors produced by a stemmer are manually rectified by pro-

viding an exception list [14]. The stemmer would first look up

the exception list, and if the word is found there, it returns the

stem found there. Otherwise, it uses the usual stemmer. The

aforementioned co-occurrence-based stemmer is also one such

algorithm where the exceptions are obtained automatically.

11) Distributional Clustering as Stemming: Distributional

clustering [8], [18]–[20] joins (distributionally) similar words

into a group if the words have similar probability distributions

among the target features that co-occur with them. In [18]–[20],

the distributions are estimated by observing the grammatical

relationships between words and their contexts, whereas in [8],

the distributions are obtained from the frequency of words

in each category of the corpus. In their work on document

classification, Baker and McCallum had chosen the class labels

as the target features. The root forms of the words are not

taken into consideration while grouping them. This algorithm

described in [8] is given as follows. The mutual information of

each word in the corpus with the class variable is computed, and

the words are sorted in descending order. The number of desired

clusters is fixed beforehand, e.g., to M . The first M words are

initialized to form M singleton clusters. The two most similar

(of the M ) clusters are merged. This similarity is measured in

terms of the Kullback–Leibler divergence of the distributions

of the two clusters. The next word in the sorted list forms a

new singleton cluster. Thus, the number of clusters remains M
each time. In this paper, we refer to Baker and McCallum’s

method as baker. In our implementation, we have fixed M to

the number of stems obtained by refining the trunc3 stemmer

using our model.

B. Stemming and Classification

There are several works on text classification (see, e.g.,

[21]) where stemming has been employed in a routine man-

ner. However, there are differences in opinions of researchers

regarding the effectiveness of stemming for the purpose of

classification. While Riloff [22] and Spitters [23] had concluded

that stemming may not help increase classification accuracy,

Buseman had observed that morphological analysis increases

the performance for a series of classification algorithms applied

to German e-mail classification. In a recent work, Gustad

and Bouma [16] observed that stemming does not consis-

tently improve classification accuracy. More recently, however,

Cohen et al. [24] found stemming advantageous while classify-

ing medical documents.

Perhaps, the reasons for such varied observations lie in the

different characteristics of the document collections involved.

On the one hand, stemming would increase the number of in-

stances per feature (by reducing the number of features), which

is a favorable situation for classification. On the other hand,

stemming may merge words regardless of the class information

that they hold, thereby confusing a classifier that is presented

with such mixed instances.

In the next section, we propose a novel stemming technique,

whereby even very strong stemming does not reduce the classi-

fication accuracy.

III. PROPOSED STEMMING TECHNIQUE

A. Criteria

We try to improve on the existing stemmers previously

discussed on the following aspects.

1) Substitute Words: These words, although very similar in

meaning and/or usage, often do not tend to appear with each

other. These are often the result of varying author styles, where

a particular author uses just one of the substitute words all

the time. Examples include words that have different spellings

under British and American usage (e.g., colour and color,

respectively). To infer that they should be stemmed to the same

word, one would need to analyze their co-occurrence with other

words to find such relations.

2) Words With Many Senses: When a word has many senses,

there might be words that are semantically similar to it in just

one sense. Merging them would lead to loss of information [14].

It is desirable that only those words that match in all the given

senses are merged.

3) Creation of New Words: Rule-based stemmers occasion-

ally create new words while stripping suffixes. For example, the

Porter stemmer stems both change and changing to chang. Note

that this is inevitable, and if a rule were to modify the final stem

by adding an e to it, it would lead to yet other problems such

as hang and hanging both stemming to hange. The creation

of such words may also increase ambiguity when dissimilar

classes of words are merged. For example, the Porter stemmer

stems range, ranged, ranges, ranging, and rang to rang, even

though rang is unrelated to the rest.

4) Simplicity and Speed: Rule-based stemmers only need

to step through a sequence of predefined rules and are very

efficient, albeit at the cost of stemming errors. Corpus-based

refinements are computationally expensive, as seen in the case

of co-occurrence-based stemmers, where the process of refining

the stems involves computing the co-occurrences of each pair

of words that map to the same stem. If an equivalence class

(set of words mapping to the same stem) is “large,” splitting it

optimally becomes an arduous task.

5) Cross-Corpus Stemming: It is desirable to perform the

stemming operation only once. In addition, additional informa-

tion such as categories may not be available for all corpora.

However, one would like the stemmer to perform reasonably



BHAMIDIPATI AND PAL: STEMMING VIA DISTRIBUTION-BASED WORD SEGREGATION 353

well in that situation also. The stemmer may be built based on

a single corpus, and the same set of stems is also employed

for other corpora. The challenge is to come up with a stemmer

that does well even when the two corpora are very different in

nature.

We now describe a stemming algorithm that incorporates all

the aforementioned desiderata.

B. Stemmer Refinement by Distribution-Based Segregation

The objective at hand is that given an equivalence class

of words, it is to be split in such a way that the resulting

equivalence classes reflect improved stemming in terms of

classification and retrieval. The primary objective is not to

group morphological or semantically similar words as a human

linguist would do, although such a feature would be an added

attraction. We utilize the information available in a classified

text corpus to perform the splitting. We assume that we have a

corpus whose documents are distributed into several groups or

categories, with each one consisting of documents that pertain

to some topic. The primary assumption behind the proposed

methodology is that two words may be stemmed to the same

stem if they are similar in their distribution across various

categories.

Each word is assumed to have a multinomial distribution [5]

over the set of categories of the given corpus. In a multinomial

distribution, n events are observed; each of which has k possi-

ble outcomes, with the ith outcome having a probability of pi.

The binomial distribution is a special case where k = 2. Words

deemed to be arising from the same multinomial distribution

are kept in the same equivalence class, whereas those that are

significantly different from each other are separated out. Here,

differences in the total number of appearances of the words

(denoted by n) are ignored, just as in the vector-space (or the

bag of words) model. The distribution of each word is estimated

from its frequencies in the various categories. Formally, the

proposed methodology is described here.

Let {w1, w2, . . . , wn} be the set of words belonging to an

equivalence class, i.e., they all stem to the same stem. Let K
be the number of categories of the given text corpus. For each

word wi, we compute the occurrence vector ni1, ni2, . . . , niK ,

where nik is the number of occurrences of wi under the kth

category. We assume that each wi arises from a multinomial

distribution whose parameters are pi1, pi2, . . . , piK and that

ni =
∑K

k=1 nik. Here, each pik denotes the probability of wi

appearing under the kth category and is estimated as the corre-

sponding proportion of occurrences in the corpus nik/ni. The

aim is to partition this set of words into non empty subsets such

that each subset consists of words whose estimated distributions

do not significantly differ from each other.

Moreover, this needs to be done without prior knowledge of

the size of the partition.

We employ a procedure similar to sequential hypothesis test-

ing [25] to attain this goal. Two thresholds/cutoffs, e.g., t1 and

t2 (t1 ≤ t2), are chosen for this purpose. The words are sorted

in descending order based on their frequencies. Without loss

of generality, we shall now denote this sorted list of words by

{w1, w2, . . . , wn}. The most frequent word w1 is chosen and is

considered to stem to itself. We denote this as stem(w1) = s1.

Let S be the current set of stems. Thus, initially, S = {s1}. We

shall also denote the equivalence class of stem sj by Sj , which

is defined as Sj = {wk : stem(wk) = sj}.

For each subsequent word, we compute the distance between

its distribution function and that of each stem in S dij =
d(wi, sj). This distance represents the dissimilarity between

a word and the candidate stem, with a small distance value

indicating that the word is very similar to the stem and may be

merged with it. The distance function may be chosen to reflect

the manner in which we want to measure the dissimilarity

between a word and a stem and may be any of those discussed

in Section III-C. A more comprehensive list of (dis)similarity

measures is available in [20]. If each of these distances is

greater than the bigger cutoff, i.e., dij > t2∀j, we shall call

the current word a new stem and add it to set S. On the other

hand, if any of the distances, e.g., dij , is smaller than the smaller

cutoff t1, we shall add the current word to the equivalence class

of sj so that stem(wi) = sj .

This procedure is iterated with the two thresholds modified

such that the new lower threshold is greater than t1 and the

larger one is smaller than t2. It may be noted that since the

proposed algorithm depends on the accurate estimation of word

distributions, the larger the number of words or documents per

class, the better the expected performance.

For the purpose of cross-corpus stemming, the stems are first

constructed based on one corpus. Then, the words of the other

corpus are stemmed using the proposed method whenever they

are available in the first one. For all other words, we rely on a

standard stemmer such as porter or trunc3.

C. Choice of Distance Function and Thresholds

The aforementioned description provides a general form of

the corpus-based stemmer. For implementation, one needs to

have a proper choice of distance function and thresholds. These

are described here. The term “distance” can be defined in

various ways to produce a variety of (mostly similar) stemmers.

For example, the distance between a candidate word wi and a

stem sj may be defined in one of the following ways:

1) the distance between wi and a “prototype” (or a represen-

tative) of the set Sj ;

2) the minimum distance between wi and an element of Sj ;

3) the maximum distance between wi and an element of Sj .

For each of the preceding options, one may compute the

Euclidean distance, cosine distance (derived from the cosine

similarity metric) [26], or the Kullback–Leibler distance [27]

between the two distributions. Alternatively, one may compute

a test statistic that would be used for testing the equality of

the two distributions. The distance function may also take into

consideration the size of the longest common prefix so that

words with a longer common prefix would be more likely to

be stemmed to the same stem.

We deduce the computation time of our algorithm by looking

at the operations performed for refining each of the initial

equivalence classes. Suppose that a stem class consists of n
words and m concept groups. Thus, the objective is to split the

given stem class into m concept classes. The words are sorted in



354 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

descending order based on their frequencies in O(n log n) time.

Then, each word would be compared with at most m prototypes

(one for each concept class). Thus, splitting a stem group

is an O(mn) operation [assuming that m < log n; otherwise,

it would be O(n log n)]. It may be noted that at this stage,

co-occurrence-based refinement would need to compute co-

occurrences between all pairs of words, thereby becoming an

O(n2) algorithm.

Now, if there are M stem classes initially, the complexity

of our method is O(Mmn). In addition, n is expected to be

N/M , where N is the total number of words, i.e., Mn = N .

Hence, the average complexity of the proposed method is

O(mN), with m being interpreted as the average number of

concept groups per initial stem class. We note that in the pre-

ceding derivation, m depends on M because as M decreases,

the size of the initial equivalence classes and, consequently, m
are expected to increase.

This is an added advantage for the proposed method over

the co-occurrence-based method as it would not require a

prior stemming result to start with the refinement process

[equivalent to using the Truncate(0) stemmer]. However, for the

purpose of stemming, this would necessitate the incorporation

of longest-common-prefix-based modification during distance

calculations.

There are no strict guidelines for choosing t1 and t2, except

that a high t1 would result in more words getting a stem class

of their own (understemming) and a low t2 would lead to

large equivalence classes (overstemming). Thus, all that we are

doing by choosing t1 and t2 is to fix a level of permissible

understemming and overstemming errors. However, it is not

possible to directly compute the exact number/proportion of

such errors (since the exact distributions of the words are not

known beforehand). If t1 = t2, then we do not need multiple

iterations in the given procedure. This would result in a re-

duction in computing time. However, it may miss out on some

simple mergers of equivalence classes. This is so because once

a word is called a new stem, it cannot be merged with any of

the existing stems at a later stage. Choosing t1 < t2 allows us

to do just that. In this case, whenever one is sure of neither

merging the current word with an existing stem nor assigning it

to a new class of its own, this decision may be put off for later.

In a following iteration, due to the change in the structure of

the classes or the values of the chosen thresholds, the decision

may become clearer. The strength of the stemmer would be

proportional to the size of thresholds t1 and t2.

IV. IMPLEMENTATION

For implementation of the proposed methodology, we pre-

process the given corpus first and then refine a given stemmer

by splitting the equivalence classes generated by that stemmer.

We briefly describe these tasks here.

Any text corpus would contain several noisy terms. To clean

such noise, some standard preprocessing tasks are performed

on the given corpora. The headers of the documents are ig-

nored altogether, and only those words that appear in at least

two documents are retained. HTML tags and stopwords are

removed before building the model. All words are converted to

lower case.

Then, to decide if a given word wi may be merged with a

stem class Sj , we test the difference between the estimated

distributions of wi and Sj . The distributions are estimated as

the corresponding frequencies of words appearing under the K
topics of the given corpus. For testing the difference between

the two distributions, Pearson’s statistic [28] is computed as

described here. Let (ni1, ni2, . . . , niK) be the topic vector of

wi. Define mjk to be
∑

wi∈Sj
nik. In addition, let mj denote the

total
∑K

k=1 mjk. It is assumed that the estimated distribution of

Sj is the actual one. To test if (ni1, ni2, . . . , niK) has arisen

from the distribution of Sj , Pearson’s statistic is computed as

mj

ni

K
∑

k=1

n2
ik

mjk

− ni

where ni and mj are the totals, as defined previously. When

ni is large, this statistic is known to approximately follow a χ2

distribution with K − 1 degrees of freedom.

Since some of the nik values may be zero, we replace

them by

n′
ik = 0.9nik + 0.1

ni

K
= nik + 0.1

(ni

K
− nik

)

. (1)

This is done for each term in the dictionary. What we do here,

essentially, is to perform a smoothing operation. Now, none of

the cells is empty, and moreover, the total remains the same. In

the remainder of this paper, we shall refer to n′
ik as nik itself.

If wi is merged with Sj , the mjks are updated by adding nik

[after modifying as in (1)] for each j.

Since we have sorted the words in descending order based on

their frequencies, the χ2
(K−1) assumption is satisfied initially.

In addition, when the frequency of a word is very low, it would

not matter too much as the word itself might not have much

effect during classification. For this reason, in the initial stages,

we merge words into a stem class only if their distributional

similarity is very high. Later on, this criterion is relaxed a little

by allowing more distant words to be merged to a stem class.

Thus, each equivalence class is split into two iterations.

During the first iteration, the values of t1 and t2 are set to

χ2
(K−1),α and 4χ2

(K−1),α, respectively. Here, χ2
(K−1),α is the

upper α cutoff of the χ2
(K−1) distribution, i.e., the value of the

χ2
(K−1) distribution function at the chosen cutoff is 1 − α. t1

and t2 are both set to 2χ2
(K−1),α during the second iteration. In

our implementation, we had chosen α to be 0.05.

It may be noted that this paper differs from others based on

distributional similarity primarily because the null hypothesis

is chosen as the word and a stem group are similar. In other

words, unless there is strong evidence that the word does not

belong to a stem group, it is not separated from that group.

Since the estimate of the distribution of the stem itself depends

on the choice of words already included in the stem class, this

choice needs to be made carefully at each step. As mentioned

in [19], estimation of distribution is better for words with

higher frequencies. The proposed methodology tries to merge



BHAMIDIPATI AND PAL: STEMMING VIA DISTRIBUTION-BASED WORD SEGREGATION 355

the most frequent words first, resulting in better estimates for

the distribution of each stem class.

Although our methodology does not create any new words

of its own, during cross-corpus stemming, when the words

encountered are not in the dictionary, a standard stemmer is

used, and that may introduce new words into the system.

V. EXPERIMENTAL RESULTS AND COMPARISON

A. Data Sets Used

We evaluated the performance of the proposed methodology

on three data sets, namely: 1) 20NG, 2) WebKB, and 3) WSJ.

They are described as follows.

1) 20NG [29]: This collection is a popular data set for ex-

periments in text applications of machine learning techniques,

such as text classification and text clustering, and it consists

of 19 997 newsgroup documents, which was partitioned evenly

across 20 different newsgroups.

2) WebKB [30]: This data set, which was collected from

computer science departments of various universities in January

1997 by the World Wide Web Knowledge Base project of the

Carnegie Mellon University text learning group, which consists

of 8282 web pages manually classified into seven categories.

3) WSJ: This data set is a part of the Text Retrieval Con-

ference collection [31] and consists of more than 170 000

records, which appeared from 1987 to 1992 in the WSJ. The

queries (also called topics) and query relevance scores (in the

form of qrel files) are available at http://trec.nist.gov/data/

test_coll.html.

B. Evaluation Procedure

The performance of distribution-based stemmer refinement

has been evaluated in two ways. First, a direct evaluation in

terms of linguistic analysis has been performed. This would

reveal how similar the system is to a human who groups

together morphologically and semantically related words. The

second evaluation is an indirect evaluation that observes the

effects of stemming on classification accuracy and retrieval

performance.

For performing the direct evaluation through a linguistic

analysis, we followed the procedure described in [32]. A gener-

alization of this procedure is provided in [33] and is useful for

automatic evaluation of stemmers, but this is not employed here

due to lack of resources on the authors’ part. There are 13 621

words in the intersection of the vocabularies of the 20NG

and the WebKB data sets and a UNIX word list (located at

/usr/share/dict/words). Of these words, we chose all the words

starting with the alphabets a, b, c, p, q, and r, which comprised a

total of 5235 words. These words were manually grouped into

2069 classes, on the basis that all and only those words that

were judged to be semantically and morphologically related

were kept in the same group. As in [32], words with at least

the first two letters in common were considered for grouping

together. Thus, words such as ran and run or buy and bought

were not stemmed to each other, but bring and brought were

kept in the same group.

Paice has defined the following indexes for quantifying

overstemming and understemming. Let W be the size of the

given word sample, and let NG and NS denote the number of

concept groups (denoted by g) and stem classes (denoted by s),

respectively. In addition, let ng and ns denote the number of

words in g and s, respectively. Now, suppose that g consists of

words from kg distinct stem classes, with ugi instances from

ith such class, and that s consists of words from ls distinct

concept groups, with vsj instances from jth such group; the

understemming index (UI) and the overstemming index (OI)

are defined as follows:

UI =
1
2

∑NG

g=1

∑kg

i=1 ui(ng − ui)

1
2

∑NG

g=1 ng(ng − 1)
(2)

OI =
1
2

∑NS

s=1

∑ls
j=1 vj(ns − vj)

1
2

∑NG

g=1 ng(W − ng)
. (3)

Assuming that the concept groups are known, the denomina-

tors in the definitions of UI and OI are constant. The numerators

of UI and OI are called “global unachieved merge total” and

“global wrongly merged total,” respectively, [32] and these

undesired quantities should be zero for an ideal stemmer. Thus,

a linguistic analysis of stemmers involves comparing how close

both UI and OI are to zero.

We now describe the procedure for indirect evaluation of

stemmers by studying the resulting classification accuracy

and retrieval precision. For evaluating the performance of our

system in refining the classification accuracy of a stemmer,

we used the bow toolkit [34] and conducted the following

experiments for each data set. The document collections are

preprocessed as mentioned in Section IV, and the equivalence

classes are split accordingly.

For training and testing, the data set is split randomly into

two parts, and the same split is used for each stemmer. The pro-

portion of documents chosen for training is first taken to be 60.

The training and testing phases are repeated five times for each

choice of the proportion.

The text-classification algorithms employed to compute the

classification accuracy were NB [35], SVMs [36], [37], and

MaxEnt [38]. Each document in the test set was given a

classification score for each of the available categories. If a

single category was to be assigned to a document, the one

with the maximum score for that document was chosen. We

computed the classification accuracy, which is the proportion

of test documents assigned to the correct class. This value was

also computed for each of the individual categories.

Classification accuracy measures the total number of cor-

rectly classified documents. However, when documents are

misclassified, it does not distinguish between them on the basis

of their classification scores. To take this into account, we have

adopted the following precision-recall method. The documents

are first sorted in descending order based on the classification

scores. Only the largest score was considered for each docu-

ment. Now, at any value of recall, the precision (or classifi-

cation accuracy) is computed. A higher precision-recall curve

is preferable. It may be noted that classification accuracy can

be obtained from this curve as the precision when recall is set



356 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

Fig. 1. Plot of OI versus UI for stemmers and their refinements based on the
20NG and WebKB data sets (OI raised to the power 0.25 for clarity).

to 100%. Experiments are also performed where the precision-

recall curves are obtained for each individual category.

To evaluate the retrieval capabilities of our algorithm, we

conducted the succeeding experiments on the WSJ data set

using the SMART system. Topics 101–150 were chosen as

the given queries. The word vector weighting was set to term

frequency–inverse document frequency (TF–IDF). For each

query, documents are retrieved, and the precision is noted at

recall values set to 10%, 20%, . . ., 100%. These precision

values are averaged over all queries and are presented in the

form of precision-recall plots in Fig. 4.

C. Error-Counting-Based Evaluation

Here, we perform a linguistic analysis of the stemmers under

consideration. The UI and OI values were computed for all the

stemmers based on both the 20NG and the WebKB data sets.

These values are displayed graphically in Fig. 1. Dashed lines

are drawn from the UI–OI values of trunc3 and porter to those

of their refinements (trunc3_d) to show how the errors changed

on refinement. It may wrongly appear that while refining the

trunc3 stemmer, too many understemming errors are introduced

at the cost of reducing a few overstemming errors. This impres-

sion is due to the fact that the denominator in (3) is much larger

than that in (2). More insight may be gathered by looking at the

ang example provided here.

We provide some examples of the equivalence classes pro-

duced by the proposed methodology by refining the Porter

and Truncate(3) stemmers. The Porter stem class containing

(abort, aborts, aborted, abortion) was split into two classes,

whereby abortion was separated from the rest. Similarly, (cir-

cularity) was segregated from (circular, circulars). The stem

group corresponding to close was split into three groups (close,

closing, closes), (closed), and (closely, closeness). The preced-

ing splits resulted from the differences in usage of the words

in the collection. For example, even though semantically and

morphologically, circularity is related to circular, this term and

its plural have a different meaning in general and arise in a

different context. Similarly, although the verb and adjective

forms of close have been separated out, closed was made into a

new group of itself, resulting in an understemming error.

Next, we present an example of refining the Truncate(3)

stemmer. The stem class ang is split into the following eight

classes (the first word of each group is the stem): 1) (angel,

angelic, anglican, anglo, angling, anguish, anglicans); 2) (an-

geles, angelo); 3) (angelino); 4) (angels); 5) (anger, angry,

angola, angered, angelos, ang, angrier, angering); 6) (angers);

7) (angle, angles, angular, angst, angus, angled, angulated,

angstrom); and 8) (angmar). It may be noted that despite some

overstemming (e.g., angling mixed with angel) and understem-

ming (e.g., angels and angers are left out as singletons instead

of being merged with angel and anger, respectively) errors,

the splitting is largely successful as most of the related words

appear in the same group, especially because no linguistic

analysis is performed. In particular, angstrom has been retained

in the same group as angle, perhaps as a consequence of both

appearing in similar contexts.

The number of understemming and overstemming errors in

this case, with the chosen sample being the set of words begin-

ning with ang, are 13 and 54, respectively, while UI and OI turn

out to be 0.35 and 0.15, respectively. A quick inspection reveals

that there is more overstemming than understemming—had

angers, angling, and angels been merged with the appropriate

classes, the understemming would have been just 1.

D. Comparison of Classification Accuracy and

Retrieval Performance

As described in Section III-B, the proposed distribution-

based segregation methodology can be employed to refine

the equivalence classes generated by any existing stemmer. In

the present investigation, we used it to obtain new stemmers

based on the Porter and Truncate(3) stemming for both the

corpora. Let these new stemmers be denoted as porter_d_i

and trunc3_d_i, where i is 1 for the 20NG data set and 2 for

the WebKB data set. Similarly, the stemmers derived using

Baker and McCallum’s distributional clustering are denoted as

baker_1 and baker_2.

The reason for choosing Porter and Truncate(3) stemmers is

described here. Porter’s stemmer is one of the most standard

stemmers as evident by its use in the literature. Truncate(3)

is a stemmer that is used mostly for academic purposes. We

have used that because it is a very strong stemmer and results

in several overstemming errors, thereby providing significant

scope for refinement.

The comparison process has four parts. In the first part, we

compare the performance, in terms of the classification accu-

racies, of the refined new stemmers porter_d_i and trunc3_d_i

with that of the original ones (i.e., porter and trunc3) and no

stemming and baker_i. The objective is to demonstrate both the

effectiveness of refinement by our method and improvement

over the baseline performance where the original words are

used.

In the second part, we compare these new stemmers with

the co-occurrence-based modified Porter and Trunc3 stem-

ming of Xu and Croft [7]. These may be denoted, in short,

as porter_c_i and trunc3_c_i, with i being the same as in



BHAMIDIPATI AND PAL: STEMMING VIA DISTRIBUTION-BASED WORD SEGREGATION 357

TABLE I
CLASSIFICATION ACCURACIES FOR 20NG

the first part. Here, the objective is to compare the perfor-

mance of our distribution-based refinement process with the

co-occurrence-based refinement process. These stemmers are

also compared with baker_i.

The third part deals with comparison in terms of cross-corpus

performance, where a stemmer refined using information from

one data set is applied to another data set. The objective is to

study the dependence of a stemming algorithm on the data set

based on which is derived and its applicability to a dissimilar

data. Here, we consider trunc3_d_1 and trunc3_c_1 applied to

the WebKB data set and trunc3_d_2 and trunc3_c_2 applied to

the 20NG data set.

The fourth part involves comparison with respect to retrieval

performance, where the objective is to study the effects of

the stemmers on the retrieval at various levels of recall. The

stemmers being considered here are porter_c_1, porter_d_1,

trunc3_d_1, and baker_1, and they are applied to the WSJ data

set. The stemmers refined on the 20NG data set are chosen

for retrieval on the WSJ data set in order to evaluate how the

refinements generalize to other data sets in case of retrieval.

E. Results

Tables I and II report the classification accuracies obtained

by different stemming algorithms for the 20NG data set and

the WebKB data sets, respectively. All abbreviations used in

the result tables are described in Section V-D. We make the

following observations from Tables I and II.

1) Both porter_d and trunc3_d fare better than porter and

trunc3, respectively, in all cases for both data sets.

2) porter_d shows better performance than porter_c in

all cases, although the number of stems obtained by

porter_d_1 is slightly more than that by porter_c_1.

3) trunc3_d provides better classification accuracy com-

pared to no stemming and baker, with the case of SVM

for the WebKB data set being the only exception. The

TABLE II
CLASSIFICATION ACCURACIES FOR WebKB

same observation holds when trunc3_d is compared to

porter_d.

4) The number of words common to both data sets is 20 782,

which is about 64% and 37% of the dictionary sizes of the

WebKB and 20NG data sets, respectively (see Table III).

The classification accuracy obtained by trunc3_d_1 is

significantly better than trunc3_c_1 when applied to the

WebKB data set. This confirms that the refinement pro-

cedure performed by employing the classification infor-

mation from a different corpus works better when the

number of common words is large.

5) The statistical significance of the improvement gained

by using the proposed stemmers over that of existing

stemmers is tested using a t statistic. Table IV contains the

t statistic values for the case of the NB classifier applied

to the 20NG data set when the test set size is chosen to be

40% (Fig. 2). Table V shows the corresponding values for

the WebKB data set. We observe in Table IV, which cor-

responds to Fig. 2, that there is a significant improvement,

at 95% confidence level, over existing stemmers when

trunc3_d_1 is employed. Similarly, trunc3_d_2 has sig-

nificantly, at 95% confidence level, outperformed existing

stemmers as can be seen in Table V, which corresponds

to Fig. 3.

Apart from the classification accuracies, we also provide re-

sults in the form of precision-recall plots (Figs. 2 and 3). It may

be noted that the proposed algorithm consistently outperforms

the rest, especially when considered along with the number of

stems obtained (Table III). When based on trunc3, the proposed

method (i.e., trunc3_d) consistently improves the classification

precision for all values of recall. This is possibly because

the stems obtained by trunc3_d satisfy the NB independence

assumption better than the original set of words. In that respect,

our methodology may be considered as a “modification of

feature sets to make the independence assumption more true,”

as mentioned in [35].



358 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

TABLE III
STEM COUNTS AND THE LARGEST EQUIVALENCE CLASSES OBTAINED BY VARIOUS STEMMING ALGORITHMS

TABLE IV
STATISTICAL SIGNIFICANCE VALUES FOR 20NG USING NB

TABLE V
STATISTICAL SIGNIFICANCE VALUES FOR WebKB USING NB

Fig. 2. Classification results for 20NG (test set size = 40, method = NB).

Fig. 3. Classification results for WebKB (test set size = 40, method = NB).



BHAMIDIPATI AND PAL: STEMMING VIA DISTRIBUTION-BASED WORD SEGREGATION 359

TABLE VI
TIME (IN SECONDS) TAKEN FOR CREATING THE STEM HASH TABLES

Fig. 4. Retrieval results for WSJ. The similarity measure is TFIDF.

Note here that the time taken for stemming words is the

same for any of the stemmers, as the words and their stems

can be stored in a hash table. It is the time taken for creating

this hash table that may differ. While this is not significant for

any of the rule-based stemmers, it is comparatively quite high

for the co-occurrence-based stemmer, the proposed one, and

baker (Table VI). The steep increase in the computation time

for trunc3_c is a consequence of the large equivalence classes

formed by trunc3.

For testing the retrieval efficiency of the proposed method-

ology, we have chosen a part of the WSJ data set that consists

of WSJ articles published from 1987 to 1992. The queries

used were topics 101–150. The retrieval experiments have

been performed using the SMART system with the word vec-

tor weighting set to TF–IDF [39]. As mentioned earlier in

Section V-B, we have used the refinements obtained from the

20NG data set. We note that trunc3_d_1 outperforms baker_1,

as well as the remaining methods, as shown in Fig. 4, with

trunc3_d providing more than 2% improvement over baker_1

until the recall is above 90%. The improvement has been found

to be statistically significant at a 95% confidence level.

VI. CONCLUSION

We have described the design of a stemming algorithm that

uses the classification information of a corpus to refine a given

stemmer. The main advantage over other stemmers such as co-

occurrence-based stemmers is its ability to drastically reduce

the dictionary size while maintaining both classification accu-

racy and retrieval precision. Experiments that were conducted

on the 20NG and WebKB data sets confirm the superiority of

the proposed methodology for the task of text categorization

when classifiers such as NB, SVMs, and MaxEnt are used. This

is also supported by precision-recall-based evaluation. Another

set of experiments performed on the WSJ data set demonstrates

the enhancement in retrieval precision when refined stemmers

are employed instead of existing stemmers. The performance

of the refinement done by employing the classification informa-

tion from a different corpus increases as the number of common

words increases.

ACKNOWLEDGMENT

The authors would like to thank M. Mitra for providing

the WSJ data set and for his help with the SMART system,

and the anonymous reviewers for several insightful comments.

N. L. Bhamidipati would like to thank the ISI-INSEAD

(France) Fellowship for carrying out his doctoral research.

REFERENCES

[1] G. Salton, “Developments in automatic text retrieval,” Science, vol. 253,
no. 5023, pp. 974–980, Aug. 1991.

[2] W. Kraaij and R. Pohlmann, “Viewing stemming as recall enhance-
ment,” in Proc. 17th ACM SIGIR Conf., Zurich, Switzerland, Aug. 1996,
pp. 40–48.

[3] W. B. Frakes and C. J. Fox, “Strength and similarity of affix removal
stemming algorithms,” ACM SIGIR Forum, vol. 37, no. 1, pp. 26–30,
2003.

[4] F. Yamout, R. Demachkieh, G. Hamdan, and R. Sabra, “Further enhance-
ment to Porter algorithm,” in Proc. Workshop Mach. Learn. and Interact.

Text-Based Inf. Retrieval, Ulm, Germany, Sep. 2004, pp. 7–24.
[5] N. L. Johnson, S. Kotz, and N. Balakrishnan, Discrete Multivariate

Distributions. Hoboken, NJ: Wiley-Interscience, 1997.
[6] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,

pp. 130–137, 1980.
[7] J. Xu and W. B. Croft, “Corpus-based stemming using coocurrence of

word variants,” ACM Trans. Inf. Syst., vol. 16, no. 1, pp. 61–81, 1998.
[8] L. D. Baker and A. K. McCallum, “Distributional clustering of words for

text classification,” in Proc. 21st ACM SIGIR Conf., Melbourne, Australia,
1998, pp. 96–103.

[9] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic
indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, Nov. 1975.

[10] D. Harman, “How effective is suffixing?” J. Amer. Soc. Inf. Sci., vol. 42,
no. 1, pp. 7–15.

[11] J. B. Lovins, “Development of a stemming algorithm,” Mech. Transl.

Comput. Linguist., vol. 11, no. 1/2, pp. 22–31, 1968.
[12] J. L. Dawson, “Suffix removal for word conflation,” Bull. Assoc. Lit.

Linguist. Comput., vol. 2, no. 3, pp. 33–46, 1974.
[13] C. D. Paice, “Another stemmer,” SIGIR Forum, vol. 24, no. 3, pp. 56–61,

1990.
[14] R. Krovetz, “Viewing morphology as an inference process,” in Proc. 16th

ACM SIGIR Conf., Pittsburgh, PA, 1993, pp. 191–202.
[15] M. Kantrowitz, B. Mohit, and V. Mittal, “Stemming and its effects on

TFIDF ranking,” in Proc. 23rd Annu. SIGIR Conf., Athens, Greece, 2000,
pp. 357–359.

[16] T. Gustad and G. Bouma, “Accurate stemming of Dutch for text classifi-
cation,” Lang. Comput., vol. 45, no. 1, pp. 104–117, 2002.

[17] M. Bacchin, N. Ferro, and M. Melucci, “A probabilistic model for stem-
mer generation,” Inf. Process. Manage., vol. 41, no. 1, pp. 121–137, 2005.

[18] F. Pereira, N. Tishby, and L. Lee, “Distributional clustering of English
words,” in Proc. 31st Annu. Meeting Assoc. Comput. Linguist., 1993,
pp. 183–190.

[19] D. Lin, “Automatic retrieval and clustering of similar words,” in Proc.

17th Int. Conf. Comput. Linguist., 1998, pp. 768–774.
[20] L. Lee, “Measures of distributional similarity,” in Proc. 37th Annu. Meet-

ing Assoc. Comput. Linguist., 1999, pp. 25–32.
[21] Y. Yang, “A re-examination of text categorization methods,” in Proc. 22nd

ACM SIGIR Conf., Berkeley, CA, 1999, pp. 42–49.



360 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007

[22] E. Riloff, “Little words can make a big difference for text classification,”
in Proc. 18th ACM SIGIR Conf., Seattle, WA, 1995, pp. 130–136.

[23] M. Spitters, “Comparing feature sets for learning text categorization,” in
Proc. RIAO, Paris, France, 2000, pp. 1124–1135.

[24] A. M. Cohen, J. Yang, and W. R. Hersh, “A comparison of techniques for
classification and ad hoc retrieval of biomedical documents,” in Proc. 14th

Annu. Text REtrieval Conf., Gaithersburg, MD, 2005. [Online]. Available:
http://trec.nist.gov/pubs/trec14/papers/ohsu-geo.pdf

[25] A. Wald, Sequential Analysis. New York: Wiley, 1947.
[26] G. Salton and M. J. McGill, Introduction to Modern Information Re-

trieval. New York: McGraw-Hill, 1983.
[27] S. Kullback, Information Theory and Statistics. New York: Wiley, 1959.
[28] E. L. Lehmann, Testing Statistical Hypotheses. New York: Springer-

Verlag, 1997.
[29] The 20 News Groups (20NG) data set. [Online]. Available: http://kdd.

ics.uci.edu/databases/20newsgroups/20newsgroups.html
[30] The WebKB data set. [Online]. Available: http://www-2.cs.cmu.edu/

afs/cs.cmu.edu/project/theo-20/www/data/
[31] D. Harman, “Overview of the Third Text Retrieval Conference,” in Proc.

3rd TREC-3, 1995, pp. 1–20.
[32] C. D. Paice, “Method for evaluation of stemming algorithms based on

error counting,” J. Amer. Soc. Inf. Sci., vol. 47, no. 8, pp. 632–649, 1996.
[33] R. S. de Madariaga, J. R. F. del Castillo, and J. R. Hilera, “A generalization

of the method for evaluation of stemming algorithms based on error count-
ing,” in Proc. 12th Int. Conf. String Process. and Inf. Retrieval, Buenos
Aires, Argentina, 2005, pp. 228–233.

[34] A. K. McCallum, Bow: A Toolkit for Statistical Language Modeling,

Text Retrieval, Classification and Clustering, 1996. [Online]. Available:
http://www.cs.cmu.edu/~mccallum/bow

[35] D. D. Lewis, “Naive (Bayes) at forty: The independence assumption in
information retrieval,” in Proc. 10th Eur. Conf. Mach. Learn., Chemnitz,
Germany, 1998, pp. 4–15.

[36] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[37] T. Joachims, “Text categorization with support vector machines: Learning
with many relevant features,” in Proc. 10th Eur. Conf. Mach. Learn.,
Chemnitz, Germany, 1998, pp. 137–142.

[38] K. Nigam, J. Lafferty, and A. McCallum, “Using maximum entropy for
text classification,” in Proc. IJCAI Workshop Mach. Learn. Inf. Filtering,
1999, pp. 61–67.

[39] S. Chakrabarti, Mining the Web: Discovering Knowledge From Hypertext

Data. San Mateo, CA: Morgan Kaufmann, 2002.

Narayan L. Bhamidipati (previously known as
B. Lakshmi Narayan) received the B.Stat. (with
honors) and M.Stat. degrees from the Indian Statis-
tical Institute, Kolkata, India, in 1998 and 2000, re-
spectively. He is currently working toward the Ph.D.
degree in computer science at the Indian Statistical
Institute.

His research interests include data, web, and text
mining; graph theory; information theory; and soft
computing.

Sankar K. Pal (M’81–SM’84–F’93) received the
Ph.D. degree in radio physics and electronics from
the University of Calcutta, Kolkata, India, in 1979,
and the Ph.D. degree in electrical engineering along
with DIC from Imperial College, University of
London, London, U.K., in 1982.

He was with the University of California, Berkeley
and the University of Maryland, College Park dur-
ing 1986–1987; the NASA Johnson Space Center,
Houston, TX, during 1990–1992 and 1994; and the
U.S. Naval Research Laboratory, Washington, DC,

in 2004. Since 1997, he has been serving as a Distinguished Visitor of the
IEEE Computer Society (USA) for the Asia-Pacific Region and has held several
visiting positions in Hong Kong and Australian universities. He is also currently
the Director and a Distinguished Scientist of the Indian Statistical Institute,
Kolkata. He founded the Machine Intelligence Unit and the Center for Soft
Computing Research: A National Facility in the Institute in Calcutta. He is a
coauthor of 13 books and about 300 research publications in the areas of pattern
recognition and machine learning, image processing, data mining and web
intelligence, soft computing, neural nets, genetic algorithms, fuzzy sets, rough
sets, and bioinformatics. He is currently an Associate Editor of Pattern Recogni-
tion Letters, Neurocomputing (1995–2005), Applied Intelligence, Information
Sciences, Fuzzy Sets and Systems, Fundamenta Informaticae, the LNCS Trans-
actions on Rough Sets, the International Journal on Computational Intelligence

and Applications, the Proceedings of INSA-A, and the International Journal on

Image and Graphics, and the International Journal of Approximate Reasoning.

Dr. Pal was a recipient of the 1990 S. S. Bhatnagar Prize (which is the most
coveted award for a scientist in India) and many prestigious awards in India and
abroad including the 1999 G. D. Birla Award, the 1998 Om Bhasin Award, the
1993 Jawaharlal Nehru Fellowship, the 2000 Khwarizmi International Award
from the Islamic Republic of Iran, the 2000–2001 FICCI Award, the 1993
Vikram Sarabhai Research Award, the 1993 NASA Tech Brief Award (USA),
the 1994 IEEE TRANSACTIONS ON NEURAL NETWORKS Outstanding Paper
Award (USA), the 1995 NASA Patent Application Award (USA), the 1997
IETE-R.L. Wadhwa Gold Medal, the 2001 INSA-S.H. Zaheer Medal, and
the 2005-2006 ISC-P.C. Mahalanobis Birth Centenary Award (Gold Medal)
for Lifetime Achievement. He is currently an Associate Editor of the IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, the
IEEE TRANSACTIONS ON NEURAL NETWORKS [1994–1998 and 2003–2006].
He is also a member of the Executive Advisory Editorial Board of the IEEE
TRANSACTIONS ON FUZZY SYSTEMS. He is also a Guest Editor of the IEEE
Computer. He is a Fellow of the Academy of Sciences for the Developing World
(Italy), the International Association for Pattern Recognition (USA), and all the
four National Academies for Science/Engineering in India.


	350...pdf
	351...pdf

