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1. Introduction

Advancement ofmicroarray technology hasmade it possible tomonitor the expression

patterns of a huge number of genes in parallel across several experimental conditions.

An important computational task in microarray datasets is discovering similarly

expressed genes which are expected to be functionally related. Clustering1 has been

widely used in microarrays for the purpose of discovering genes that are co-expressed

across all the conditions.2,3 However, it has been seen that a set of genes can have sim-

ilar expression profile only for a subset of conditions. Unlike clustering, biclustering

algorithms aim to discover a subset of genes that are co-regulated in a subset of con-

ditions. Hence biclustering can be thought as simultaneous clustering from both the

dimensions. Biologically, biclusters are more relevant compared to clusters.

In recent years, several studies have been made by researchers in the context

of biclustering of microarray data. One of the earlier works on biclustering in the

context of microarray data can be found in Ref. 4, where mean squared residue

(MSR) measure was used to compute the coherence among a group of genes. The

algorithm developed in Ref. 4 was based on a greedy search technique guided by

a heuristic. In Ref. 5, a coupled two-way clustering (CTWC) method has been

proposed. An improved version of Cheng and Church’s algorithm, called Flexible

Overlapped biclustering (FLOC) is proposed in Ref. 6 which deals with the miss-

ing values. In Ref. 7, a genetic algorithm (GA)–based biclustering algorithm has

been presented that uses mean squared residue as a fitness function to be mini-

mized. A multiobjective fuzzy biclustering method has been proposed in Ref. 8,

where three criteria, namely the fuzzy mean squared residue, fuzzy row variance

and fuzzy volume are optimized simultaneously. A bipartite graph–based model

called Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) has been

proposed for biclustering in Ref. 9. In Ref. 10, a simulated annealing–based biclus-

tering technique is presented that minimizes the MSR measure.

MSR is a very popular measure and a number of well-known biclustering algo-

rithms have been developed that are based on minimizing MSR.6,7,10 However, a

recent study in Ref. 11 shows that MSR, which is effective in detecting constant and

shifting biclusters, is affected by scaling factors and thus cannot be used to discover

biclusters with scaling patterns. In order to overcome this limitation, in this article,

a new coherence measure called scaling mean squared residue (SMSR) is proposed

to detect scaling biclusters. The effectiveness of the proposed measure has been

established theoretically and through experimentation on both artificial and real-

life benchmark gene expression datasets. Finally biological significance tests have

been conducted to establish that the scaling biclusters discovered by SMSR-based

algorithm are composed of functionally enriched sets of genes.

2. Bicluster Models

A microarray dataset can be considered as a G × C matrix A that represents the

expression level of a set of G genes G = {I1, I2, . . . , IG} over a set of C conditions
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C = {J1, J2, . . . , JC}. Each element mij of matrix A represents the expression level

of the ith gene at the jth condition, where i ∈ G and j ∈ C.

Definition 1. (Bicluster) A bicluster is a submatrix M(I, J) = [mij ], i ∈ I, j ∈ J ,

of matrix A, where I ⊆ G and J ⊆ C.

A bicluster is a submatrix of the whole microarray representing a subset of genes

that are similarly expressed over a subset of conditions and vice versa.

2.1. Types of biclusters

There are different types of biclusters which are defined as follows12:

Definition 2. (Constant Biclusters) A bicluster M(I, J) = [mij ], i ∈ I, j ∈ J , is

called a constant bicluster if all the elements have a constant value mij = π.

Definition 3. (Row Constant Biclusters) A bicluster M(I, J) = [mij ], i ∈ I, j ∈

J , is called a row constant bicluster if all the elements of each row of the bicluster

have the same value. Hence in a row constant bicluster, each element can be repre-

sented using one of the following notations: mij = π + ai or mij = πbi. Here π is a

constant value for a bicluster, ai is the shifting factor for row i and bi is the scaling

factor for row i.

Definition 4. (Column Constant Biclusters) A bicluster M(I, J) = [mij ], i ∈

I, j ∈ J , is called a column constant bicluster if all the elements of each column

of the bicluster have the same value. Hence in a column constant bicluster, each

element can be represented using one of the following notations: mij = π + pj or

mij = πqj . Here π is a constant value for a bicluster, pj is the shifting factor for

column j and qj is the scaling factor for column j.

Definition 5. (Perfect Shifting Biclusters) A bicluster M(I, J) = [mij ], i ∈ I, j ∈

J , is called a perfect shifting bicluster if each column and row has only some shifting

factors. Hence in a perfect shifting bicluster, each element mij = π + ai + pj .

Definition 6. (Perfect Scaling Biclusters) A bicluster M(I, J) = [mij ], i ∈ I, j ∈

J , is called a perfect scaling bicluster if each column and row has only some scaling

factors. Hence in a perfect scaling bicluster, each element mij = πbiqj .

3. Mean Squared Residue

Cheng and Church4 defined a bicluster as a subset of rows and a subset of columns

with a high similarity score. They termed the similarity score as mean squared

residue (MSR), H, which measures the coherence of the rows and columns in the

bicluster. In particular, they aim at finding large and maximal biclusters with H

scores below a certain threshold δ (called as δ-bicluster). In a perfect δ-bicluster

M(I, J) = [mij ], each row/column or both rows and columns exhibit an absolutely

consistent bias (H = δ = 0). Thus the MSR score becomes zero for a perfect shifting
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bicluster, each element of which is of the form: mij = π + ai + pj . Let us define

the row mean of the ith row of M(I, J) as: miJ = 1
|J|

∑

j∈J mij , the column mean

of the jth column as: mIj = 1
|I|

∑

i∈I mij , and the mean of all the elements of the

bicluster as: mIJ = 1
|I|×|J|

∑

i∈I,j∈J mij . Now the constant value for the bicluster

can be taken as π = mIJ , the shifting factor for the ith row can be defined as the

difference ai = miJ −mIJ , and the shifting factor for the jth column can be defined

as the difference pj = mIj − mIJ . Therefore each element mij of a perfect shifting

bicluster can be uniquely defined as:

mij = π + ai + pj = mIJ + (miJ − mIJ) + (mIj − mIJ) = miJ + mIj − mIJ .

(1)

Due to the presence of noise in the microarray data, it is almost impossible to find

a perfect shifting δ-bicluster of the above form. Hence the concept of residue is

introduced to quantify the difference between the actual value of an element mij

and its expected value as found by Eq. (1). Thus the residue rij of any element mij

of the bicluster is defined as:

rij = mij − (miJ + mIj − mIJ) = mij − miJ − mIj + mIJ . (2)

In order to assess the overall quality of a δ-bicluster, the mean squared residue

(MSR) of the bicluster is computed.

Definition 7. (Mean Squared Residue) The mean squared residue [MSR(I, J)]

of a bicluster M(I, J) is defined as:

MSR(I, J) =
1

|I||J |

∑

i∈I,j∈J

r2
ij =

1

|I||J |

∑

i∈I,j∈J

(mij − miJ − mIj + mIJ)2, (3)

where |I| and |J | denote the number of rows and the number of columns in the

bicluster, respectively.

The MSR of a bicluster represents the level of coherence among the elements of

the bicluster. Lower residue score means larger coherence and thus better quality

of the bicluster.

Note that the low residue biclusters should have a sufficient variation of the

expression values in each row compared to the row mean value. This is required to

avoid the trivial biclusters having almost all constant values. Hence the aim is to

find large biclusters that have MSR below a threshold δ (δ-biclusters) and relatively

high row variance which is defined as follows:

Definition 8. (Row Variance) The row variance var(I, J) of a bicluster M(I, J)

is defined as:

var(I, J) =
1

|I||J |

∑

i∈I,j∈J

(mij − miJ )2. (4)

Many biclustering algorithms available in the literature are based on minimizing

MSR measure. In Ref. 11, it has been proved that MSR is invariant to shifting but
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is affected by scaling and hence can detect biclusters with shifting patterns only.

Therefore the algorithms which rely on MSR, are unable to discover significant

biclusters that have scaling patterns. This fact motivates us to make an attempt to

devise a new residue measure that works for scaling biclusters.

4. Identifying Scaling Pattern: Scaling Mean Squared Residue

In this section, a new coherence measure called Scaling Mean Squared Residue

(SMSR) that is able to detect biclusters with scaling patterns is developed. Sub-

sequently it is proved that any perfect scaling bicluster will have SMSR equal to

zero, and global or local scaling do not affect the SMSR score of a bicluster.

As discussed in Sec. 2.1, each element of a perfect scaling bicluster M(I, J) can

be represented as mij = πbiqj , where π is the constant term for the bicluster, bi is

the scaling factor for row i and qj is the scaling factor for column j.

Now following the derivation of MSR in the previous section, SMSR can be

derived as follows: the constant term of the bicluster can be taken as the bicluster

mean mIJ , i.e. π = mIJ . The scaling factor bi for each row can be defined by the

ratio of miJ to mIJ , i.e. bi = miJ

mIJ
, mIJ �= 0. Similarly the scaling factor qj for each

column can be defined by the ratio of mIj to mIJ , i.e. qj =
mIj

mIJ
, mIJ �=0. Therefore

each element mij of a perfect scaling bicluster can be uniquely defined as:

mij = πbiqj = mIJ ×
miJ

mIJ

×
mIj

mIJ

=
miJ × mIj

mIJ

. (5)

Hence for a perfect scaling bicluster, we have:

mij =
miJ × mIj

mIJ

or,
mij × mIJ

miJ × mIj

= 1 or, 1 −
mij × mIJ

miJ × mIj

= 0. (6)

A bicluster which is not a perfect scaling one, will not have zero value for the above

expression and the scaling residue sij of any element mij can now be defined as:

sij = 1 −
mij × mIJ

miJ × mIj

=
1

miJ .mIj

(miJ .mIj − mij .mIJ). (7)

Hence we can define the overall scaling mean squared residue as follows:

Definition 9. (Scaling Mean Squared Residue) The Scaling Mean Squared

Residue [SMSR(I, J)] of a bicluster M(I, J) is defined as:

SMSR(I, J) =
1

|I||J |

∑

i∈I,j∈J

s2
ij =

1

|I||J |

∑

i∈I,j∈J

1

m2
iJ .m2

Ij

(miJ .mIj − mij .mIJ )2.

(8)

Note that Eqs. (5)–(8) hold only if miJ �= 0, mIj �= 0 and mIJ �= 0. Hence to

avoid accidental divide-by-zero conditions, a very small value ε ≈ 0 can be added

with these values whenever they are zero.

Like MSR, lower SMSR also indicates high coherence in the bicluster. The

following theorems prove that a perfect scaling bicluster will have SMSR = 0 and

SMSR is invariant to global or local scaling.
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Theorem 1. A perfect scaling bicluster has SMSR equal to zero.

Proof. Each element mij of a perfect scaling bicluster M(I, J) can be expressed

as: mij = πbiqj . Here, π is a constant value for the bicluster, bi is the scaling factor

of row i and qj is the scaling factor of column j. Therefore, M is represented as:

M =











πb1q1 · · · πb1q|J|

πb2q1 · · · πb2q|J|

...
...

...

πb|I|q1 · · · πb|I|q|J|











. (9)

Now the row means miJ , i ∈ I, the column means mIj , j ∈ J , and the bicluster

mean mIJ can be computed as follows:

miJ =
1

|J |

∑

j∈J

πbiqj = πbi

1

|J |

∑

j∈J

qj = πbiµq, (10)

where µq = 1
|J|

∑

j∈J qj , i.e. the mean of the column scaling factors. Similarly,

mIj =
1

|I|

∑

i∈I

πbiqj = πqj

1

|I|

∑

i∈I

bi = πqjµb, (11)

where µb = 1
|I|

∑

i∈I bi, i.e. the mean of the row scaling factors, and

mIJ =
1

|I||J |

∑

i∈I,j∈J

πbiqj = π

(

1

|I|

∑

i∈I

bi

)





1

|J |

∑

j∈J

qj



 = πµbµq. (12)

Now putting the values of mij , miJ , mIj and mIJ in Eq. (7), we get

sij =
1

πbiµq × πqjµb

(πbiµq × πqjµb − πbiqj × πµbµq) = 0. (13)

Since scaling residue is zero for each element of the bicluster, the value of SMSR

will be zero.

Theorem 2. Global or local scaling have no effect on SMSR.

Proof. Let us first consider the effect of global scaling on SMSR. Suppose a global

scaling factor α is multiplied with each element mij , i ∈ I, j ∈ J , of a bicluster.

Hence ∀i, j, the row means miJ , i ∈ I, the column means mIj , j ∈ J and the

bicluster mean mIJ are also multiplied by α. Therefore it is evident from Eq. (7)

that the scaling residue value for each element mij , i ∈ I, j ∈ J , does not change.

Hence the SMSR also does not change in the case of a global scaling.

Now let us consider a local scaling factor βj for each column j ∈ J . If the β

vector is applied to the bicluster, the new value for each element will be mij × βj ,

i ∈ I, j ∈ J . The new values for the row means will be miJ × µβ , i ∈ I, where

µβ = 1
|J|

∑

j∈J βj . The new values for the column means will be mIj × βj , j ∈ J .
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The new value for the bicluster mean will be mIJ × µβ . Now putting these values

in Eq. (7), it is found that the scaling residue for each element does not change.

Hence the SMSR also does not change in the case of a local scaling on columns.

Next let us consider a local scaling factor γi for each row i ∈ I. If the γ vector

is applied to the bicluster, the new value for each element will be mij × γi, i ∈ I,

j ∈ J . The new values for the row means will be miJ ×γi, i ∈ I. The new values for

the column means will be mIj × µγ , j ∈ J , where µγ = 1
|I|

∑

i∈I γi. The new value

for the bicluster mean will be mIJ × µγ . Now putting these values in Eq. (7), it is

found that the scaling residue for each element does not change. Hence the SMSR

also does not change in the case of a local scaling on rows.

Finally we consider the local scaling factor βj for each column j ∈ J and the

local scaling factor γi for each row i ∈ I together. If the β and γ vectors are applied

to the bicluster simultaneously, the new value for each element will be mij ×βj ×γi,

i ∈ I, j ∈ J . The new values for the row means will be miJ × µβ × γi, i ∈ I. The

new values for the column means will be mIj × βj × µγ , j ∈ J . The new value for

the bicluster mean will be mIJ ×µβ ×µγ . Now putting these values in Eq. (7), it is

found that the scaling residue for each element does not change. Hence the SMSR

also does not change in the case of a local scaling on columns and rows together.

Hence it is proved that global or local scaling have no effect on SMSR.

5. Experiments and Results

Here, three sets of experiments are conducted. First, an artificial dataset consist-

ing of implanted shifting and scaling patterns has been used to show the utility

of SMSR. Thereafter, two benchmark real-life datasets, that is, Yeast Cell Cycle

data4 consisting of 2884 genes and 17 time points, and Human Large B-cell Lym-

phoma data4 consisting of 4026 genes and 96 time points are used to demonstrate

the effectiveness of SMSR-based biclustering. Both the real-life datasets are avail-

able at http://arep.med.harvard.edu/biclustering. Finally, we studied the biological

significance of the biclusters obtained from the Yeast and Lymphoma datasets.

For comparison, we implemented three biclustering algorithms: one is exactly the

same algorithm proposed by Cheng & Church4 to search biclusters based on MSR.

We call this algorithm CC(MSR). The second algorithm is modified CC method

where the searching process is exactly the same as CC(MSR), but instead of MSR,

we use SMSR as the filtering strategy. This algorithm is termed as CC(SMSR).

The third algorithm is just a combination of both, i.e. in this case, CC(MSR) is

executed followed by CC(SMSR) and this strategy is called as CC(MSR +SMSR).

5.1. Performance measure

As a performance measure, match score13 has been used which measures the degree

of similarity of two sets of biclusters. Let M1(I1, J1) and M2(I2, J2) be two biclus-

ters. The gene match score SI(I1, I2) and condition match score SJ(J1, J2) are

defined as: SI(I1, I2) = |I1∩I2|
|I1∪I2|

and SJ (J1, J2) = |J1∩J2|
|J1∪J2|

, respectively. Note that
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gene and condition match scores are symmetric and vary from 0 (when two sets are

disjoint) to 1 (when two sets are identical).

In order to evaluate the similarity among two sets of biclusters, the average gene

match score and average condition match score can be computed. Let B1 and B2 be

two sets of biclusters. The average gene match score of B1 with respect to B2 can

be defined as:

S∗
I (B1, B2) =

1

|B1|

∑

(I1,J1)∈B1

max
(I2,J2)∈B2

SI(I1, I2). (14)

S∗
I (B1, B2) represents the average of the maximum gene match scores for all the

biclusters in B1 with respect to the biclusters in B2. Note that S∗
I (B1, B2) is not

symmetric and yields different values if B1 and B2 are exchanged. Similarly, average

condition match score can be defined as:

S∗
J(B1, B2) =

1

|B1|

∑

(I1,J1)∈B1

max
(I2,J2)∈B2

SJ (J1, J2). (15)

The overall average match score of B1 with respect to B2 can now be defined as:

S∗(B1, B2) =
√

(S∗
I (B1, B2) × S∗

J(B1, B2)). (16)

If Bim denotes the set of implanted biclusters and B is the set of biclusters provided

by some biclustering method, then the average module recovery, S∗(Bim, B), repre-

sents how well each of the true biclusters is recovered by the biclustering algorithm.

This score ranges from 0 to 1 and takes the maximum value of 1, when Bim = B.

5.2. Results for artificial data

A synthetic dataset of size 500×100 has been constructed as follows: first a random

500 × 100 background matrix is generated. Thereafter, a perfect shifting bicluster

and a perfect scaling bicluster of random sizes are implanted in random positions

of the background matrix. The shifting and scaling factors for rows and columns of

the biclusters are generated randomly with uniform distribution.

For comparing the performances of the algorithms, the overall average module

recovery has been computed for different noise levels. Noise is added in the data

matrices by adding random values generated from normal distribution. The mean

of the normal distribution is fixed to 0 and the standard deviation (noise width) σ is

varied from 0 (no noise) to 0.25 (maximum noise). For each value of σ, 20 different

random noise matrices are added to the original data matrix and average perfor-

mance metric values are reported in Table 1 for the three algorithms. It is evident

from the table that at σ = 0, i.e. when there is no noise, the performance scores for

CC(MSR), CC(SMSR) and CC(MSR +SMSR) are 0.5, 0.5 and 1.0, respectively.

This indicates that CC(MSR) is able to detect the implanted shifting bicluster cor-

rectly but fails to detect the scaling bicluster. On the other hand, CC(SMSR) is

able to detect the implanted scaling bicluster correctly but fails to detect the shift-

ing bicluster. However, when we combine the algorithms (CC(MSR + SMSR)), the
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Table 1. Variation of average module recovery [S∗(Bim, B)] for
different algorithms with respect to noise for the artificial data.

Noise width σ CC(MSR) CC(SMSR) CC(MSR +SMSR)

0.00 0.5000 0.5000 1.0000
0.05 0.4934 0.4839 0.9172
0.10 0.4867 0.4873 0.8506
0.15 0.4799 0.4508 0.8438
0.20 0.4012 0.4025 0.8132
0.25 0.3662 0.3806 0.7354

performance score is 1.0. This signifies that both the shifting and scaling biclusters

are properly identified. As the noise width increase, the average module recovery

for all the three methods gradually decreases as expected, however, CC(MSR) and

CC(SMSR) produce similar values while CC(MSR + SMSR) produces the perfor-

mance score roughly twice of that produced by the other two algorithms. This

indicates that a better performance from CC algorithm can be obtained if both

MSR- and SMSR-based implementations are used one by one rather than using

MSR or SMSR only.

5.3. Results for real-life data

In this section, the biclustering algorithms CC(MSR), CC(SMSR) and CC(MSR +

SMSR) are applied to the benchmark Yeast and Lymphoma datasets. The MSR

thresholds for the two datasets are set to 300 and 1200, respectively as in Ref. 4.

To set the SMSR threshold for the Yeast dataset, the genes of the dataset are

clustered into 30 clusters (as in Ref. 14) by K-means clustering with correlation-

based distance and the SMSR value is computed for each of the clusters. The

minimum SMSR score is found to be 0.0024. The SMSR threshold value of 0.002 is

used in the experiment to detect more refined patterns. Similarly, the Lymphoma

data are clustered into 40 clusters (as the number of genes in this data is almost

1.4 times of that in the Yeast data) and the minimum SMSR value of the clusters

is found to be 1.8403. The SMSR threshold for the Lymphoma dataset is set to 1.4.

The main objective of the experiments in this section is to demonstrate the

utility of the proposed scaling coherence measure and to show that the biclusters

detected by CC(SMSR) technique are mostly missed by CC(MSR) algorithm. For

this purpose, the three biclustering algorithms considered here are run on the two

datasets to extract the first 100 biclusters. Table 2 reports the average gene match

scores (S∗
I ), average condition match scores (S∗

J) and average overall match scores

(S∗) over 10 runs of each of the algorithms along with the standard deviations.

The match score values are computed for CC(SMSR) bicluster with respect to

CC(MSR) biclusters and vice versa for both the datasets. It can be noticed from

the table that the gene match scores (S∗
I ) and overall match scores (S∗) are on the

lower side (less than 0.2) whereas the condition match scores are on the higher side
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Table 2. Average gene match scores (S∗

I
), average condition

match scores (S∗

J
) and average overall match scores (S∗) over

10 runs of CC(MSR) and CC(SMSR) algorithms along with
the standard deviations.

Yeast Lymphoma

S∗

I
(CCMSR, CCSMSR) 0.0619 ± 0.0026 0.0830 ± 0.0061

S∗

J
(CCMSR, CCSMSR) 0.6117 ± 0.0104 0.3846 ± 0.0272

S∗(CCMSR, CCSMSR) 0.1946 ± 0.0034 0.1474 ± 0.0261
S∗

I
(CC SMSR, CCMSR) 0.0366 ± 0.0101 0.0727 ± 0.0072

S∗

J
(CC SMSR, CCMSR) 0.5304 ± 0.0032 0.3236 ± 0.0241

S∗(CC SMSR, CCMSR) 0.1393 ± 0.0012 0.1363 ± 0.0153

Table 3. Average coverage of the biclusters produced by the
algorithms CC(MSR), CC(SMSR) and CC(MSR +SMSR)
over 10 runs of the algorithms along with the standard
deviations.

Yeast Lymphoma

CC(MSR) 73.3136 ± 0.2718 42.6496 ± 0.1829
CC(SMSR) 69.0372 ± 0.3193 46.8293 ± 0.2816
CC(MSR + SMSR) 92.2943 ± 0.2937 69.3846 ± 0.2422

(greater than 0.5). This implies that the CC(MSR) biclusters (shifting patterns)

and CC(SMSR) biclusters (scaling patterns) share many columns (time points) of

the datasets, however they share a very small number of rows (genes) and thus

a small number of cells in the gene expression matrix. This finding is important

since it signifies that the biclusters identified by CC(SMSR), which are having

scaling patterns, are mostly missed by the CC(MSR) algorithm. This demonstrates

the utility of using SMSR as a coherence measure. This is also confirmed by the

results in Table 3, where we report the average coverage (percentage of cells of the

gene expression matrix covered by a set of biclusters) of the biclusters produced

by the algorithms CC(MSR), CC(SMSR) and CC(MSR +SMSR) over 10 runs of

the algorithms along with the standard deviations. It is evident from the table

that the coverage of the biclusters for CC(MSR) and CC(SMSR) are almost the

same, whereas the coverage of the biclusters obtained by CC(MSR +SMSR) is much

greater than that. This indicates that the cells covered by the biclusters produced

by CC(MSR) and CC(SMSR) are mostly not common, i.e. the biclusters identified

by CC(SMSR) are not detected by CC(MSR) method.

For the purpose of illustration, Figs. 1(a) and 1(b) show six biclusters identi-

fied by CC(SMSR) method for the Yeast and Lymphoma data, respectively. Evi-

dently, these twelve biclusters have scaling patterns. Such scaling biclusters were

not reported in Ref. 4 where CC(MSR) algorithm was used. Moreover, many of

these biclusters are having both upregulated and downregulated genes which are

interesting from the biological point of view.
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Fig. 1. Six CC(SMSR) biclusters of the (a) Yeast data and (b) Lymphoma data.
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5.4. Biological significance test

The biological relevance of the biclusters can be verified based on the GO annota-

tion database. This is used to test the functional enrichment of a group of genes

in terms of three structured, controlled vocabularies (ontologies), that is, biolog-

ical processes, molecular functions and biological components. The p-value of a

statistical-significance test is used to find the probability of getting the values of

a test statistic that are at least equal to in magnitude (or more) compared to the

observed test statistic. The degree of functional enrichment (p-values) is computed

using a cumulative hypergeometric distribution that measures the probability of

finding the number of genes involved in a given GO term within a bicluster. From

a given GO category, the probability p for getting k or more genes within a cluster

of size n, can be defined as13: p = 1 −
∑k−1

i=0
(f

i)(
g−f
n−i)

(g
n)

, where f and g denote the

total number of genes within a category and within the genome, respectively. If the

majority of genes in a bicluster have the same biological function, then it is unlikely

that this takes place by chance and the p-value of the category will be close to 0.

The biological significance tests for the Yeast and Lymphoma datasets have been

conducted at 1% significance level. Among the 100 biclusters produced by CC(MSR)

and CC(SMSR) algorithms, the number of biclusters with at least one significant

GO term (p-value < 0.01) are 11 and 14 for the Yeast data, and 10 and 9 for the

Lymphoma data, respectively. Tables 4 and 5 report the top five different biclusters

with respect to p-values for both the algorithms for the Yeast and Lymphoma

datasets, respectively. We have reported the top five different biclusters which have

different most significant GO terms. These biclusters are then arranged in ascending

order of p-values (i.e. descending order of significance) of the most significant GO

terms. The corresponding GO terms are also reported. Moreover, the number of

genes and the number of conditions for each bicluster are reported in brackets.

The p-values reported in Table 4 suggest that the scaling patterns [detected by

CC(SMSR)] are at least of equal importance with shifting patterns in analyzing

Table 4. Result of biological significance test: the top five functionally enriched significant biclus-
ters produced by each algorithm for the Yeast data. Corresponding GO terms and the p-values

are reported. The number of genes and conditions in the biclusters are also reported in brackets.

Algorithm Bicluster 1 Bicluster 2 Bicluster 3 Bicluster 4 Bicluster 5

CC(MSR) ribosome cytosolic part ribosome translation sulfar
GO:0005840 GO:0044445 biogenesis GO:0006412 metabolic

p-val: 8.6E-37 p-val: 6.0E-24 and p-val: 3.4E-07 process
(112, 17) (74, 15) assembly (27, 8) GO:0006790

GO:0042254 p-val: 2.7E-07
p-val: 4.9E-11 (28, 6)

(619, 17)

CC(SMSR) cytosolic part chromosomal microtubule mitochondrial mitosis
GO:0044445 part nucleation lumen GO:0007067

p-val: 2.8E-45 GO:0044427 GO:0007020 GO:0031980 p-val: 2.5E-06
(326, 17) p-val: 2.0E-15 p-val: 1.2E-11 p-val: 1.1E-08 (64, 9)

(67, 16) (97, 15) (39, 11)
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Table 5. Result of biological significance test: the top five functionally enriched significant biclus-
ters produced by each algorithm for the Lymphoma data. Corresponding GO terms and the
p-values are reported. The number of genes and conditions in the biclusters are also reported in
brackets.

Algorithm Bicluster 1 Bicluster 2 Bicluster 3 Bicluster 4 Bicluster 5

CC(MSR) voltage-gated multicellular cell surface amine cell-cell
potassium organismal receptor receptor signaling

channel activity development linked signal activity GO:0007267
GO:0005249 GO:0007275 transduction GO:0008227 p-val: 2.3E-10

p-val: 3.5E-13 p-val: 4.6E-11 GO:0007166 p-val: 2.2E-10 (239, 40)
(81, 10) (198, 63) p-val: 5.4E-11 (135, 32)

(33, 14)

CC(SMSR) sequence-specific ion transport extracellular potassium multicellular
DNA binding GO:0006811 ligand-gated channel organismal
GO:0043565 p-val: 4.8E-11 ion channel activity development

p-val: 1.4E-11 (104, 7) activity GO:0005267 GO:0007275
(231, 35) GO:0005230 p-val: 3.2E-09 p-val: 5.8E-09

p-val: 5.6E-10 (12, 13) (111, 75)
(110, 71)

microarray gene expression data. In fact, it is evident from the table that

among the total 10 biclusters reported for the Yeast data, the minimum p-value

(2.8E−45) is obtained for the first bicluster of CC(SMSR) algorithms. It is evident

from the table that only one bicluster has common significant GO term (cytoso-

lic part) among the top five biclusters produced by CC(MSR) and CC(SMSR)

algorithms.

In the case of the Lymphoma data (Table 5), the minimum p-value (3.5E−13)

is obtained for the first bicluster of CC(MSR) algorithm. For this dataset also, only

one bicluster has common significant GO term (multicellular organismal develop-

ment) among the top five biclusters of CC(MSR) and CC(SMSR).

Therefore the biological significance test reveals that the proposed SMSR-based

CC(SMSR) technique is able to detect biclusters having strong biological signif-

icance which are not detected by MSR-based CC(MSR) algorithm. This demon-

strates the utility of the proposed scaling residue measure.

6. Conclusions

Recent research11 has revealed that mean squared residue (MSR), a popular metric

that is optimized by many biclustering algorithms, is capable of detecting shift-

ing patterns only and fails to capture scaling patterns. Motivated by this, in this

article, a new coherence measure called scaling mean squared residue (SMSR) is

proposed and we have theoretically proved that the new measure is able to detect

the scaling patterns. The effectiveness of the proposed coherence measure has been

demonstrated experimentally on one artificial dataset and two benchmark real-life

gene expression datasets. Finally biological significance tests have been conducted

to establish that the scaling biclusters discovered by SMSR-based algorithm are

composed of functionally enriched sets of genes.
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As a scope of future research, the new SMSR measure can be incorporated to

the other biclustering algorithms which are currently based on MSR.6,7,10 Moreover,

the use of both MSR and SMSR together in a multiobjective framework15 to detect

shifting and scaling patterns simultaneously can also be studied. The authors are

working in these directions.
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