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ABSTRACT

Motivation: Biclustering has been emenged as a powerful tool
for identification of a group of co-expressed genes under a
subset of expermental conditions (measurements) present in a
gene expression dataset. Several biclustering algorithms have been
proposed till date. In this article, we address some of the important
shortcomings of these existing biclustering algorithms and propose
a new comelation-based biclustering algorithm called bi-correlation
clustering algorithm (BCCA).

Results: BCCA has been able to produce a diverse set of biclusters
of co-regulated genes over a subset of samples where all the genes
in a bicluster have a similar change of expression pattern over the
subset of samples. Moreover, the genes in a bicluster have common
transcription factor binding sites in the corresponding promoter
sequences. The presence of common transcription factors binding
sites, inthe cormesponding promoter sequences, is anevidence that a
group of genes in a bicluster are co-regulated. Bidusters determined
by BCCA also show highly enrched functional categories. Using
different gene expression datasets, we demonstrate strength and
superionty of BCCA over some existing biclustering algorithms.
Availability: The software for BCCA has been developed using C
and Visual Basic languages, and can be executed on the Microsoft
Windows platforms. The software may be downloaded as a zip file
from http:/fwww.isical.ac.in/~rajat. Then it needs to be installed.
Two word files (included in the zip file) need to be consulted before
installation and execution of the software.

1 INTRODUCTION

Cluster analysis on gene expression data is a popular tool for
identification of groups of co-expressed genes under all experimental
conditions (measurements) present on the input dataset. Many
clustering algorithms have been proposed in this regard. However,
common disadvantage of all these clustering algorithms is that
they try to find group of genes that remain co-expressed through
all experimental conditions (measurements). But in reality genes
tends to be co-regulated and thus co-expressed under only a few
ex perimental conditions. They may start behaving differently under

different conditions. If an input dataset has many measurements and
an algorithm tries to find out group of genes expressed similarly
under all measurements, then chances of finding such a group with
success is very less. To overcome this problem, the concept of
biclustering has emerged.

Biclustering is a technique that performs simultaneous grouping
on genes and conditions {measurements) of a dataset to determine
subgroups of genes that exhibit similar behavior over a subset
of experimental conditions. The technique introduced by Hartigan
(1972 was first applied on gene expression data by Cheng and
Church (2000). Several biclustering algorithms have been proposed
till date. They include, among others, Block Clustering by Hartigan
(1972}, S-biclusters by Cheng and Church (2000), Coupled Two-
Way Clustering (CTWC) by Getz er al. (2000), FLOC by Yang
et al (2002, 2003), S-pClusters by Wang er al (2002), Spectral
biclustering by Kluger of al. (2008}, lterative Signature Algorithim
(15A) algorithm by Thmels et al (2002, 2004), Interrelated Two-
Way Clustering (ITWC) algorithm by Tang ef al. (2001}, Plaid
model by Lazzeroni and Owen (2002), Order Preserving Sub Matrix
(OPSM) algorithm by Ben-Dor e al. (2002), SAMBA by Tanay
et al. (2002) and xMOTIF by Murali and Kasif (2003). Prelic
et al (2006) have compared performance of different biclustering
algorithms, and proposed a fast divide-and-conguer biclustering
algorithm (Bimax ). Teng and Chan (2006, 2008) have developed
a biclustering algorithm based on weighted correlation coefficient,
which involves sorting of gene expression data matrix both by
rows and columns, followed by their comparison. They have used
weight values in weighted correlation coefficient to avoid finding
the already identified biclusters.

Apart from different approaches of biclustering, Pascual-Montano
et al (2006) have applied the notion of non-negative matrix
factorization (NMF, Kim and Tidor, 2003) to the analysis of gene-
array experiments and designed a software tool called bioNME It is
capable of recognizing similarity between sub-portions of the data
corresponding to localized features in ex pression space and is able to
produce biclusters as subsets of genes behaving similarly in a subset
of expressions. Another competitive tool with different biclustering
techniques regarding the analysis of gene expression data is mining
attribute profile (MAP: Gyenesei er al., 2007). The algorithm can be
characterized as a depth-first search, divide-and-conguer algorithm.
Application of MAP to gene expression data allows for identification
of genes whose expressions follow the same pattern in response to
different biological conditions.
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Common shortcoming of all these biclustering  algorithms
including bioNMF is that they may be able to find a group of genes
that show similar expression pattern over a group of samples, but
none of them can determine a group of co-regulated genes having
conmon transcription factors among all the genes in a bicluster as a
support toward their co-regulation. A recent biclustering algorithm,
called cMonkey (Reiss et al, 2006), groups genes and conditions
into biclusters onthe basis of (i) coherence in expression data across
subsets of experimental conditions: (i) co-occwrrence of putative
cis-acting regulatory motifs in the regulatory regions of bicluster
members: and (iii) the presence of highly connected subgraphs in
metabolic and functional association networks. For complex types of
input data, cMonkey only supports gene expression data biclustering
for a small number of species, namely, Halobacterium NRC-1,
Helicobacter pylon, Saceharomyees cerevisiae and Esche richia coli,

Here, we propose a new biclustering algorithm, called bi-
correlation clustering algorithm (BOCA), based on a correlation
coefficient. The algorithm is able to produce biclusters of co-
regulated genes over a subset of samples where all the genes in
a bicluster not only obtain a similar change of expression pattern
over a subset of sample, but also can have common transcription
factors.

In our study, the superior capability of clustering by BCCA over
a number of other algorithms, namely, S-biclusters {Cheng and
Church, 2000}, OPSM (Ben-Dor ef al_, 2002), SAMBA (Tanay eral,
2002), 1ISA (Thmels ef al, 2002, 2004), Bimax (Prelic er al, 2006),
bioNMF {Pascual-Montano ef al., 2006) and the method of Teng and
Chan (2006, 2008) is demonstrated through experiments with five
gene expression datasets that are publicly available. These datasets
are Yeast OC dataset (YOUD, Cheng and Church, 2000}, Spellman
et al. dataset (SPTD; Spellman er al, 1998), GDS958 (Wills-Karp
and Ewart, 2004), GDS2547 (Chandran er al., 2007; Yu er al, 2004)
and GDS2938 (Wang er al, 2007). Various issues related to the
characteristics of the algorithm are also discussed.

2 BI-CORRELATION CLUSTERING ALGORITHM

Let us consider a set of n genes X =(g1.g2. ... 8}, for each of which
m expression values are given. That is, for each gene g; them is an
m-dimensional vector x;, where 1y is the j-th expression value of g
Let us also consider o set of m microarmy experiments {measurements )
¥=leg.er,....05). For cach experiment, we have n expression values
corresponding 10 genes in X, These n genes will have to be grouped
into & overlapping hiclusters (Cy, Cz, ... Ci ). Inour algorithm, we define a
bicluster based on a cormelation coefficient as similarity measure.

HBicluster: generally a hicluster Cp can be defined as a subset of genes )
possesing a similar behavior over a subset of experiments {measurements )
Ay Thus, a bicluster © can be mpresented as Cp = (6, J; ). A bicluster ) =
(f.Jx) containg a subset f (fp ©X) of genes and a subset £y (f S F) of
experiments where each gene in f) is correlated with a correlation value
greater than or equal to a specified threshold (#), with all other genes in §
over the measumements inJj.

BOCA uses Peamon correlation coefficient for measurng similarity
between expression patterns of two genes g and g;, and is defined as

iy =Ty 1)
V Es = 5Py —5)°
where x; and xy are I4h expression values of the i-th and jth genes,

Com{x;,x;)= {1

respectively. The terms & and I are mean values over m expression
values (corresponding to microarmy experiments ) of the i-th and j-th genes,
respectively. Corn{x %) )= & indicates that g and g are similarly expressed,

Le. their expression values are changing in a similar way, Staring with a
pair of genes, BOCA augments a hicluster by including a new gene hased
omn the comelation values with all the other genes in the bicluster. Thus, the
algorithm mini mizes the chance of misplacement of genes in a hicluster.

In Step 1 of BCCA, the set of biclusters § is initialized to NULL and
number of biclusters Bicomwns is mnitialized to (0, a5 a bicluster is yet to be
determined. BOC A generates a hicluster {C) for each pair of genes in a dutaset
a5 any pair of genes may be a pairof co-regulated penes if they have similar
change in expression values under a set of conditions {measurements). For
each pair of genes, g, g; (i), BCCA creates a bicluster C= {{.J), in Step
2A wher I =g, g;] and S = ¥. Fora pairof genes in C, if Corr(x, ) <#
then a sample is detected (in Step 20) from C, deletion of which causes
miimum increase in correlation value between g oand g If w' = |f| = r,
r=3 being a threshold, the sample is deleted from f. Otherwise, C is
discarded. The sumple is deleted because we want only a subset of conditions
(measurements) forwhichall genes present in abiclusterare highly positively
comelated with all other genes in that bicluster. Deletion of 2 measurement
for which genes differ in expression value the most will result in the highest
increase in correlation value, Mote that bere we have considered r=3 as
otherwise, correlation coefficient will be +1 or — 1, or cannot be computed. In
this way BOCA deletes one messurement at 4 time from J, which causes the
highest increase in comelation valve, and comtinues 10 delete messurements
until apair of genes in C become correlated with correlation value equal to
or higher than & for the remaining measurements in f, and the number of
medsurements is greater than or equal to r. Thus, Ccontains a pairof genes
and a set of measurements for which that pair of genes are highly positively
comelated.

In Step 2[Wa), other genes from X —f, which satisfy the definition of o
bicluster are included in C for its augmentation. The algonthm checks in
Step 2Mb), whether the present bicluster © has already been found. If it is
w0 then we do not need 1o include C, otherwise, C is considered a5 2 new
bicluster.

Algorithm Input: (i) A set (x.x2,...%,] of expression vectors
comesponding to genes in X, for each of which m expression values
¥=ley.ex,... 8] are given. {ii) A correlation threshold value &, (iii) The
threshold value r for minimum number of expression vilues.

Output: A finite set of overlapping biclusters § = (. Cz, ..., Cp ), when:
each bicluster Ci={f, i), i CXand T ¥,

Steps:

1. Initinlly, set § = NULL and set number of hiclusters Bicownr =101
2. For each pairof genes g, g, 12/, do:
A Set C={l.0) I=g.g]amd S =¥,
B. Assign number of expression values in C to a variable o', ie
set '’ =|J)|.
C. While Corn{xk, xi) <&, g, g €f md s’ =r, doe
a. From m' expression valves, find owt the measurement
gy elimination of which expression from J will couse
maimum inerease in Com{x;,x;) [Equation (1]].
b. Setd=J—|a).
c. Setw' =m'—1.
D. If Corr{x;, %) = #, for g, g; & { over m’ expression values in J,
where m’ = r, then
1 SetX'=X-I;
b. Foreach g, e X', do:
i If Comix;.x,) =8, for all x; €[ over m’ expression
values in J, then set £ =1 _|{g,).
i, Set X' =X'—{g,}:
c. If there exists no C) €5 such that £y =1 and Jy =1, then
I Set Hicouwnr = Bicowr+ 1.
i, St Tpiouwm =1,
[ TR [ T 4
i, Set 8 = 8 Chico -

o =4 and  Chions =

2796



Bi-correlation clustering algorithm

3 RESULTS

Here, we demonstrate the affectiveness of BOCA indetermining aset
of co-regulated genes (i.e. the genes having common transcription
factors) and functionally enriched clusters (and attributes) on five
datasets. The superior performance of BCCA over some other
biclustering algorithms, namely, 4-biclusters (Cheng and Church,
20000, OPSM (Ben-Dor et al, 2002), SAMBA (Tanay erf al,
2002), 15A (Thmels er af, 2002, 2004), Bimax (Prelic e al, 2000),
bioMNMF (Pascual-Montano et al, 2006) and the method of Teng
and Chan (2006, 2008) have also been depicted in terms of the
aforesaid criteria. These gene expression datasets deal with two
yeasts (hitpe/sgdlite. princeton.edw/d ownload fveast_datasets/) and
three mammals (http:dwww.nebinlmnihgovigeo'). Moreover, a
discussion on various characteristics of the algorithm is provided.

31 Datasets

A short description of five gene expression datasets used in analysis
is given in Table 1. Null rows/columns and rows/columns with all
zeros are deleted from the datasets before applying biclustering
algorithms. For example, five such rows are deleted from original
YCCD.

3.2 Variation with respect to threshold

Correlation threshold can be any value between — 1 and +1 but most
likely to be positive, and depends on data. Thus, for determination of
correlation threshold &, one can vary correlation threshold between
Oand 1, and then for each biclustering result, the average number
of functionally enriched attributes is determined. From a plot
of average number of functionally enriched attributes (computed
using P-values) versus correlation threshold value, the correlation
threshold value associated with the highest average number of
functionally enriched attributes can be selected. Supplementary
Figure 9 shows such a plot for YOCD dataset. In Supplementary
Figure 9, for correlation threshold value of 0.91, maximum average
number of functionally enriched attributes is found. Assumption of
0.91 as the correlation threshold value is due to the following facts. If
the threshold value is <0.91 {for YOUD data) then some functionally
dissimilar genes are included in a bicluster. On the other hand, if the
threshold value is =0.91 (for YCOCD dataset) then some functionally
similar genes cannot be included in the same bicluster. However,
the exact choice of the threshold value ~4.9 does not make a big
difference.

The selection of optimum correlation threshold value by varving
correlation threshold and judging each biclustering result takes huge
amount of time. For this reason, we have followed a guideline
on this value from a previous study by Allocco er al (2004),

Table 1. Short description of the ditasets used in analysis

Mame {Organism) Mumber of Mumber of
genes samples

YOCD | Yeast) 2879 17

SPTD { Yeast) 0178 m

GDS958 (Mouse) 2269 12

GDS25T { Homao sapiens) 12646 164

GDE2938 { H_sapiens) 22283 12

which has concluded that if two genes have a correlation between
their expression profiles =0.84 then there is >50% chance of being
bounded by a common transcription factor. For YOCD dataset,
Supplementary Figure 9 shows that a very high (almost equal to the
largest number) average number of functionally enriched atiributes
for biclustering results of BOCA is obtained for correlation threshold
value of (.85,

33 Performance comparison

For the purpose of comparison, we have, at first, considered only
those biclusters that have less than or equal to 50 genes. The reason
behind this is that finding functional enrichment in larger group
of genes is much more easier than that in a smaller group of
genes. Genes from such biclusters (containing at most 50 genes)
that have been obtained by BOCA on five datasets are listed in
Supplementary Tables 3-12. Detailed analysis with these small
biclusters is presented in Sections 3.3.1 and 3.3.2.

Bicluster size could influence the comparison study as it would
be much easier to identify commeon transcription factor binding sites
in small gene sets than in larger ones. Thus, 100 non-overlapping
biclusters of varying sizes generated by BOCA have been selected
for comparisons with all the biclusters obtained by other biclustering
algorithms. Results of the analysiswith these biclusters are presented
in Section 3.3.3.

Expression profile plots of biclusters obtained by different
algorithms are also examined. Such a plot corresponding to BCCA
(Supplementary Fig. 10) for Bicluster) of GDS958 dataset shows
that the expression values of all the genes change in a similar
way over different conditions (measurements). Such plots for
biclusters generated by S-bicluster (Cheng and Church, 2000)
(Supplementary Fig. 11}, SAMBA (Supplementary Fig. 12), 15A
{Supplmentary Fig. 13), Bimax (Supplementary Fig. 14) and OPSM
(Supplementary Fig. 15) do not show such similar variation in the
expression profiles.

Forthe purpose of comparison with other biclustering al gorithms,
we have started with the parameter values (of these algorithms)
recommended/used in the original papers. Then we have adjusted
these wvalues to maximize the average number of functionally
enriched attributes per bicluster. Supplementary Table 2 shows this
fact.

330 By locating common transeription factors We have used a
software TOUCAN 2 (described in the Supplementary Material;
Aerts er al, 2005) for performance comparison by extracting
information on the number of tanscription factors present in
proximal promoters of all the genes in a single bicluster. A
transcription factor that is found in promoter region of all the genes
ina bicluster, is considered as a common transcription factor for that
bicluster. Presence of commeon transcription factors in the promoter
regions of a set of genes is a good evidence toward co-regulation.
The results obtained by different biclustering algorithms including
BCCA have been compared in terms of the number of conumon
transcription factors that can bind to the promoter regions of all the
genes in a bicluster. Higher the number of common transcription
factors, better is the chance of finding a set of co-regulated genes in
a bicluster.

As mentioned above, we have considered the biclusters containing
less than orequal to 50 genes. We have got many such biclusters, for
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Fig. 1. Companson of transeription factors on small biclusters for Yeast
datasets.

Bovurage number of common
wrarsciption Testo per biclisien

Bichustering slgarthme

Fig. 2. Comparison of tmnscription factors on small biclusters for
Mammalian datusets.

several datasets, obtained by BOC A and few by the other al gorithms
considered here. For BOCA, we have picked up 10 most distinct
biclusters for each of these datasets. However, we have considered
all the biclusters for the other algorithms. Average number of
common transcription factors per bicluster obtained by BCCA and
other aforesaid al gorithms on the five datasets are shown in Figures 1
and 2.

Figures 1 and 2 show that average number of common
transcription factors per bicluster obtained by BCCA for all the
datasets is significantly greater than that of the other biclustering
algorithms. Supplementary Table 13 shows the list of common
transcription factors of all the selected biclusters obtained by BCCA
for two veast datasets (YOUD and SPTD). Similarly, Supplementary
Tables 14-45 show the lists of common transcription factors of all
biclusters obtained by BOCA for GDS958, GDS2547 and GDS2938
datasets. Presence of quite a large number of commeon transcription
factors in all biclusters obtained by BCCA as shown in Figures 1
and 2 and Supplementary Tables 13-45 suggest that they contain
co-regulated penes.

Supplementary Figure 16 shows that sequences of all the five
genes have been found present in a bicluster generated by BCCA
from SPTD dataset. Name of the transcription factors found by
MotifLocator (available in TOUCAN 2) in any of the five gene
sequences are listed in the legend. Positions of each transcription
factor binding site for each transcription factor in five gene
sequences are also marked. Supplemantary Figure 16 shows that
any transcription factor may be found present in more than one
location in upstream region of a gene. For example, transcription
factor GCN4 has been found 16 times in upstream region of the

gene YALODODIW (Supplementary Fig. 16). The same transcription
factor has been found present for all the genes in a bicluster.
For example, GCN4 has been found in upstream region of the
genes, namely, YALDOGW, YDRAIEW, YBRI1SW, YBR 189W and
YBRIDIW (Supplementary Fig. 16).

332 Functional envictment: analysis and comparisons wsing
Pvalues  The enriched functional categories for each bicluster
obtained by BCOCA on five datasets are listed in Supplementary
Tables 46-53. The functional enrichment of each GO category in
eachofthe biclusters has beencalculated by its P-value. Tocompute
the P-value, we have emploved the software Funcassociate (Berriz
et al., 2003). P-value represents the probability of observing the
number of genes from a specific GO functional category within
each cluster. A low P-value indicates that the genes belonging to
the enriched functional categories are biologically significant in
the corresponding clusters. In the present article, only functional
categories with P < 5.0x 10~7 are reported in order to restrict the
size of the article.

Analysiss of the 10 biclusters obtained for the YOCD
(Supplementary Tables 46 and 47), the highly enriched category
in bicluster Bicluster; is the ‘ribosome’ with P-value of 4.2 x
1077 The biclusters Bicluster) o Bicluster)p contain several
emriched categories including ‘ribosome’, “cytosolic ribosome’,
‘DMNA replication”, “replication fork’, *structural molecule activity”
and *bud neck” as shown in Supplementary Tables 46 and 47,

For the SPTD (Supplementary Table 48), the highly enriched
category in bicluster Biclusters is the “cytosolic ribosome (sensu
Eukaryota)/808 ribosome’ with P-value of 2.2 107", Different
GO categories ‘nuclecsome’, ‘ribosome’, ribosome biogenesis” and
TRNA processing” are enriched in Bicluster) to Bicluster .

As in the above datasets, for GDS958 dataset (Supplementary
Tables 49 and 50, the biclusters Bicluster) to Bicluster)n contain
several enriched categories on “ribosome’. The highly enriched
category in bicluster Hiclusterg is the ‘ribosome’ with P-value
of 6.6 %1022, The biclusters Bicluster] to Bicluster|y contain
several enriched categories including “hydrogen ion transporter
activity/proton transporter”, ‘striated muscle thin filament”, “lytic
vacuole”, "ATP synthesis coupled proton transport’” as shown in
Supplementary Tables 49 and 50.

For GDS52547 dataset (Supplementary Table 51), the highly
emriched category in bicluster Bicluster) is the ‘thiamin
diphosphokinase activity’ with P-value of 9.0 10~ ', Similarly,
for GDS2938 dataset (Supplementary Tables 52 and 53), the highly
enriched categories in bicluster Biclusters isthe “immune response’
with Povalue of 6.243 107'2°, Several other GO categories are
enriched in Hicluster] 1o Biclusterpp of both GDS2547 and
GIDS2938 datasets.

From the results of Supplementary Tables 46-53, we see that
all the 10 distinct biclusters obtained by BOCA for each of the
above datasets are functionally enriched. Ten biclusters obtained
for the YOUD dataset are enriched with 83 functionally enriched
categories, whereas 10 distinct biclusters obtained for the SPTD
dataset are found to be enriched with 68 functionally enriched
categories. Similarly, 10 distinct biclusters obtained for GDS958,
GDS2547 and GDS2938 datasets are enriched with 102, 50 and 113
functionally enriched categories, respectively.

Comparisons: here we describe the ability of detecting
functionally enriched biclusters (categories) by the aforesaid
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Fig. 3. Comparison of functionally enfched attributes on small biclusters
for Yeast datasets.

Avernge mambar of hanctionally
enriched amibuies par bic ke

Biclusrering algorthms

Fig. 4. Comparison of functionally enfched attributes on small biclusters
for Mammalian datasets,

biclustering algorithms. Figures 3 and 4 show that BOCA provides
much higher average number of functional ly enriched categories per
bicluster than the other aforesaid algorithms for all the datasets.

333 Comparing  biclusters of varying sizes The software
TOUCAN 2 used for transcription factor analysis has been found
to be very time consuming and is not scaled well to large datasets.
Hence, we have considered PRIMA available in EXPANDER
(Tanay er al., 2002) for analysis of transcription factor binding
sites corresponding to the biclusters of varying sizes. Number of
enriched transcription factors for each bicluster of veast datasets
is found based on P-values. Figure 5 shows that, for YOCD
and SPTD datasets, BOCA has resulted in the highest average
number of significant transcription factors per bicluster compared
with that obtained by the other algorithms. Higher the average
number of significant tanscription factors per bicluster better is
the algorithm. In the present article, only transcription factors with
P < 1.0 10~% are reported as significance. Regarding functional
enrichment, BOCAhas again resulted inthe highest average number
of enriched attributes per bicluster compared with that obtained by
the other algorithms (Fig. &).

34 Finding relationship among genes mediating
allergic asthma

The dataset GDS958, generated by Wills-Karp and Ewart (2004)
from lung tissue of mouse, has been used to show the relationship
among different genes mediating allergic asthma. From some earlier
investigations on asthma mediation (Cormier ef al., 2002; Grunig
etal, 1998 Wills-Karp, 2004), we know that IL-13 (InterLeukin 13)

Hauiage number of eniched
tranaoripiion fachors per biokisssr

Bichusiering akporithms

Fig. 5 Comparson of transcription factors on divemse set of biclusters for
Yeast datasets,
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Fig. 6. Compurison of functionally ennched atributes on diverse set of
hiclusters for Yeast datasets.

is the central mediator of asthma. List of genes known to be
associated with asthma mediation is given in The GEArmay S
Series Mouse Autoimmune and Inflammatory Response Gene Array
(httpfeww.enrogentec.comy' ). Itincludes different adaptor proteins,
cell swiace receptors, cytokines and receptors, chemokines and
receptors, signal transduction proteins and some other related genes.

For GDS958  dataset, the Dbiclusters (Bicluster(1L-13),
Bicluster(IL-13)y,  Bicluster(IL-13)y  and  Ricluster({L-13)4)
obtained by BOCA in Supplementary Table 54 contain central
mediator of asthma gene IL-13. Moreover, these biclusters also
contain different adaptor proteins (Traf3), cell swiace receptors
(Feerla, Cd68 and Cd24a), cytokines and receptors (114i1, 11 3ra2,
Tnfrsflla and 17r), chemokines and receptors (Cclb, Cxcllf,
Cxel12 and Cer5), signal transduction proteins (Serpine2, Map2k4)
and some other related genes (Colla2) that are also listed in the
GEArray as responsible for asthma. These observations suggest that
IL-13 is co-regulated with different adaptor proteins, cell surface
receptors, cytokines and receptors, chemokines and receptors,
signal transduction proteins and some other related genes listed in
the GEArray.

Moreover, Chi3l3, Serpine2, Serpinadn, Argl and IgK-V1
present in the aforesaid biclusters along with IL-13 may have
role to play in asthma mediation. Role of these genes in
asthma mediation is also suggested by earlier investigations on
Chi3l3 (Welch er al, 2002), Serpine {(http:// geneticassociationdb
nih.gov), Serpinain (httpd/geneticasso-ciationdb.nih.gov), Argl
(Vercelli, 2003: Zimmermann e af, 2003) and IgK-VI
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(http: geneticassociationdb . nih.gov). We also mention here that IL-
13 may be co-regulated with these asthma mediating genes, namely,
Chi3l3, Serpine2, Serpinadn, Argl and IgK-V1.

35 Discussions

Here, we provide some important characteristics of BOCA based on
the results obtained for YOCD dataset. In order to restrict the size
of the article, we have not included the results using other datasets.

350 Effect on variation of bicluster size  Size of the biclusters
obtained by BCCA depends on correlation threshold values.
Average number of genes and measurements (samples) per bicluster
decreases with increase in the correlation threshold value, which is
depicted in Supplementary Figures 17 and 18 for YCOUD dataset.
However, this decrease in size of biclusters does not always lead
to decrease in functional enrichment of attributes in biclusters.
Supplementary Figure 9 also shows this fact, where average number
of functional enrichment per bicluster increases as correlation
threshold value increases.

35.2 Diverse set of biclusters  BCCA is able to generate a diverse
set of overlapping biclusters. Supplementary Figures 7 and 8 show
for YOCUD dataset that each gene or sample is a member of more
than one bicluster. There are genes in Y COUD dataset that are included
in more than 500 biclusters and some of the samples in the same
dataset are included in more than 1000 biclusters. The total number
of biclusters for YOCUD dataset is about 2455, All these data implies
that the chances of getting overlapping and diverse setof biclusters is
high as the algorithm does not result in the same biclusters multiple
times. Similar findings have also been obtained for the other datasets.

353 Comparisons with Spearman’s vank corvelation coefficient
antd Ewelidean distance BOCA is a general algorithm and any
pairwise correlation measure can be used as a similarity measure
instead of Pearson correlation coefficient. We have compared the
results using Spearman’s rank correlation coefficient and Euclidean
distance. For example, the numbers of functionally enriched
attributes per bicluster, for YOCUD dataset, with Spearman’s rank
correlation and Euclidean distance have been found to be 20.4
and 185, respectively, while that using Pearson’s correlation is
24.9. Moreover, the numbers of significant transcription factor per
bicluster, for YOUD dataset, with Spearman’s rank correlation and
Euclidean distance have been found to be 2.6 and 2.2, respectively,
while that vsing Pearson’s correlation is 3.2. Thus, Pearson’s
correlation coefficient results in the best for YOCD dataset.

354 Main difference of BCCA over the other algorithms  BCCA
generates biclusters following two major principles that were
overlooked by some other biclustering algorithms. First, BCCA tries
to obtain one bicluster for each pair of genes in a dataset as any pair
of genes can be important for further analysis. In order to obtain
one bicluster for a pair of genes, BOUA fixes a set of conditions
(measurements) for which the pair of genes is correlated. Then the
algorithm tries to augment the biclusters by including other genes on
the given set of measurements as any change in this set may cause
removal of the starting pair of genes. Second, BOCA augments a
bicluster by including a new gene based on correlation values with
all the other genes in the bicluster. It helps in minimizing the chance
of misplacement in a BOCA bicluster. However, the main difference

of BCCA with the other biclustering algorithms lies in the use of
correlation coefficient for forming biclusters,

355 Time complexity  Upper bound on the execution time of
BCCA for a single iteration is Nr), for a dataset of n genes and m
samples. Since the number of iterations is Cn7), time complexity
of BOCA is 001 ). (One may refer to the Supplementary Material
for its analysis.) The high time complexity of BCCA is due to its
three major steps, iLe. Step 2C—selection of samples for a pair of
genes;, Step 2DMa)l—aug mentation of a bicluster, and Step 20 b)}—
comparison of a bicluster with all the others for similarity. BCCA
has taken about 1 h 40 min to generate all the (2455) biclusters
for YOUD dataset in a server with 20GHz Quad core processor and
2GB BAM. For the algorithm of Cheng and Church, upper bound
on the execution time for a single iteration is am) (Cheng and
Church, 2000y, while that for OPSM is f.!{nnrlf}. where | is the
number of biclusters (Ben-Dor et al., 2002). SAMBA has the time
complexity of tNn24), where d is the upper bound on the degree of
each vertex (Tanay ef al, 2002). The algorithm of Teng and Chan
(2006, 2008) need time (Wm®) for executing a single iterations. The
running time complexity of Bimax is (N nmf = min jr,m) ), where §
isa parameter (Prelic ef al, 2006). Although nominally 15A runtime
scales linearly with number of genes and samples (Bergmann et al.,
2003), it scales linearly with the number of seeds, which, to get a
good modularization, is required to be larger for a bigger set of data.

4 CONCLUSIONS

Here, we have developed a biclustering algorithm called BCCA
based on Pearson correlation coefficient as a similarity measure.
The algorithm is able to find a group of genes that show similar
pattern of variation in their expression profiles over a subset of
measurements (microarray experiments). Interestingly, the genes in
a bicluster obtained by BOCA have many common transcription
factors. Thus, we may say that the genes in such a bicluster are co-
regulated, i.e. they have some common transcription factors. It has
also been found that BOCA has been able to find higher number of
common transcription factors of a set of genes in a bicluster than that
of some other biclustering algorithms. Moreover, BOCA has found a
diverse set of biclusters that are more functionally enriched than that
of some other biclustering algorithms. Regarding the limitation of
BCCA, the dataset must contain expression profile of various genes
for at least three experiments (measurements). Some of the steps
[Steps 20, 2Da) and 2DMb)] of BOCA are time consuming.
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