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Summary

Genome sequencing of humans and other organisms has led to the accu-
mulation of huge amounts of data, which include immunologically rele-
vant data. A large volume of clinical data has been deposited in several
immunological databases and as a result immunoinformatics has emerged
as an important field which acts as an intersection between experimental
immunology and computational approaches. It not only helps in dealing
with the huge amount of data but also plays a role in defining new
hypotheses related to immune responses. This article reviews cdassical
immunology, different databases and prediction tools. It also describes
applications of immunoinformatics in designing in silico vaccination and
immune system modelling. All these efforts save time and reduce cost.
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Introduction

The term ‘immunity” was developed to describe individu-
als who had recovered from certain infectious diseases
and were protected from the same diseases when they
were re-encountered. An immune system and associated
biological processes exist within these individuals, which
are responsible for developing *immunity’. The role of an
immune system is to protect against diseases by identify-
ing and killing pathogens. An immune system includes
innate and adaptive components. According to the tradi-
tional dogma of immunology, vertebrates have both
innate and adaptive immune systems whereas inverte-
brates possess only an innate immune system.' The innate
immune system acts more rapidly, and is older and more
evolutionarily conserved than the adaptive immune sys-
tem. It provides the backbone on which the adaptive
immune system was able to evolve. The innate immune
system is less specific and works as a first line of defence.”
It comprises four types of defensive barriers, namely, ana-
tomic (e.g skin and mucous membranes), physiological
le.g temperature, low pH), phagocytic (eg. blood mono-
cytes, neutrophils, tissue macrophages) and inflammatory
leg. serum proteins). An adaptive immune response
oocurs against a pathogen within 5 or & days after the ini-
tial exposure to the pathogen” It has evolved in verte-
brates as a defence system. Functionally, it accounts for
two inter-related activities: recognition and response. It
can discriminate between the body's own cells and pro-

teins from foreign molecules, and can recognize chemical
differences between two pathogens. It can also recognize
altered self cells, such as virus-infected self cells, and dis-
tinguish between healthy and cancerous cells. However, it
may not always recognize cancer cells as foreign or abnor-
mal cells. As soon as the adaptive immune system recog-
nizes a pathogen, an effector response is elicited to kill or
neutralize it. The response is unique to defend against a
particular type of pathogen. Later exposure to the same
pathogen induces a heightened and more specific
response because the adaptive immune system retains
MEenory.

The adaptive immune system has two parts: the cellular
immune response of T cells and the humoral response of
B cells.”” An antigen has a specific small part, known as
the epitope, which is recognized by the comesponding
receptor present on B or T cells. B-cell epitopes can be
linear and discontinuous amino acids. T-cell epitopes are
short linear peptides. Most of the T cells can be in either
of the two subsets, distinguished by the presence of one
or other of two glycoproteins on their surface, designated
as CD8 or CD4. CD4 T cells function as T helper (Th)
cells that recognize peptides displayed by major histocom-
patibility complex (MHC) class II molecules. On the
other hand, CD& T cells function as cytotoxic T (Tc)
cells, which recognize peptides displayed by MHC class |
maolecules. A brief description of various components of
the human immune system is provided as supplementary
material. The idea that the immune response exists in an
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organism is quite old. The earliest literary reference to
immunology goes back to 430 sc by Thucydides” In
1798, Edward Jenner found some milkmaids who were
immune to smallpox because they had eadier contracted
cowpox (a mild disease). The next major advancement in
immunology came with the induction of immunity to
cholera by Louis Pasteur. After applying weakened patho-
gen to animals, he administered (in 1885) a dose of vac-
cine to a boy bitten by a rabid dog and the boy survived.
However, Pasteur could not explain its mechanism. In
1490, experiments of Emil Von Behring and Shibasabura
Kitasato led to the understanding of the mechanism
of immunity. Their experiments described how anti-
bodies present in the serum provided protection against
pathogens.

An immune system may be considered as a network of
thousands of molecules, which leads to many intertwined
responses. It is structurally and functionally diverse and
this diversity varies both between individuals and tempo-
rally within individuals. Huge amounts of data related to
immune systems are being generated. Immunologists have
been using high throughput experimental techniques for a
long time, which have generated a vast amount of func-
tional, clinical and epidemiological data. The development

| Host-pathogen ineracton
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of new computational approaches to store and analyse
these data are needed. Recently, immunology-focused
resources and software are appearing, which help in
understanding the properties of the whole immune sys-
tem.” This has given rise to a new field, called immunoin-
formatics. Immunogenomics, immunoproteomics, epitope
prediction and in silico vaccination are different areas of
computational immunological research. Recently, Systems
Biology approaches have been applied to investigate the
properties of the dynamic behaviour of an immune
system network.

Immunoinformatics includes the study and design of
algorithms for mapping potential B- and T-cell epitopes,
which lessens the time and cost required for laboratory
analysis of pathogen gene products. Using this informa-
tion, an immunologist can explore the potential hinding
sites, which, in turn, leads to the development of new
vaccines. This methodology is termed ‘reverse vaccinolo-
gy and it analyses the pathogen genome to identify
potential antigenic proteins,” This is advantageous
because conventional methods need to cultivate pathogen
and then extract its antigenic proteins. Although patho-
gens grow fast, extraction of their proteins and then test-
ing of those proteins on a large scale is expensive and
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Figure 1. Immunoinformatics: rescarch areas.
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time consuming. Immunoinformatics is capable of identi-
fying virulence genes and surface-associated proteins.

Figure 1 shows the different research areas of immuno-
informatics. All of these areas are described in separate
sections of this article. We describe varous available
information regarding classical immunology, different
immunomic databases, and B-cell and T-cell epitope pre-
diction tools and softwares. Several methods are now
available that enable one to map epitopes and design
therapeutic vaccines more quickly. Some of them are
described in this article, which concudes with some
applications of immunoinformatics.

Immunomics

The term ‘immunome’ comresponds to all the genes and
proteins taking part in immune responses. It excludes
genes and proteins that are expressed in cell types other
than in immune cells® According to Sette etal” all
immune reactions that are the result of interactions
between the host and antigenic peptides are referred to as
‘immunome reactions’, and their study is entitled “immu-
nomics’. Like genomics and proteomics, immunomics is a
new discipline that uses high throughput techniques to

. T
understand the immmune system mechanism.

Various datatypes and databases

In this section, we focus on varous immune-system-
related datatypes and databases. A brief description of
these databases is provided. The section starts with some
experimental techniques and results.

Experimental data

There has been an explosion in available experimental
data in immunology as the result of the advent of high
throughput maolecular biology techniques. These tech-
niques help in finding the structure and function of
immune genes and their products.”

There are many immunological techniques that are
used to understand the underlying mechanism of an
immune system and its responses to varous infections,
diseases and drug administration, namely, affinity chro-
matography,'' flow cytometry,"” radioimmunoassay,"”
enzyme-linked immunosorbent assay,'*'"  competitive
inhibition assay'® and Coombs test.'® Here, we present
some experimental findings, which help to identify B-cell
and T-cell epitopes and to study immune responses.

Experimental techniques for exploving immune system cont-
ponents The ability to identify epitopes in the immune
response has important implications in the diagnosis of
diseases. For this reason, epitopes for B and T cells need
to be identified and mapped. In this context, Wanga
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et al.” mapped the B-cell epitopes present on non-struc-
tural protein 1 (NS1), i.e. N51-18 and N51-19 in Japanese
encephalitis virus. For epitope mapping, a series of 51
partially overlapping fragments covering the entire NS1
protein were expressed with a glutathione S-transferase
tag and then screened with a monoclonal antibody. They
found that the motif of (146) EHARW (1500 was the
minimal unit of the linear epitope recognized by that
monoclonal antibody.

Purification techniques like affinity chromatography are
used to purify MHC-peptide from membrane MHC male-
cules, which can be analysed by capillary high-pressure
liquid chromatography electrospray  ionization-tandem
mass spectrometry.® They can be further used to find new
tumour-associated antigens. These are proteins that are
not unique to cancer cells but are expressed in tumour
cells. One approach to find tumour-associated antigens is
based on transfection of the expression library made from
complementary DNA into cells expressing the desired
MHC haplotypes.'” The clones are selected on the hasis of
their ability to provoke an immune response in T cells of
the individuals with the same MHC type. MHC-peptide
complexes are required for tumour therapeutics.

Dengue, a human viral disease transmitted by arthro-
pod vectors, has an annual mortality rate of 25 000,
Dengue fever and dengue haemorrhagic fever are caused
by the four dengue vimses, DEN-1, -2, -3 and -4, which
are closely related antigenically. Random Peptide Libraries
of peptides displayed on the phage help in selecting
sequences that mimic epitopes from microorganisms.
Amin et al’' used Random Peptide Libraries and identi-
fied two peptides, N53 and N54B. These two non-struc-
tural proteins resemble the antigenic structure of B-cell
epitopes of dengue virus obtained from a phage-peptide
library using human polyconal antisera from patients
who had recovered from dengue virus infection. These
two peptides could be used for the development of a
diagnostic kit and a potential vaccine.

Immunomic microarray technology and analysis

Using DNA microarray technology, one can measure the
RNA expression of thousands of genes simultaneously in a
single assay. The principle of all kinds of microarray tech-
nologies is binding and measurement of target hiological
specimens to complementary probes. Similar technology is
used in functional immunomics and is referred to as *im-
munomic microarray’. [t incudes dissociable antibody
microarray,”” serum microarray™ and serological analysis
of a complementary DNA expression library (SEREX).*
An antibody microamray consists of antibody probes
and antigen targets, so that it can be used to measure
concentration of antigen for a specific antibody probe,
but peptide microarray has an opposite approach. It uses
antigen peptides as fixed probes and serum antibodies as
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targets. The recent technology is peptide-MHC micro-
amray or the artificial antigen-presenting chip. In this
technique, recombinant peptide-MHC complexes and
co-stimulatory molecules are immobilized on a surface,
and a population of T cells is incubated with the micro-
array. The T-cell spots act as artificial antigen-presenting
cells™ containing defined MHC-restricted peptides. The
advantage of using peptide-MHC is that it can map the
MHC-restricted T-cell epitope.

The proteins responsible for the normal functioning of
the cellular machinery may have sequence similarity with
various pathogenic microbes. They can induce autoimmu -
nity and thereby are less useful for vaccine development.
Microarray technology helps in selecting these proteins
from genomic sequences.™ It is being applied in auto-
immune disease diagnosis and treatment,” allergy pre-
diction,™ T-ell and B-cell epitope mapping™ and
vaccination,™ The immunomic and genomic microarray
data differ in several ways, e.g. both of them have different
designs. One can measure two or more signals simulta-
neously determined by a single feature, ie. epitope in
immunomic microarray.’'"* DNA microarrays measure
one response value for each gene per sample, i.e. messenger
BNA concentration produced by the gene, but a single
epitope can generate different response values correspond-
ing to different epitopes in peptide-MHC chips. In the case
of the B-cell epitope, it can be recognized by different
isotypes of immunoglobulins, so here, one can measure
both intensity and quality of the antibody response.

Immunomic databases

Knowledge of B-cell and T-cell epitope-mediated
responses has been increased dramatically. Epitope infor-

mation-related databases, bicinformatics tools and predic-
tion algorithms help in understanding the structure and
sequences of amino acids of epitopes. This knowledge is
crucial for basic immunological studies, diagnosis and
treatment of various diseases, and in vaccine research.™
InnareDBE thttp:/fwww.innatedb.ca) has been created to
understand the complete network of pathways and inter-
actions of innate immune system responses. It is an inte-
grated biological database of the human and mouse
molecules with 100 000 experimentally verified interac-
tions and 2500 pathways involved in innate immunity. It
has a newer version, called Crresrar,”™ which is a Java
plugin for the Cymoscare biomolecular interaction
viewer'® for automatically generating layouts of hiological
pathways. Table 1 lists some of the databases that deal
with information related to B-cell epitopes, T-cell epi-
topes, allergy prediction and evolution of immune system
genes and proteins,

B-cell epitope databases

Conformational epitopes have implicit structural informa-
tion related to antigen and binding mode. [t has been
found that 0% of B-cell epitopes are conformational or
discontinuous. Bower™ (http://www.imtech.res.in/raghava/
beipep) provides comprehensive information about exper-
imentally verified B-cell epitopes and tools for mapping
these epitopes on an antigen sequence. Immunogenicity of
a peptide in Bcipep is divided into three dimensions:
immunodominant, immunogenic and nuoll immunogenic.
Searches can be restricted to the basis of immunogenicity.
Beipep has some limitations such as, (i) it contains no
discontinuous epitopes, (i) it includes a limited number
of unique peptides, and (iii) it provides information on

Tahble 1. Databases on B-cell epitopes, T-cell epitopes, allergen and molecular evolution of immune system components

[atabases Mames URLs References
B-cell epitopes CED httpe/ fimmunet.cniced! [38]
BoipEP httpe! o imtech.res.infraghava/hepep [37]
EPrroMe httpe/feubic bioccolumbiaeduservices/ epitome! [39]
IEDE httpe/ s immuneepitope.org)/ [33]
mG1T® hitp/ fimgt cines fr [43]
T-cell epitopes JEnPER hitpe farane darrenflower. info/ jenpep! [40]
SYFPEITHI hitt pe/ farana sytpeithi.de [41]
IELYE httpe/ farane immuneepitope.org)/ [33]
FRED httpe/ farane-he.informatikuni-tuchingen. de/Software/FRELY [42]
IMGT® hittp/ fimgt cines fr [43]
Mlergen [Matabase of [UIS hittped faranaallergen.org [47]
ALLERGENFRO hittpe! hwwn niab.go b/ nabic/ [48]
SDAP httped ffermi.utmb.edu/ SDAFS [49]
Information related to ImmTREE httpe/ fhioinfuta il lmmTree [50]
maolecular evolution of Immunome datahase httpe/ fhioinfuta il Immunome [51]
immune system ImmunoMeB ase httpe/ fhioinfuta il Immunomeliase [52]
companents Immunome Knowledge Base hitpe/ fhioinfuta fif [EE [8]
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peptides containing only natural amino acids. CED™
(Conformational Epitope Database) can be used for the
evaluation and improvement of existing epitope prediction
methods. CED 0,03 release (httpy//immunet.cnfced/) has
293 entries. It has a collection of B-cell epitopes from the
literature, conformational epitopes defined by methods
like X-ray diffraction, nuclear magnetic resonance, scan-
ning mutagenesis, overlapping peptides and phage display.
CED maintains well-defined conformational epitope infor-
mation. It rejects conformational epitopes that are not
defined clearly so the database is small. Errrome™ (htepef/
cubichioc.columbia edufservices/epitome/)  contains  all
known antigen—antibody complex structures. A semi-auto-
mated tool has also been developed that identifies the
antigenic interactions within the known antigen-antibody
complex structures and compiled these interactions into
Eprrome. None of the other databases can locate the com-
plementary determining regions or identify the antigenic
residues semi-automatically. Errome updating follows the
updating of SCOP, ie. Epitome is updated twice a year, as
soon as SCOP is updated.

If we compare Eptome and CED, we find that they
are similar in size, the difference lies in the source of
collection of B-cell epitopes. Errome collects B-cell epi-
topes only from Protein Data Bank (PDB) structures
and includes information on complementary determining
regions. In contrast, CED takes data from the literature
and from the above-mentioned methods. As  their
sources are different, one can use the complementary
information.

T-cell epitope databases

T-cell epitopes do not always have high affinity for MHC
binders. A functional T-cell response requires MHC-
peptide binding and a proper interaction of the MHC-
peptide ligand with a specific T-cell receptor (TR). We
need wellcharacterized data to model the process of
binding of peptides to transfer associated protein (TAP)
and MHCs, which function as T-cell epitopes. Some
recent investigations include finding and mapping of
potential epitopes. Epitope mapping leads to the design
of effective vaccines. JenPee™ (latest updated version 2.0)
(httpyfwww.darrenflower.infofjenpep/) is a  relational
database with five types of data: a compilation of quanti-
tative measures of binding for 12 336 entries of peptides
to MHC I and II, an annotated list of 3218 entries of
dominant and subdominant T-cell epitopes, and a set of
over 441 records of quantitative data for peptide hinding
to TAP peptide transporter. In the latest update (ie. in
version 2.0), two new categories have been introduced: B-
cell epitopes (816 entries) and peptide-MHC-TR complex
formation (49 entries).

The Svreerrrn database® (hittp://www.syfpeithi.de) has
information on MHC class [ and II anchor motifs, and
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binding specificity. It calculates a score based on the fol-
lowing rules: calculated score values differentiate among
anchor, auxiliary anchor or preferred residues.

FRED®  (http://www-hs.informat ik uni-tuebingen.de/
Software/ FRED) deals with methods of data processing.
It also compares the performance of prediction methods
by considering experimental wvalues. It can handle
polymorphic  sequences. IMGT®* (the intemational
ImMunoGeeTics information system™; http/ (imgt.cines.
fr) has a good collection of immunoglobin, T-cell recep-
tor, MHC, and related proteins of the immune system of
humans and other vertebrates. It has five databases and
15 interactive online tools for sequence, genome and
three-dimensional structural analysis.

[EDB 2.0, (Immune Epitope Database and Analysis
Resource Database) (httpy//www.immuneepitope.org/ ),
sponsored by the National Institute for Allergy and Infec-
tious Diseases (http:/f’www.niaid.nih.gov), has different
tools to find B-cell and T-cell epitopes. It contained
details of 75 056 peptide epitopes till July 2010,

It also facilitates the conversion of experimental data
from text and figures in a joumal publication into a com-
puter-friendly format in the form of ONTIEs (Ontology
of Immune Epitopes) (httpy//ontologyiedb.org).  This
module has been imported by the OBI (Ontology for
Biomedical Investigations) (http:/fpurl.
obolibrary.org/obo/ohi),

Consortinm

Allergy prediction databases

Allergens are proteins or glycoproteins recognized by
immunoglobulin E (IgE), which is produced by the
immune system in allergic individuals. S0 far, 1500 aller-
genic structures have been identified.™ Online allergen
databases and allergy prediction tools are being used to
find cross-reactivity between known allergens. Localiza-
tion of B and T cells in the allergen may not coincide.™
The differences between both kinds of epitopes present in
an antigen are: T-cell epitopes are only linear (as men-
tioned earlier) and are distributed throughout the pri-
mary structure of the allergen, whereas B-cell epitopes
can be either linear or conformational, recognized by IgE
antibodies, and are located on the surface of the molecule
accessible to antibodies. Moreover, in the case of B-cell
epitopes, predicting allergenicity in a molecule based on
known conformational epitopes is a difficult task.

The Attercen Nomencratuse database of the Interna-
tional Union of Immunological Societies (IUTS) has an
allergen database®” (http:/fwwwiallergen.org). The Aviercen
Pro database™  (httpy//www.niab.go kr/nabic/) contains
information related to 2434 allergens, e.g. allergens in rice
microbes (712 records), animals (617 records) and plants
(1105 records). The web server AlLERGoOME 4.0% (htepeff
www.allergome.org) provides an exhaustive repository of
IgE-binding compound data. It has a total 1736 allergen
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sources (updated in March 2010). The Real-Time
Monitoring of IgE sensitization module (ReTiME}, in
AvtercoMe 4.0, enables one to upload raw data from both
in vive and in vitro experiments. This is the first attempt
where information technology has been applied to allergy
data mining. SDAP™ (Structural database of Allergenic
Proteins) (http:/ffermiutmb.edw/SDAPS) is a web server
that provides cross-referenced access to the sequence and
structure of the IgE epitope of allergenic proteins. Its
algorithm is based on conserved properties of amino acid
side chains. In its latest update, it has 887 allergenic
proteins.

Databases related to molecular evolution of immune
genes and proteins

To explore the maolecular evolution of the human
immune system, a reference set of genes and proteins
must be defined. For this reason, Ortutay et al™ con-
structed a database InmTree (httpy//bicinfutafif ImmTree)
for the evolutionary trees of proteins of the human
immune system. [t contains information for orthologues
of the human genes in 80 species. The Immunome data-
base™! (httpy/ /bioinf uta.fiflmmunome’) is another data-
base in which B47 genes and proteins are annotated and
characterized according to their functions, protein
domains and gene ontology terms from the human
Immunome,

A vast amount of molecular data for genes and proteins
for the immune system has accumulated. The Immunome
Knowledge Base (IKB)" is a single service access to many
immune system databases and resources. It combines the
other databases, namely Insunome ' and InsunoseBase,™
and several additional data items in an integrated fashion.
It has orthologue groups of 1811 metazoan immunity
genes for studying the evolution of the immune system,
and includes the evolutionary history of genes and pro-
teins, orthologous genes, information on disease-causing
mutations, alternatively spliced variants and copy number
variations.

Various tools and algorithms

Here, we throw some light on available immunology-
related tools and algorithms. Traditionally, determination
of the binding affinity of MHC molecules and antigenic
peptides is the main objective when predicting epitopes.
The experimental techniques are found to be difficult
and time consuming. As a result, several in silico meth-
odologies are being developed and used to identify epi-
topes. These techniques include matrix-driven methods,
finding structural binding motif, a quantitative struc-
ture-activity relationship (QSAR) analysis, homology
modelling, protein threading, docking techniques and
design of several machine-leaming algorithms and tools.
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In the past, computational techniques could only iden-
tify sequence characteristics but new improved algo-
rthms and tools are being designed to increase the
predictive performance. Table 2 lists some of the tools
that deal with B-cell and T-cell epitope prediction,
allergy prediction and in silice vaccination. Here, we
describe different methodologies for epitope and allergy
prediction, and the process of in silice vaccination
briefly.

B-cell epitope prediction

B cells produce antibodies that are protein in nature.
B-cell epitopes are antigenic determinants on the surface
of pathogens that interact with B-cell receptors. The
B-cell receptor hinding site is hydrophobic with six
hypervariable loops of varable length and amino acid
composition. As described in ref.™, B-cell epitopes are
classified as continuous/linear and discontinuous/confor-
mational. Most of the B-cell epitopes are discontinuous
where distant residues are brought into spatial proximity
by protein folding. Experiments are mostly based on
linear epitopes. There are both sequence-based and
structure-based prediction tools but prediction tools are
limited for discontinuous B-cell epitopes.™

Prediction using amino acid propensity scale

Classically, amino acid propensity scales such as hydro-
philicity and characteristic flexibility have been used to
identify epitopes present in antigens. Pellequer er al.™
compared several propensity scale methods using a data-
set of 14 epitope annotated proteins and found that the
scales of Parker et al™® Chou and Fasman,® Levitt,” and
Emini ef al.”® provide better results than the other scales
tested.” El-Manzalawy et al.*® compared propensity-scale-
based methods with a Naive Bayes classifier. They used
three different representations of the classifier input:
amino acid identities, position-specific scoring matrix
profiles and dipeptide composition. They used two data-
sets, one is the propensity dataset and the other is from
BoPer” They considered 125 non-redundant antigens at
30% sequence similarity cut off from BoPer. The Bermore
tool® predicts continuous epitopes based on the predic-
tion of protein turns. It is a newer version of PREDI-
TOP™ and uses more than 30 propensity scale values.
The Boerren server™  (http://www.imtech.res.in/raghava/
beepred/) predicts linear B-cell epitopes with 58-7% accu-
racy based on combined amino acid properties like acces-
sibility, hydrophilicity, flexibility, polarity, exposed surface
and turns.

Analyses of antigen-antibody interactions are per-
formed on antibody-binding sites on proteins, which help
in predicting the linear and conformational B-cell epi-
topes. Taking this into consideration, a database,
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Conclusions

There have been several computational methods devel-
oped to predict miRNAs. Five different methods based
on two different categories of miRNA gene identification
tools have been compared to understand their relative per-
formance. Among all the tools, MiPred shows the best
performance. One class approach can be a good alterna-
tive but as far as overall accuracy is concerned, certain
improvements need to be incorporated for a better perfor-
mance. Moreover, BayesS VM miR NAfind using SVM and
naive Bayes classifier show lowest specificity although
the sensitivity 1s quite high in both the cases.
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and Los Alamos human immunodeficiency virus (HIV)
database (http:/fwww.hivlanlgov). They tested a number
of propensity scale methods on the Pellequer et al. data-
set,”” and found the best scale to be by Levitt.™ Then,
they used a Hidden Markov model (HMM) to predict the
location of linear B-cell epitopes and tested HMMs on
the Pellequer et al. dataset to find optimal parameters.
HMM was combined with one set of the two best pro-
pensity scale methods, i.e. Parker et al®® and Levitt™ to

get more accurate predictions.

Prediction methodology for discontinuous B-cell
epitopes

As mentioned earlier, more than 90% of B-cell epitopes
are discontinuous but they may comprise a linear amino
acid chain of peptides, which is brought closure in three-
dimensional space® There is a specialized form of pro-
tein-protein interaction in these epitopes. Changes in
protein folding may lead to changes in the number of
epitopes.’” The characterization and prediction of B-cell
epitopes are mainly conformation dependent so the task
of prediction is more difficult compared with that of
T-cell epitopes. The most accurate way to identify the
B-cell epitope is through X-ray crystallography. Anderson
ctal”™ presented a method called Discotore, (hrtpff
www.chs.dtudkf/services/DiscoTope/), which is a combi-
nation of amino acid statistics, spatial information and
surface exposure. It was trained on a dataset of discontin-
uous epitopes of 76 X-ray structures of antibody-antigen
complexes. It detects 15-5% of residues located in discon-
tinuous epitopes with a specificity of 95%. The conven-
tional Parker hydrophilicity scale (for predicting linear
B-cell epitopes) identifies only 11-0% of residues with
950 specificity. It is said to be the first method developed
for prediction of discontinuous B-cell epitopes with better
performance than methods based only on sequence data.

Bublil er al”' developed Marrrore for conformational
B-cell epitope mapping. The hypothesis behind Marrmore
is that the simplest meaningful fragment of an epitope is
an amino acid pair of residues that lie within the epitope,
which are the result of folding. A set of affinity isolated
peptides was obtained by screening the phage display pep-
tide libraries with the antibody of interest. This set was
given as algorithm input, and one to three epitope candi-
dates on the surface of the atomic structure of the anti-
gens were obtained as output.

A computational method has been presented by Sollner
etal’™ to automatically select and rank peptides for the
stimulation of otherwise functionally altered antibodies.
They investigated the integration of B-cell epitope predic-
tion with the variability of antigen, and the conservation
of patterns for posttranslational modification prediction.
By their observation, they found high antigenicity, low
varahility and low likelihood of posttranslational
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modification for the identification of biorelevant sites,
Greenbaum et al.™ assembled non-redundant datasets of
repetitive three-dimensional structure of antigen and anti-
gen—antibody complexes from the PDB. The CEP web
interface’ (http//bicinfo.ernet.in/cep.htm) predicts con-
formational and sequential epitopes, and also antigenic
determinants. It uses structure-based approaches, solvent
accessibility of amino acids and spatial distance cut-off to
predict antigenic determinants. Less availability of the
three-dimensional structure data of protein antigens
limits the utility of this server.

Mimotope-based epitope prediction methodology

Phage display library has a large number (more than 109)
of random peptides.”® It is widely used for finding pro-
tein-protein interactions (especially in antibody-antigen
interactions), protein function identification and in devel-
opment of new drugs and vaccines. These libraries are
screened to find the pool of peptides that can hind to
desired antibody. These pools of peptides are called
mimotopes. ™" Mimotopes and antigens are both
recognized by the same antibody pamtope. Mimotopes are
said to be the imitated part of the epitope. 5o, it is possible
that a mimotope may have some valuable information
about the epitope. However, homology may not exist
between the mimotope and the epitope of the native
antigen. This mimicry exists because of similarities in phys-
inchemical properties and spatial organization.” Consider-
ing these properties, mimotope pools are used to mine
information to predict an epitope. Using this concept, the
MIMOP tool”™ has been developed. MIMOP predicts lin-
ear and conformational epitopes based on two algorithms:
MimAvLicy uses degenerated alignment analyses, and Mim
Cons is based on consensus identification. MIMOX™
thttp:/fwebkuicr kyoto-wacjp/~hjian/mimox} comes in
the same category, which maps a single mimotope or a
consensus sequence of a set of mimotopes onto the corre-
sponding antigen structure. Then, it searches for all of the
clusters of residues that could be the native epitope.
Peprrore’ (httpy//pepitope.tavacil/) (an advanced server
for mimotope-based epitope prediction approaches) uses
two algorithms: Pepsurr’” and Maprroee.”' It maps each mi-
motope s0 as to map them onto the solved structure of the
antigen surface. Alignment of the mimotope is done first in
MIMOX; this step is different in Perrore. If we compare it
with MIMOP, MIMOP aligns the peptides to the antigen at
the sequence level rather than directly to the three-dimen-
sional structure. The three-dimensional structure is consid-
ered only after the alignment stage.

Sometimes linear peptides mimic conformational
epitopes. The same phage display peptide libraries for
screening with the respective antibodies are used to select

these mimotopes. Schreiber et al”™ presented a software,
3DEX  (3D-Ermore-Exerorer)  (httpe/fwww.schreiber-abc.
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comf3dex/) that allows localizing of linear peptide
sequences within three-dimensional structures of proteins.
Its algorithm takes into account the physiochemical
neighbourhood of C-2 or C-ff atoms of individual amino
acids and surface exposure of the amino acids. Authors
were able to localize mimotopes from the plasma of
patients who were HIV-positive within the three-dimen-
sional structure of gpl20. The epitopes defined by 3DEX
are not proven by mathematical calculations and energy
minimizations.

T-cell epitope prediction

It is necessary to bind antigenic peptides with MHC so
that cytotoxic T cells can recognize them. Hence, identifi-
cation of MHC binding peptides is a central part of any
algorthm that predicts T-cell epitopes. There exist several
methodologies for the prediction of MHC binding pep-
tides, which are based on the idea of quantitative matri-
ces, HMM, ANN, 5VM and structure of the peptides.

Prediction through matrix-driven methods

Huang and Dai™® first investigated a new encoding
scheme of peptides. This scheme used the BLOSUM
matrix with the amino acid indicator vectors for direct
prediction of T-cell epitopes. It replaced each non-zem
entry in the amino acid indicator vector by the corre-
sponding value appearing in the diagonal entries in the
BLOSUM matrix. The MMBPren™ (http:/ fwww.imtech.
res.in/raghava/mmbpred/) server predicts the mutated
promiscuous and high-affinity MHC binding peptide. It
uses the matrix data in a linear prediction model and
ignores peptide conformation. The prediction is based on
the quantitative matrices of 47 MHC alleles.

Prediction through HMM

Transfer Associated Protein is an important component
of the MHC [ antigen-processing and presentation
pathway. A TAP transporter can translocate peptides of
#-40 amino acids into endoplasmic reticulum. Zhang
et al.® developed PRED™" (http:/fantigen.iZr.a-star.edu.
sg/predTAP) for the prediction of peptide binding to
hTAP. They used a three-layer back propagation network
with the sigmoid activation function. The inputs were the
binary strings, representing nonamer peptide. Second,
they used second-order HMM. The results are both sensi-
tive and specific.

Prediction through ANN

Neilsen et al® described an improved neural network
model to predict T-cell class | epitopes. They have a com-
bination of sparse encoding, BLOSUM encoding and
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input derived from HMM. The dataset consists of 528
nonamer amino acid peptides for which the hinding
affinity to the HLA T molecule A*0204 has been measured
in a method described by Buus et al.® NerCTL server™
(http:fwwwe.chs.diudk/services/NetCTL/) uses a method
to integrate the prediction of peptide MHC dass [ bind-
ing, proteasomal C-terminal cleavage and TAP transport
efficiency. It has updated the version from 1.0 to 1.2 to
improve the accuracy of MHC cdass 1 peptide-hinding
affinity and proteasomal cleavage prediction. NertMHC
server 3.0% (httpyfwww.chsdtu.dky services/NetMHC) is
based on ANN and weight matrices. It has been trained
on data from 55 MHC peptides (43 human and 12 non-
human) and position-specific scoring matrices for a
further 67 HLA alleles.

MHC class [ molecule motifs are well defined but the
prediction of MHC class I binding peptides is found to be
difficult for a number of reasons, incuding variable length
of reported hinding peptides, undetermined core region
for each peptide and number of amino acids as primary
anchor. Brusic et al™ developed PERUN, a hybrid method
for the prediction of MHC dass II binding peptide. It uses
available experimental data and expert knowledge of bind-
ing motifs, evolutionary algorithms and ANN. They used
PLaNer package version 5.6% to design and train a three-
layered fully connected feed-forward ANN.

Prediction using other machine learning
methodologies

Nanni® demonstrated the use of SVM and SV (Support
Vector) data description to predict T-cell epitopes. In the
case of TAPPrm™ (http://www.imtech.res.in/raghav/tap-
pred/), Bhasin and Raghava analysed nine features of
amino acids to find the correlation between binding affin-
ity and physiochemical properties. They developed an
SVM-based method to predict the TAP binding affinity of
peptides, and found cascade SVM to be more reliable.
Cascade SVM has two layers of S5VMs and its perfor-
mance is better than the other available algorithms.

Computational techniques are found to be easier than
experimental analysis for determining cleavage specificities
of proteasomes. It is experimentally established that the
immunoproteasome is involved in the generation of the
MHC class I ligand. For this purpose, Poravace ™ (httpef/
www.imtech.res.in/raghava/pcleavage/) has been developed
to predict both kinds of cleavage sites in antigenic pro-
teins. It uses SVM,”" Parmllel Exemplar based Learning™
and Waikato Environment for Knowledge Analysis.™

Ant colony search systems have proved useful for solv-
ing combinatorial optimization problems and can be
applied to the identification of a multiple alignment of a
set of peptides. Basically, they™ attempt to find an opti-
mal alignment for a given set of peptides based on the
search strategy.
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Structure-based prediction

Peptide-MHC binding data are necessary to find T-cell
epitopes. Current methods are mostly based on peptide
binding affinity to MHC for predicting T-cell epitope.
The three-dimensional QS5AR technology CoMSIA has
been applied to the problem of peptide-MHC binding.”
It uses the interaction potential around aligned sets of
three-dimensional peptide structures to describe binding.
TEPITOPE™ by Bian and Hammer is used to predict
promiscuous and allele-specific HLA 1T restricted T-cell
epitopes in silico. TEPITOPE's user interface has display
and comparison of pocket profiles, and finds similar HLA
Il differing in their binding capacity for a given peptide
sequence. Kangueane and Sakharkar” implemented a web
server T-cell epitope designer for MHC peptide which
uses a definition of virtual binding pockets to position
specific peptide residue anchors and estimation of peptide
residue virtual binding pocket compatibility.

Zhao et al.® described a novel predictive model using
information from 29 human MHCp crystal structures.
The overall binding between peptide and MHC provides
a cumulative measure of the physical and chemical com-
patibility between each residue in the peptide and the res-
idue forming the virtual pockets. EruPro™  (httpy/
tools.immuneepitope.org/tools/ElliPro) is a web tool that
implements a modified version of the Thorton method,
residue clustering algorithm, the MopEwer program and
the Jsmon viewer. It predicts and visualizes the antibody
epitope in protein sequence and structure. It implements
three algorithms for the approximation of the protein
shape as an ellipsoid, calculation of the residue protrusion
index and clustering of neighbouring residue based on
their protrusion index values.

It is generally accepted that only peptides that hind to
MHC with an affinity above a threshold value (typically
500 nm), function as T-cell epitopes. Guan et al.'™ in the
Edward Jenner Institute for WVaccine Research, UK,
introduced  MHCPren  (httpe/fwww.darrenflower.info/
mhepred/). It is a Perl implementation of two-dimen-
sional QSAR application to peptide-MHC prediction and
covers both class | and class [T MHC allele peptide speci-
ficity mwodels. Peptides that can bind to MHC on the
tumour cell surface have potential to initiate a host
immune response against the tumour. Schiewe and Ha-
worth™! developed an algorithm PeSSI (peptide-MHC
prediction of structure through solvated interfaces) for
flexible structure prediction of peptide binding to the
MHC molecule. They used CT antigens (Cancer Testis),
KUU-CT-1, that have the potential to bind HLA-A2,

Jojic et al.'™ developed an improved structure-based
model which used known three-dimensional structures of
a small number of MHC-peptide complexes, the MHC
class [ sequence, known binding energies for MHC-pep-
tide complexes, and a larger hinary dataset with informa-
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tion about strong binders and non-binders. They used
adaptive double threading, where the parameters of the
threading model are learnable, and both MHC and pep-
tide sequences can be threaded onto the structure of
other alleles. Furman er al'™ used an approach that can
be applied to a wide range of MHC class 1 alleles. In this
algorithm, peptide candidates are threaded, and their
binding compatibility is evaluated by statistical pairwise
potentials. They used the pairwise potential table of
Miyazawa and Jernigan.'"

Immunodominant peptides are being used for rational
design of peptide vaccines focusing on T-cell immunity.
Altuvia and Margalit'" focused on antigenic peptides rec-
ognized by cytotoxic T cells. They applied the threading
approach to screen a library of peptide sequences and
identified those that optimally fitted within the MHC
groove, Proeren'™  (httpe/fwww.imtech.res.in/ raghava/
proped) is a graphical web tool for predicting MHC class
Il binding regions in antigenic protein sequences. They
extracted the matrces for 51 HLA-DR alleles from a
pocket profile database developed by Sturniolo eral.'™
The EmTooukr'™ (hitp:/ fwww.epitoolkit.org) web server
includes several prediction methods for MHC class 1 and
class I ligands, and minor histocompatibility antigens.
It can also investigate the effect of mutation on T-cell

epitopes.

Allergy prediction

Food derived from biotechnology and genetic engineer-
ing contains some foreign proteins, which can be aller-
gic to many human beings. Because of this, food safety
is an important issue. Evaluation of the potential aller-
genicity of food derived from biotechnology and genetic
engineering is a current food safety assessment. Allergen
sequence databases are essential tools for safety assess-
ments of bicengineered foods. They can analyse the
structural and  physiochemical properties of food
allergen proteins. They focus on molecular information
such as protein sequences, structures and hiomedical
information.

Allergy occurs by both extrinsic and intrinsic factors. A
type | hypersensitive reaction is induced by certain aller-
gens that elicit IgE antibodies.” Use of genetically modi-
fied food and thempeutics makes allergenic protein
prediction necessary. According to the proposed guide-
lines of World Health Organization (WHOQ) and Food
and Agriculture Organization (FAQ) in 2001, a protein is
considered an allergen when it has at least six contiguous
amino acids the same or a window of 80 amino acids
when compared with known allergens. It has already been
established that allergens do not share common struc-
tural characteristics. Hence, allergen databases are being
used as reference for finding the sequence similarity in
allergenicity evaluation.'™ Tt is said that a protein is

Immunoiogy, 131, 153-168



considered an allergen if it has a region or peptides iden-
tical to a known [gE epitope.

The allergen prediction method proposed by Kong
et al.'" is based on the determination of a combination
of two allergen motifs in a given protein sequence. They
took 575 proteins for allergen dataset and 700 sequences
for a non-allergen test set from the given reference.''’
They developed a database that has all possible combina-
tions of two motifs from the set of allergenic maotifs by
using a motif length of 35 amino acids and motif number
of 500. Zorzet etal'” introduced a computational
approach for classifying the amino acid sequences in aller-
gens and non-allergens. They identified 91 pre-processed
food allergens from various specialized public repositories
of food allergy and the SWALL database (SWISSPROT
and TrEMBL).

Saha and Raghava'" created ArcPren (hitpsffwww.
imtech.res.infraghava/algpred) using SVM and a similar-
ity-based approach for analysis, and scanned all 183 IgE
epitopes against all proteins of the dataset. The server
allows use of a hybrid option to predict allergens using a
combined approach (SVMc, IgE epitope, ARPs BLAST
and MAST).

Stadler and Stadler'™ used the MEME motif discovery
tool to identify the most relevant motif present in an
allergen sequence. If the query finds an allergen motif or
scores better than an E-value of 107" in the pairwise
sequence alignment step, it is considered as the allergenic
sequence. Then, these are compared with the FAQ/'WHO
guidelines by performing allergenicity prediction for the
sequence in SWISSPROT and a synthetic test database.
Avcermaren' (hitpsf fiwww.allermatch.org) is a webtool
that uses a sliding window approach to predict potential
allergenicity of proteins. It is done according to the cur-
rent recommendations of the FAO/MWHO Expert Consul-
tation,'"” as outlined in Codex alimentarius.'" But this
method generates false-positive and false-negative hits so
it is advised by the FAQO/MWHO that the outcomes should
be combined with other allergenicity assessment methods.

The APPEL'"" {Allergen Protein Prediction E-Lab) tool
uses SVM to identify novel allergen proteins. This tool
correctly classified 93% of 229 allergens and 99-9% of
6717 non-allergens. It is based on a statistical method and
has the potential to discover novel allergen proteins. The
EVALLER"* web server (http://bioinformatics.bmc.un.sef
evallerhtml) uses a filtered length-adjusted allergen pep-
tides (DFLAP) method"” (via ulfh@slv.se) to identify the
potential allergen proteins. DFLAP extracts variable length
allergen sequence fragments and employs SVM. An uncer-
tainty score has shown that the EVALLER is much more
confident in identifying the “presumably an allergen’ cate-
gory than that of non-allergens.

The EVALLER and APPEL servers assigned all calmod-
ulins or calmodulin-like proteins as presumably non-aller-
gens.''® But a conventional alignment approach (e.g. 35%
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similarity over 80 amino acid segments) gives preference
to finding sequence similarity between input proteins and
known allergens and put the above-mentioned proteins
the in allergen category. These proteins are presumably
non-allergenic homologues to the polcalcin family (mem-
bers being potential allergens involved in pollen—pollen
cross-sensitization). Tools based on structural and physi-
cal characterstics are useful to identify potential cross-
reacting proteins that may escape detection through the
sequence similarity method alone.

Applications of immunoinformatics

In this section, we focus on applications of immunoinfor-
matics. It includes in sifico vaccine design and immune
system modelling.

In silico vaccination

It is easy to apply new approaches for vaccine design, as
genome sequencing, comparative proteomics and immu-
noinformatics tools are well developed. *Reverse vaccinolo-
gy, a new concept, analyses the entire genome to identify
potentially antigenic extracellular proteins and so helps to
save time and money. It was pioneered for Neisseria men-
ingitides, which is responsible for sepsis and meningococ-
cal meningitides. The vaccine type is conjugate and is
based on capsular polysaccharide. These vaccines are avail-
able for pathogenic N. meningitides A, C, Y and W135."*"

Microarray technique for vaccine design

Through microarray technology, it is easy to screen genes
of various pathogens in different growth states and condi-
tions for vaccine design.'?' It reduces the number of genes
useful for vaccine in a given genome. Signal peptides
derived from genomic sequences, structural motifs and
immunogenicity are important for vaccine development.

Eptope-driven approaches for vaccine design

These are comparatively more useful as they have no
lethal effect like the whole protein vaccines. It may induce
an  immune response against immunodominant epi-
122 pyoe o1 . .
topes. ~ This kind of vaccine has a single start codon
with an epitope which can be inserted consecutively in
the construct.'™ The prediction of promiscuous binding
ligands is considered to be a prerequisite for most subunit

. . 124
vaccine design strategies.

Peptide-based vaccine design

Small peptides derived from epitopes are used as peptide-
based wvaccines. These peptides are recognized by MHC
class I and therefore boost the immune response. Florea
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et al'® described three novel classes of methods to
predict MHC binding peptides, and a voting scheme to
integrate them for improved results. The first method is
based on quadratic progrmamming applied to quantitative
and qualitative data. The second method uses linear pro-
gramming and the third one considers sequence profiles
obtained by clustering known epitopes to score candidate
peptides. This method is found to be better than other
sequence-based methods for finding the MHC binders.

Aligmment-free approach for vaccine design

Earlier approaches for the identification of antigens were
dependent on sequence alignment, which had several
drawbacks. Some proteins have similar structure and bio-
logical properties, but they may lack sequence similarity.
To get rid of these limitations, a new alignment-free
approach for antigen prediction has been proposed for
which Doytchinova and Flower™® used three datasets,
one each for bacteria, viruses and tumours. The models
were validated wusing leave-one-out cross-validation
(LOOCV) on the whole sets and by external validation
using test sets. These models were implemented in a server
called Vaxa]ew (http/fwww.darrenflowerinfo/Vaxilen/).

DINA vaccines

It has already been found that DNA vaccines can produce
both cell-mediated and humoral immune responses, and
are very useful in defending intracellular pathogens.
DvNAVacs'® (hitp:/ /miracle.igib.res.infdynavac/) incorpo-
rates different modules like codon optimization for heter-
ologous expression of genes in bacteria, yeast and plants,
mapping restriction enzyme sites, primer design, Kozak
sequence insertion, custom sequence insertion and design
of genes for gene therapy.

The software NERVE'®  (http:/fwww.bio.unipd.it/
molbinfo) helps in designing subunit vaccines against
bacterial pathogens. It combines automation with an
exhaustive treatment of vaccine candidate selection tasks
by implementing and integrating six different kinds of
analyses. Xiang et al ** developed a web-based database
systemm, VIOLIN  (Vaccine Investigation and Online
Information Network) (http:y/ fwww.violinet.org), which
curates, stores and analyses published vaccine data. It
contains four integrated literature mining and search
programs: Litsearch, Vaxeresso, Vaxmesn and Vaxiert,
They have developed a web-based vaccine design system
called Vaxicn,'™ which predicts possible vaccine targets.
Major predicted features include subcellular location of a
protein, transmembrane domain, adhesion probability,
sequence conservation among genomes, sequence similar-
ity to host (human or mouse) proteome, and epitope
binding to MHC class [ and class L.
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Immune system modelling

Immune system modelling provides an integrated view of
the immune system in both gqualitative and gquantitative
terms. These models can test and find out the antigen—
antibody interactions and immune responses for a particu-
lar antigen, in case of drug administration or testing of a
vaccine candidate. This helps in reducing time and cost.
Peters et al.™” developed a hepatitis C virus infection model
that could predict the results of tumour necrosis factor-a
acting by blocking de nove infection, blocking viral replica-
tion or effecting virion clearance. A model can calculate
the likelihood of HIV developing a drug-resistant muta-
tion, if provided with certain replication and mutation
rates. Using the visual modelling application described by
Gong and Cai,'"' one can understand the adaptive
immune system effectively. The hierarchical immune sys-
tem consists of an inherent immune tier, an adaptive
immune tier and an immune cell tier. It is designed and
visnalized with the Java Appier technique for simulation.
For further simulation purpose, the learning of the anti-
body is implemented through the evolutionary mechanism
of the immune algodthm. DavuwoGrm (httpdfwww.
immunogrid.org) and Vieoras  (httpyfwwwovirolab.org:
080/virolab) projects are working to sinulate immune
systems. DastunoGrin tries to simulate immune processes
by combining experiments and computational studies
while Virovag is attempting to develop a virtual laboratory
for infectious diseases by examining the genetic causes of
human illnesses. "' SIMISYS 0.3 is another example of a
software that models and simulates the innate and adaptive
components of the immune system, based on computa-
tional framework of cellular automata. It simulates healthy
and disease conditions by interpreting interactions among
the cells including, macrophages, dendritic cells, B cells,
T helper cells and pathogenic bacteria.

Exclusive computational approaches like mathematical
modelling generate enormous amounts of data, but there
should be a balance between virtual and real experimental
data. Computationally generated data need to be formally
tested and translated into real knowledge. The post-geno-
mic era needs to exchange data from wet laboratory to
simulation and vice versa.'” The model should be accu-
rate, easy to use and understandable to both model
designers and biologists, who can verify their hypothesis
through in silice experiments.

Conclusions and discussions

This review considers useful online immunological data-
bases, tools and webservers. It is described how immuno-
informatics is useful in reducing the time and cost
involved in the traditional study of immunology. Tmmu-
noinformatics may be placed at the junction point
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between experimental and computational approaches. It
complements wet labormtory immunaology.

Most of the existing methods tend to predict epitopes
with high affinity to MHC molecules. These methods are
indirect as they predict MHC binders instead of T-cell
epitopes, as opposed to the earlier methods. It is hypothe-
sized that the T cell recognizes a peptide of amphipathic
nature. The hydrophobic terminal of the antigenic pep-
tide reacts with MHC while the hydrophilic end interacts
with the TR. Earlier approaches used this phenomenon.
Methods based on predicting structural binding motifs
need structural data generated by molecular biology. This
approach scans epitopic sequences to find MHC binders.
However, these approaches become useless if motifs are
not present. They need the three-dimensional structure of
the MHC~peptide complex, which is again a limitation.

A matrx-driven method needs information about each
residue of interacting peptide, and thereby gives hetter
results. Machine-learning techniques are quite good as
they can deal with non-linear data. Earlier approaches
have some limitations in handling real data (non-linear
data). SVM (a statistical learning methodology) is a learn-
ing technique that supports continuous and categorical
variables. 5V is better than ANN because it attains a
global minimum and is capable of working with fewer
training pattemns.'”* Hence both sequence characteristics
and computational techniques should be integrated to
acquire higher prediction accuracy. Recently, the predic-
tion of promiscuous peptides (capable of binding to a
wide array of MHC molecules) is being given much
emphasis. Screening of large-scale pathogens and mapping
of T-cell epitopes allow identification of the prime target
of epitope-hased T-cell vaccine designs.

‘Reverse vaccinology’ is a revolution in immunology
because it uses the whole spectrum of antigens. This
helps in using pools of vaccine candidates that otherwise
would be missed (because of poor or no in vitro experi-
mental information or problems in culturing the specific
pathogen).'* It makes the available pools of vaccine
candidates easier to use when designing therapeutic vac-
cines. As of now, different groups are applying reverse
vaccinology approaches that show promising pre-clinical
results.

Immunoinformatics models are being used that are
analogous to and that simulate the real behaviour of
immune system processes. These models help in under-
standing the kinetics of cells during immune responses.
They make understanding the biological pathways and
underlying mechanisms easier. The models are engineered
in such a way that they can be studied and interpreted
easily, and can be rebuilt if new experimental data are
introduced. These mathematical models remove the
uncertainty of systems; as they are found to be close to
wet labormtory experiments this leads to designing the
path for refinement and modelling new experiments.

Immunainformatics

Computational modelling of the immune system provides
scientific solutions to several problems but it should not
be forgotten that they rely on assumptions only, so they
cannot be directly compared with real biological data.
They can be improved by the availability of more data,
significant parameters, or by modifying the underlying
equations. These changes can better mimic the biological
interactions in an organism. Currently, models are
designed to simulate the biological data only over a fixed
time period. ”* There are no data for extended time spans
available to validate the models. This limits the accuracy
of the results. An ability of these models to show the sys-
tem’s changes over an extended time period for immune
response in case of antigen attack or drug administration
would reduce the necessity for experimental research.

Exploration of the immune response to a specific drug
can be a future research area in the modelling field. Drug
response to a host’s imnmne system can be better studied
through computational models. The effect of drug admin-
istration can be added to model the immune system to
find the drug efficacy. '

Moreover, the field of immune system modelling pro-
vides ideas about the dose composition, dmg dosage
duration, age of the patient and other parameters. It can
give new suggestions for the study of immune system
function and drug function to treat certain diseases. These
modelling capabilities may lead to the invention of drugs
that can treat a disease in a more effective way and with-
out any side-effects. Diseases that are characterized by
complex interactions between the host cellular immune
system and evolving pathogens such as HIV infection can
be investigated by such models.
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