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Abstract— This article describes a simulated annealing based
multi-objective optimization algorithm that incorporates the
concept of archive in order to provide a set of trade-off solutions
of the problem under consideration. To determine the acceptance
probability of a new solution vis-a-vis the current solution, an
elaborate procedure is followed that takes into account the
domination status of the new solution with the current solution,
as well as those in the archive. A measure of the amount of
domination between two solutions is also used for this purpose.
A complexity analysis of the proposed algorithm is provided.
An extensive comparative study of the proposed algorithm with
two other existing and well-known multi-objective evolutionary
algorithms (MOEAs) demonstrate the effectiveness of the former
with respect to five existing performance measures, and several
test problems of varying degrees of difficulties. In particular,
the proposed algorithm is found to be significantly superior for
many-objective test problems (e.g., 4, 5, 10 and 15 objective
problems), while recent studies have indicated that the Pareto
ranking-based MOEAs perform poorly for such problems. In a
part of the investigation, comparison of the real-coded version of
the proposed algorithm is conducted with a very recent multi-
objective simulated annealing algorithm where the performance
of the former is found to be generally superior to that of the
latter.

Index Terms— Amount of domination, archive, clustering,
multi-objective optimization, Pareto-optimal, simulated anneal-
ing.

I. INTRODUCTION

The multi-objective optimization (MOO) problem has a
rather different perspective compared to one having a single
objective. In single-objective optimization there is only one
global optimum, but in multi-objective optimization there is
a set of solutions, called the Pareto-optimal (PO) set, which
are considered to be equally important; all of them constitute
global optimum solutions. Over the decade, a number of
Multi-objective Evolutionary Algorithms (MOEAs) have been
suggested (see, [1], [2] for some reviews). The main reason
for the popularity of Evolutionary algorithms (EAs) for solving
multi-objective optimization is their population based nature
and ability of finding multiple optima simultaneously.

Simulated Annealing (SA) [3] another popular search algo-
rithm, utilizes the principles of statistical mechanics regarding
the behavior of a large number of atoms at low temperature, for
finding minimal cost solutions to large optimization problems
by minimizing the associated energy. In statistical mechanics
investigating the ground states or low energy states of matter
is of fundamental importance. These states are achieved at
very low temperatures. However, it is not sufficient to lower
the temperature alone since this results in unstable states. In
the annealing process, the temperature is first raised, then de-
creased gradually to a very low value (I'min), while ensuring
that one spends sufficient time at each temperature value. This
process yields stable low energy states. Geman and Geman
[4] provided a proof that SA, if annealed sufficiently slowly,
converges to the global optimum. Being based on strong theory
SA has been applied in diverse areas [5], [6], [7] by optimizing
a single criterion. However there have been only a few attempts
in extending SA to multi-objective optimization, primarily
because of its search-from-a-point nature. In most of the
earlier attempts, a single objective function is constructed by
combining the different objectives into one using a weighted
sum approach [8]-[13]. The problem here is how to choose
the weights in advance. Some alternative approaches have
also been used in this regard. In [11] and [12] different
non-linear and stochastic composite energy functions have
been investigated. In [11] six different criteria for energy
difference calculation are suggested and evaluated. These are
(1) minimum cost criterion, (2) maximum cost criteria, (3)
random cost criteria, (4) self cost criteria, (5) average cost
criteria, and (6) fixed cost criteria. Since each run of the SA
provides just a single solution, the algorithm attempted to
evolve the set of PO solutions by using multiple SA runs.
As a result of the independent runs, the diversity of the set of
solutions suffered.

Multi-objective simulated annealing with a composite en-
ergy clearly converges to the true Pareto front if the objectives
have ratios given by w; 1. if such points, in general, exist. Here
w; is the weight assigned to the ith objective. In [14], it has
been proved that part of the front will be inaccessible with
fixed weights. In [15] several different schemes were explored
for adapting the w;s during the annealing process to encourage



exploration along the front. However, a proper choice of the
w;s remains challenging task.

In addition to the earlier aggregating approaches of multi-
objective SA, there have been a few techniques that incor-
porate the concept of Pareto-dominance. Some such methods
are proposed in [16], [17] which use Pareto-domination based
acceptance criterion in multi-objective SA. A good review
of several multi-objective simulated annealing algorithms and
their comparative performance analysis can be found in [18].
Since the technique in [17] has been used in this article for
the purpose of comparison, it is described in detail later.

In Pareto-domination-based multi-objective SAs developed
so far, the acceptance criterion between the current and a new
solution has been formulated in terms of the difference in the
number of solutions that they dominate [16], [17]. The amount
by which this domination takes place is not taken into consid-
eration. In this article, a new multi-objective SA is proposed,
hereafter referred to as AMOSA (Archived Multi-objective
Simulated Annealing), which incorporates a novel concept of
amount of dominance in order to determine the acceptance
of a new solution. The PO solutions are stored in an archive.
A complexity analysis of the proposed AMOSA is provided.
The performance of the newly proposed AMOSA is compared
to two other well-known MOEA’s, namely NSGA-II [19] and
PAES [20] for several function optimization problems when
binary encoding is used. The comparison is made in terms
of several performance measures, namely Convergence [19],
Purity [21], [22], Spacing [23] and MinimalSpacing [21].
Another measure called displacement [8], [24], that reflects
both the proximity to and the coverage of the true PO front,
is also used here for the purpose of comparison. This measure
is especially useful for discontinuous fronts where we can
estimate if the solution set is able to approximate all the sub-
fronts. Many existing measures are unable to achieve this.

It may be noted that the multi-objective SA methods devel-
oped in [16], [17] are on lines similar to ours. The concept of
archive or a set of potentially PO solutions is also utilized in
[16], [17] for storing the non-dominated solutions. Instead of
scalarizing the multiple objectives, a domination based energy
function is defined. However there are notable differences.
Firstly, while the number of solutions that dominate the new
solution x determines the acceptance probability of x in the
earlier attempts, in the present article this is based on the
amount of domination of x with respect to the solutions in
the archive and the current solution. In contrast to the works
n [16], [17] where a single form of acceptance probability
is considered, the present article deals with different forms of
acceptance probabilities depending on the domination status,
the choice of which are explained intuitively later on.

In [17] an unconstrained archive is maintained. Note that
theoretically, the number of Pareto-optimal solutions can be
infinite. Since the ultimate purpose of an MOO algorithm is
to provide the user with a set of solutions to choose from, it is
necessary to limit the size of this set for it to be usable by the
user. Though maintaining unconstrained archives as in [17] is
novel and interesting, it is still necessary to finally reduce it
to a manageable set. Limiting the size of the population (as
in NSGA-II) or the Archive (as in AMOSA) is an approach

in this direction. Clustering appears to be a natural choice for
reducing the loss of diversity, and this is incorporated in the
proposed AMOSA. Clustering has also been used earlier in
[25].

For comparing the performance of real-coded AMOSA
with that of the multi-objective SA (MOSA) [17], six three
objective test problems, namely, DTLZI1-DTLZ6 are used.
Results demonstrate that the performance of AMOSA is
comparable to, often better than, that of MOSA in terms of
Purity, Convergence and Minimal Spacing. Comparison is also
made with real-coded NSGA-II for the above mentioned six
problems, as well as for some 4, 5, 10 and 15 objective test
problems. Results show that the performance of AMOSA is
superior to that of NSGA-II specially for the test problems
with many objective functions. This is an interesting and the
most desirable feature of AMOSA since Pareto ranking-based
MOEAs, such as NSGA-II [19] do not work well on many-
objective optimization problems as pointed out in some recent
studies [26], [27].

II. MULTI-OBJECTIVE ALGORITHMS

The multi-objective optimization can be formally stated
as follows [1]. Find the vectors T% = [o},25,...,2%]T of
decision variables that simultaneously optimize the M objec-
tive values {f1(%), f2(Z),..., f;(T)}, while satisfying the
constraints, if any.

An important concept of multi-objective optimization is that
of domination. In the context of a maximization problem, a so-
lution 7 is said to dominate T; if Vk € 1,2,..., M, fi(T;) >
fe(@;) and 3k € 1,2,..., M, such that fi(T7) > fu(T5).
Among a set of solutions P, the nondominated set of solutions
P’ are those that are not dominated by any member of the
set P. The non-dominated set of the entire search space S is
the globally Pareto-optimal set. In general, a multi-objective
optimization algorithm usually admits a set of solutions that
are not dominated by any solution encountered by it.

A. Recent MOEA algorithms

During 1993-2003, a number of different evolutionary al-
gorithms were suggested to solve multi-objective optimization
problems. Among these, two well-known ones namely, PAES
[20] and NSGA-II [19], are used in this article for the purpose
of comparison. These are described in brief.

Knowles and Corne [20] suggested a simple MOEA using
a single parent, single child evolutionary algorithm, similar to
(1+1) evolutionary strategy. Instead of using real parameters,
binary strings and bit-wise mutation are used in this algorithm
to create the offspring. After creating the child and evaluating
its objectives, it is compared with respect to the parent. If the
child dominates the parent, then the child is accepted as the
next parent and the iteration continues. On the other hand if
parent dominates the child, the child is discarded and a new
mutated solution (a new solution) is generated from the parent.
However if the parent and the child are nondominating to each
other, then the choice between the child and the parent is
resolved by comparing them with an archive of best solutions
found so far. The child is compared with all members of the



archive to check if it dominates any member of the archive.
If yes, the child is accepted as the new parent and all the
dominated solutions are eliminated from the archive. If the
child does not dominate any member of the archive, both the
parent and the child are checked for their nearness with the
solutions of the archive. If the child resides in a less crowded
region in the parameter space, it is accepted as a parent and a
copy is added to the archive. Generally this crowding concept
is implemented by dividing the whole solution space into d*
subspaces where d is the depth parameter and M is the number
of objective functions. The subspaces are updated dynamically.
The other popular algorithm for multi-objective optimiza-
tion is NSGA-II proposed by Deb et al. [19]. Here, initially
a random parent population P, of size N is created. Then
the population is sorted based on the non-domination relation.
Each solution of the population is assigned a fitness which
is equal to its non-domination level. A child population Qg
is created from the parent population P, by using binary
tournament selection, recombination, and mutation operators.
Generally according to this algorithm, initially a combined
population R; = P, 4+ @, is formed of size R;, which is 2.
Now all the solutions of R; are sorted based on their non-
domination status. If the total number of solutions belonging
to the best non-dominated set F} is smaller than N, F}
is completely included into P(;yq). The remaining members
of the population P(;;1) are chosen from subsequent non-
dominated fronts in the order of their ranking. To choose
exactly N solutions, the solutions of the last included front
are sorted using the crowded comparison operator and the best
among them (i.e., those with larger values of the crowding
distance) are selected to fill in the available slots in P 1.
The new population Pz, 1) is now used for selection, crossover
and mutation to create a new population @) ;1) of size N,
and the process continues. The crowding distance operator is
also used in the parent selection phase in order to break a tie
in the binary tournament selection. This operator is basically
responsible for maintaining diversity in the Pareto front.

B. Recent MOSA algorithm [17]

One of the recently developed MOSA algorithm is by Smith
et al. [17]. Here a dominance based energy function is used. If
the true Pareto front is available then the energy of a particular
solution z is calculated as the total number of solutions that
dominates x. However as the true Pareto front is not available
all the time a proposal has been made to estimate the energy
based on the current estimate of the Pareto front, Fl, which
is the set of mutually non-dominating solutions found thus
far in the process. Then the energy of the current solution x
is the total number of solutions in the estimated front which
dominates x. If ||F;, | is the energy of the new solution z’
and ||F.|| is the energy of the current solution , then energy
difference between the current and the proposed solution is
calculated as 6 E(z', z) = (||F., || — || F,||)/|| F'||. Division by
| F'|| ensures that 6F is always less than unity and provides
some robustness against fluctuations in the number of solutions
in F'. If the size of F' is less than some threshold, then
attainment surface sampling method is adopted to increase the

number of solutions in the final Pareto front. Authors have
perturbed a decision variable with a random number generated
from the laplacian distribution. Two different sets of scaling
factors, traversal scaling which generates moves to a non-
dominated proposal within a front, and location scaling which
locates a front closer to the original front, are kept. These
scaling factors are updated with the iterations.

ITII. ARCHIVED MULTI-OBJECTIVE SIMULATED
ANNEALING (AMOSA)
As mentioned earlier, the AMOSA algorithm is based on
the principle of SA [3]. In this article at a given temperature
T, a new state, s, is selected with a probability

1
—(B(q.T)—B(s,1)) @)
T

Pgs =

1+e
where g is the current state and E(s,T) and F(q,T) are the
corresponding energy values of s and g, respectively. Note that
the above equation automatically ensures that the probability
value lies in between 0 and 1. AMOSA incorporates the
concept of an Archive where the non-dominated solutions
seen so far are stored. In [28] the use of unconstrained
Archive size to reduce the loss of diversity is discussed in
detail. In our approach we have kept the archive size limited
since finally only a limited number of well distributed Pareto-
optimal solutions are needed. Two limits are kept on the size
of the Archive: a hard or strict limit denoted by HL, and
a soft limit denoted by SL. During the process, the non-
dominated solutions are stored in the Archive as and when
they are generated until the size of the Archive increases to
SL. Thereafter if more non-dominated solutions are generated,
these are added to the Archive, the size of which is thereafter
reduced to HL by applying clustering. The structure of the
proposed simulated annealing based AMOSA is shown in
Figure 1. The parameters that need to be set a priori are
mentioned below.

e HL: The maximum size of the Archive on termination.
This set is equal to the maximum number of non-
dominated solutions required by the user.

e SL: The maximum size to which the Archive may be filled
before clustering is used to reduce its size to HL.

e Tmax: Maximum (initial) temperature.

e Tmin: Minimal (final) temperature.

o iter: Number of iterations at each temperature.

e o The cooling rate in SA

The different steps of the algorithm are now explained in
detail.

A. Archive Initialization

The algorithm begins with the initialization of a number
vx SL (v > 1) of solutions. Each of these solutions is
refined by using a simple hill-climbing technique, accepting
a new solution only if it dominates the previous one. This
is continued for a number of iterations. Thereafter the non-
dominated solutions (ND) that are obtained are stored in the
Archive, up to a maximum of HL. In case the number of
nondominated solutions exceeds HL, clustering is applied to



Algorithm AMOSA

Set Tmax, Tmin, HL, SL, iter, o, temp=Tmax.
Initialize the Archive.

while (temp > Tmin)
for (i=0; i< iter; i++)
new-pt=perturb(current-pt).

/* Code for different cases */
if (current-pt dominates new-pt) /* Case 1*/

current-pt = random(Archive). /* randomly chosen solution from the Archive*/

Check the domination status of new-pt and current-pt.

k
( § i—1 Adomi,new—pt)+AdomcuT7‘ent7pt,new7pt

Adomgvg = &

1
1+exp(Adomgyg*temp)

prob=

1
1+exp(Adomgyg*temp)
k

Adom; — )
i1 i,new—pt

prob=

Adomgvg =

if Archive-size > SL

if (new-pt dominates current-pt) /* Case 3 */

and the k points
1

prOb: 1+exp(—Adom,pin)

else set new-pt as current-pt.

else if Archive-size> SL.

End for
temp= qtemp.
End while
if Archive-size > SL
Cluster Archive to HL number of clusters.

/* k=total-no-of points in the Archive which dominate new-pt, k > 0. */

Set new-pt as current-pt with probability=prob

if (current-pt and new-pt are non-dominating to each other) /* Case 2*/
Check the domination status of new-pt and points in the Archive.
if (new-pt is dominated by k (k >1) points in the Archive) /* Case 2(a)*/

Set new-pt as current-pt with probability=prob.
if (new-pt is non-dominating w.r.t all the points in the Archive) /* Case 2(b)*/
Set new-pt as current-pt and add new-pt to the Archive.

Cluster Archive to HL number of clusters.
if (new-pt dominates k, (k >1) points of the Archive) /* Case 2(c)*/
Set new-pt as current-pt and add it to the Archive.
Remove all the £ dominated points from the Archive.

Check the domination status of new-pt and points in the Archive.
if (new-pt is dominated by k (k >1) points in the Archive) /* Case 3(a)*/
Adompmin = minimum of the difference of domination amounts between the new-pt

Set point of the archive which corresponds to Adommin as current-pt with probability=prob

if (new-pt is non-dominating with respect to the points in the Archive) /* Case 3(b) */
Set new-pt as the current-pt and add it to the Archive.
if current-pt is in the Archive, remove it from the Archive.

Cluster Archive to HL number of clusters.
if (new-pt dominates k other points in the Archive ) /* Case 3(c)*/
Set new-pt as current-pt and add it to the Archive.
Remove all the k dominated points from the Archive.

Fig. 1. The AMOSA Algorithm

reduce the size to HL (the clustering procedure is explained
below). That means initially Archive contains a maximum of
HL number of solutions.

In the initialization phase it is possible to get an Archive of
size one. In MOSA [17], in such cases, other newly generated
solutions which are dominated by the archival solution will
be indistinguishable. In contrast, the amount of domination
as incorporated in AMOSA will distinguish between “more
dominated” and “less dominated” solutions. However, in future
we intend to use a more sophisticated scheme, in line with that
adopted in MOSA.

B. Clustering the Archive Solutions

Clustering of the solutions in the Archive has been incorpo-
rated in AMOSA in order to explicitly enforce the diversity
of the non-dominated solutions. In general, the size of the
Archive is allowed to increase up to SL (> HL), after which
the solutions are clustered for grouping the solutions into HL
clusters. Allowing the Archive size to increase upto SL not
only reduces excessive calls to clustering, but also enables
the formation of more spread out clusters and hence better
diversity. Note that in the initialization phase, clustering is



executed once even if the number of solutions in the Archive
is less than SL, as long as it is greater than HL. This enables it
to start with atmost HL non-dominated solutions and reduces
excessive calls to clustering in the initial stages of the AMOSA
process.

For clustering, the well-known Single linkage algorithm
[29] is used. Here, the distance between any two clusters
corresponds to the length of the shortest link between them.
This is similar to the clustering algorithm used in SPEA [25],
except that they have used average linkage method [29]. After
HL clusters are obtained, the member within each cluster
whose average distance to the other members is the minimum,
is considered as the representative member of the cluster. A
tie is resolved arbitrarily. The representative points of all the
HL clusters are thereafter stored in the Archive.

C. Amount of Domination

As already mentioned, AMOSA uses the concept of amount
of domination in computing the acceptance probability of a
new solution. Given two solutions ¢ and b, the amount of
domination is defined as
Adoma,b.: Hz‘]\;,,ﬁ(a#ﬁ(b) Ifl(a)R;ﬂ(b)l where M = number
of objectives and R; is the range of the ith objective. Note
that in several cases, R; may not be known a priori. In these
situations, the solutions present in the Archive along with the
new and the current solutions are used for computing it. The
concept of Adom,,;, is illustrated pictorially in Figure 2 for
a two objective case. Adomg is used in AMOSA while
computing the probability of acceptance of a newly generated
solution.

e

f1

Fig. 2. Total amount of domination between the two solutions A and B =
the area of the shaded rectangle

D. The Main AMOSA Process

One of the points, called current-pt, is randomly se-
lected from Archive as the initial solution at temperature
temp=Tmax. The current-pt is perturbed to generate a new
solution called new-pt. The domination status of new-pt is
checked with respect to the current-pt and solutions in Archive.

Based on the domination status between current-pt and new-
pt three different cases may arise. These are enumerated below.

e Case 1: current-pt dominates the new-pt and k (k > 0)
points from the Archive dominate the new-pt.
This situation is shown in Figure 3. Here Figure 3(a)

and (b) denote the situations where ¥ = 0 and £ > 1
respectively. ( Note that all the figures correspond to a
two objective maximization problem.) In this case, the
new-pt is selected as the current-pt with

1

1+ exp(Adomgyg * temp)’

probability = 2)

k
where Adomavg=( (Zi:l Adomi,newfpt) + Adomcurrentfpt,newfp

1). Note that Adomgyg denotes the average amount of
domination of the new-pt by (k + 1) points, namely,
the current-pt and k points of the Archive. Also, as
k increases, Adomg,, will increase since here the
dominating points that are farther away from the new-pt
are contributing to its value.

Lemma: When k = 0, the current-pt is on the archival
front.

Proof: In case this is not the case, then some point, say A,
in the Archive dominates it. Since current-pt dominates
the new-pt, by transitivity, A will also dominate the new-
pt. However, we have considered that no other point in the
Archive dominates the new-pt as k = 0. Hence proved.
However if k£ > 1, this may or may not be true.

Case 2: current-pt and new-pt are non-dominating with
respect to each other.

Now, based on the domination status of new-pt and
members of Archive, the following three situations may
arise.

1) new-pt is dominated by k points in the Archive
where k& > 1. This situation is shown in Figure 4(a).
The new-pt is selected as the current-pt with

1

(14 exp(Adomgyg * temp))

probability = , 3)
where Adomgyg = Zle(AdommGw_pt)/k. Note
that here the current-pt may or may not be on the
archival front.

2) new-pt is non-dominating with respect to the other
points in the Archive as well. In this case the new-
pt is on the same front as the Archive as shown
in Figure 4(b). So the new-pt is selected as the
current-pt and added to the Archive. In case the
Archive becomes overfull (i.e., the SL is exceeded),
clustering is performed to reduce the number of
points to HL.

3) new-pt dominates k (k >1) points of the Archive.
This situation is shown in Figure 4(c). Again, the
new-pt is selected as the current-pt, and added to
the Archive. All the k dominated points are removed
from the Archive. Note that here too the current-pt
may or may not be on the archival front.

o Case 3: new-pt dominates current-pt

Now, based on the domination status of new-pt and
members of Archive, the following three situations may
arise.

1) new-pt dominates the current-pt but k (k > 1) points
in the Archive dominate this new-pt. Note that this
situation (shown in Figure 5(a)) may arise only if the



current-pt is not a member of the Archive. Here, the
minimum of the difference of domination amounts
between the new-pt and the k points, denoted by
Adomin, of the Archive is computed. The point
from the Archive which corresponds to the minimum
difference is selected as the current-pt with prob =
m. Otherwise the new-pt is selected
as the current-pt. Note that according to the SA
paradigm, the new-pt should have been selected
with probability 1. However, due to the presence
of Archive, it is evident that solutions still better
than new-pt exist. Therefore the new-pt and the
dominating points in the Archive that is closest to
the new-pt (corresponding to Adom.,;,) compete
for acceptance. This may be considered a form
of informed reseeding of the annealer only if the
Archive point is accepted, but with a solution closest
to the one which would otherwise have survived in
the normal SA paradigm.

2) new-pt is non-dominating with respect to the points
in the Archive except the current-pt if it belongs to
the Archive. This situation is shown in Figure 5(b).
Thus new-pt, which is now accepted as the current-
pt, can be considered as a new nondominated so-
lution that must be stored in Archive. Hence new-
pt is added to the Archive. If the current-pt is in
the Archive, then it is removed. Otherwise, if the
number of points in the Archive becomes more than
the SL, clustering is performed to reduce the number
of points to HL.

Note that here the current-pt may or may not be on
the archival front.

3) new-pt also dominates k (k > 1), other points, in
the Archive (see Figure 5(c)). Hence, the new-pt is
selected as the current-pt and added to the Archive,
while all the dominated points of the Archive are
removed. Note that here the current-pt may or may
not be on the archival front.

The above process is repeated iter times for each tem-
perature (femp). Temperature is reduced to o X temp, using
the cooling rate of « till the minimum temperature, Tmin, is
attained. The process thereafter stops, and the Archive contains
the final non-dominated solutions.

Note that in AMOSA, as in other versions of multi-objective
SA algorithms, there is a possibility that a new solution worse
than the current solution may be selected. In most other
MOEAs, e.g., NSGA-II, PAES, if a choice needs to be made
between two solutions = and ¥, and if ¥ dominates ¥y, then
is always selected. It may be noted that in single objective
EAs or SA, usually a worse solution also has a non-zero
chance of surviving in subsequent generations; this leads to
a reduced possibility of getting stuck at suboptimal regions.
However, most of the MOEAs have been so designed that this
characteristics is lost. The present simulated annealing based
algorithm provides a way of incorporating this feature.

E. Complexity Analysis

The complexity analysis of AMOSA is provided in this
section. The basic operations and their worst case complexities
are as follows:

1) Archive initialization: O(SL).

2) Procedure to check the domination status of any two

solutions: O(M), M = # objectives.

3) Procedure to check the domination status between a

particular solution and the Archive members: O(M X SL).

4) Single linkage clustering: O(SL? x log(SL)) [30].

5) Clustering procedure is executed

« once after initialization if [ND| > HL
o after each (SL—HL) number of iterations.
« at the end if final |Archive| > HL

So maximum number of times the Clustering procedure
is called=(Totallter/(SL—HL))+2.

Therefore, total complexity due to Clustering procedure
is O((Totallter/(SL—HL)) x SL? x log(SL)).

Total complexity of AMOSA becomes

Totallter

(SL+M+MxSL)x (Total]ter)—i—m

x SL*xlog(SL).

“)
Let SL= OxHL where 3 > 2 and HL = N where N is
the population size in NSGA-II and archive size in PAES.
Therefore overall complexity of the AMOSA becomes

(Totallter) x (8 x N+ M+ M x 3 x N+ (82/(8 —1))

xN xlog(BN)), (5)

or,

O(Totallter x N x (M + log(N))). (6)

Note that the total complexity of NSGA-II is O(Totallterx M x
N?) and that of PAES is O(Totallter xM x N). NSGA-
IT complexity depends on the complexity of non-dominated
procedure. With the best procedure, the complexity is
O(Totallterx M x N x log(N)).

IV. SIMULATION RESULTS

In this section, we first describe comparison metrics used for
the experiments. The performance analysis of both the binary-
coded AMOSA and real-coded AMOSA are also provided in
this section.

A. Comparison Metrics

In multi-objective optimization, there are basically two
functionalities that an MOO strategy must achieve regarding
the obtained solution set [1]. It should converge as close to
the true PO front as possible and it should maintain as diverse
a solution set as possible.

The first condition clearly ensures that the obtained solu-
tions are near optimal and the second condition ensures that
a wide range of trade-off solutions is obtained. Clearly, these
two tasks cannot be measured with one performance measure
adequately. A number of performance measures have been
suggested in the past. Here we have mainly used three such



2 (maximize)

Points in the archive

Current

-

fl. .
maximize

()

£2(maximize)

Points in the archive

Current

-

(b)

f1(maximize)

Fig. 3.

archive (b) Some solutions in the Archive dominate New

f2(maximize)

Points in the archive

Current

f2(maximize)

Points in the archive

Current

f2(maximize)

Different cases when New is dominated by Current (a) New is non-dominating with respect to the solutions of Archive except Current if it is in the

Points in the archieve

Current|

New

- oNew

el

-

f1(maximize)

(a)

(b)

-

()

f1(maximize)

f1(maximize)

Fig. 4. Different cases when New and Current are non-dominating (a) Some solutions in Archive dominates New (b) New is non-dominating with respect
to all the solutions of Archive (¢c) New dominates k (k > 1) solutions in the Archive

f2(maximize)

Points in the archive

Current

-

f2(maximize) f2(maximize)
Points in the archive Points in the archive
New
Current
New
0 Ciirrent T\ T\
f1(maximize)
(a) (b)
Fig. 5.

solutions in the Archive except Current, if it is in the archive (c) New domina

performance measures. The first measure is the Convergence
measure v [19]. It measures the extent of convergence of the
obtained solution set to a known set of PO solutions. Lower the
value of ~, better is the convergence of the obtained solution
set to the true PO front. The second measure called Purity [21],
[22] is used to compare the solutions obtained using different
MOO strategies. It calculates the fraction of solutions from a
particular method that remains nondominating when the final
front solutions obtained from all the algorithms are combined.
A value near to 1(0) indicates better (poorer) performance.
The third measure named Spacing was first proposed by
Schott [23]. It reflects the uniformity of the solutions over
the non-dominated front. It is shown in [21] that this measure

f1(maximize) f1(maximize)

()

Different cases when New dominates the Current (a) New is dominated by some solutions in Archive (b) New is non-dominating with respect to the

tes some solutions of Archive other than Current

will fail to give adequate result in some situations. In order to
overcome the above limitations, a modified measure, named
MinimalSpacing is proposed in [21]. Smaller values of Spacing
and MinimalSpacing indicate better performance.

It may be noted that if an algorithm is able to approximate
only a portion of the true PO front, not its full extents, none
of the existing measures, will be able to reflect this. In case
of discontinuous PO front, this problem becomes severe when
an algorithm totally misses a sub-front. Here a performance
measure which is very similar to the measure used in [8] and
[24] named displacement is used that is able to overcome
this limitation. It measures how far the obtained solution set
is from a known set of PO solutions. In order to compute



displacement measure, a set P* consisting of uniformly
spaced solutions from the true PO front in the objective space
is found (as is done while calculating ~y). Then displacement
is calculated as
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i=1

displacement =
g ]
where () is the obtained set of final solutions, and d(i, j) is
the Euclidean distance between the ith solution of P* and jth
solution of Q. Lower the value of this measure, better is the
convergence to and extent of coverage of the true PO front.

B. Comparison of Binary Encoded AMOSA with NSGA-II and
PAES

Firstly, we have compared the binary encoded AMOSA
with the binary-coded NSGA-II and PAES algorithm. For
AMOSA binary mutation is used. Seven test problems have
been considered for the comparison purpose. These are SCH1
and SCH2 [1], Debl and Deb4 [31], ZDT1, ZDT2, ZDT6 [1].
All the algorithms are executed ten times per problem and
the results reported are the average values obtained for the
ten runs. In NSGA-II the crossover probability (p.) is kept
equal to 0.9. For PAES the depth value d is set equal to 5.
For AMOSA the cooling rate « is kept equal to 0.8. The
number of bits assigned to encode each decision variable
depends on the problem. For example in ZDT1, ZDT2 and
ZDT6 which all are 30-variable problems, 10 bits are used to
encode each variable, for SCH1 and SCH2 which are single
variable problems and for Debl and Deb4 which are two
variable problems, 20 bits are used to encode each decision
variable. In all the approaches, binary mutation applied with a
probability of p,, = 1/I, where [ is the string length, is used
as the perturbation operation. We have chosen the values of
Tmax (maximum value of the temperature), Tmin (minimum
value of the temperature) and ifer (number of iterations at
each temperature) so that total number of fitness evaluations of
the three algorithms becomes approximately equal. For PAES
and NSGA-II, identical parameter settings as suggested in the
original studies have been used. Here the population size in
NSGA-II, and archive sizes in AMOSA and PAES are set
to 100. Maximum iterations for NSGA-II and PAES are 500
and 50000 respectively. For AMOSA, Tmaz = 200, T'min =
1077, iter = 500. The parameter values were determined after
extensive sensitivity studies, which are omitted here to restrict
the size of the article.

1) Discussions of the Results: The Convergence and Purity
values obtained using the three algorithms is shown in Table
I. AMOSA performs best for ZDT1, ZDT2, ZDT6 and Debl
in terms of «y. For SCH1 all three are performing equally well.
NSGA-II performs well for SCH2 and Dev4. Interestingly, for
all the functions, AMOSA is found to provide more number of
overall nondominated solutions than NSGA-II. (This is evident
from the quantities in parentheses in Table I where % indicates
that on an average the algorithm produced y solutions of
which x remained good even when solutions from other MOO
strategies are combined). AMOSA took 10 seconds to provide

the first PO solution compared to 32 seconds for NSGA-II in
case of ZDT1. From Table I it is again clear that AMOSA and
PAES are always giving more number of distinct solutions than
NSGA-II.

Table II shows the Spacing and MinimalSpacing measure-
ments. AMOSA is giving the best performance of Spacing
most of the times while PAES performs the worst. This is
also evident from Figures 6 and 7 which show the final PO
fronts of SCH2 and Deb4 obtained by the three methods for
the purpose of illustration (due to lack of space final PO fronts
given by three methods for some test problems are omitted).
With respect to MinimalSpacing the performances of AMOSA
and NSGA-II are comparable.

Table IIT shows the value of displacement for five problems,
two with discontinuous and three with continuous PO fronts.
AMOSA performs the best in almost all the cases. The utility
of the new measure is evident in particular for Deb4 where
PAES performs quite poorly (see Figure 7). Interestingly the
Convergence value for PAES (Table I) is very good here,
though the displacement correctly reflects that the PO front
has been represented very poorly.

Table IV shows the time taken by the algorithms for the
different test functions. It is seen that PAES takes less time in
six of the seven problems because of its smaller complexity.
AMOSA takes less time than NSGA-II in 30 variable problems
like ZDT1, ZDT2, 10 variable problem ZDT6. But for single
and two variable problems SCH1, SCH2, Debl and Deb4,
AMOSA takes more time than NSGA-II. This may be due to
complexity of its clustering procedure. Generally for single or
two variable problems this procedure dominates the crossover
and ranking procedures of NSGA-II. But for 30 variable prob-
lems the scenario is reversed. This is because of the increased
complexity of ranking and crossover (due to increased string
length) in NSGA-IL.

C. Comparison of Real-coded AMOSA with the Algorithm of
Smith et al. [17] and Real-coded NSGA-II

The real-coded version of the proposed AMOSA has also
been implemented. The mutation is done as suggested in [17].
Here a new string is generated from the the old string x by
perturbing only one parameter or decision variable of x. The
parameter to be perturbed is chosen at random and perturbed
with a random variable € drawn from a Laplacian distribution,
p(e) oc e 7€l where the scaling factor o sets magnitude
of the perturbation. A fixed scaling factor equals to 0.1 is
used for mutation. The initial temperature is selected by the
procedure mentioned in [17]. That is, the initial temperature,
Tmaz, is calculated by using a short ‘burn-in’ period during
which all solutions are accepted and setting the temperature
equal to the average positive change of energy divided by
In(2). Here T'min is kept equal to 1075 and the temperature
is adjusted according to Ty = a*T'max, where « is set equal
to 0.8. For NSGA-II population size is kept equal to 100
and total number of generations is set such that the total
number of function evaluations of AMOSA and NSGA-II
are the same. For AMOSA the archive size is set equal to
100. (However, in a part of investigations, the archive size
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TABLE I

Convergence AND Purity MEASURES ON THE TEST FUNCTIONS FOR BINARY ENCODING

Test Convergence Purity

Problem [ AMOSA | PAES NSGA-II | AMOSA PAES NSGA-II

SCH1 0.0016 0.0016 | 0.0016 0.9950(99.5/100) | 0.9850(98.5/100) 1(94/94)

SCH2 0.0031 0.0015 | 0.0025 0.9950(99.5/100) | 0.9670(96.7/100) 0.9974(97/97.3)
ZDT1 0.0019 0.0025 | 0.0046 0.8350(83.5/100) | 0.6535(65.4/100) 0.970(68.64/70.6)
ZDT2 0.0028 0.0048 | 0.0390 0.8845(88.5/100) | 0.4050(38.5/94.9) | 0.7421(56.4/76)
ZDT6 0.0026 0.0053 | 0.0036 1(100/100) 0.9949(98.8/99.3) | 0.9880(66.5/67.3)
Debl 0.0046 0.0539 | 0.0432 0.91(91/100) 0.718(71.8/100) 0.77(71/92)

Deb4 0.0026 0.0025 | 0.0022 0.98(98,/100) 0.9522(95.2/100) 0.985(88.7/90)

TABLE II

Spacing AND MinimalSpacing MEASURES ON THE TEST FUNCTIONS FOR BINARY ENCODING

Test Spacing MinimalSpacing
Problem [ AMOSA | PAES NSGA-II | AMOSA | PAES NSGA-II
SCH1 0.0167 0.0519 | 0.0235 0.0078 0.0530 | 0.0125
SCH?2 0.0239 0.5289 | 0.0495 N.A. N.A. N.A.
ZDT1 0.0097 0.0264 | 0.0084 0.0156 0.0265 | 0.0147
ZDT?2 0.0083 0.0205 | 0.0079 0.0151 0.0370 | 0.0130
ZDT6 0.0051 0.0399 | 0.0089 0.0130 0.0340 | 0.0162
Debl 0.0166 0.0848 | 0.0475 0.0159 0.0424 | 0.0116
Deb4 0.0053 0.0253 | 0.0089 N.A. N.A. N.A.

is kept unlimited as in [17]. The results are compared to
those obtained by MOSA [17] and provided in [32].) AMOSA
is executed for a total of 5000, 1000, 15000, 5000, 1000,
5000 and 9000 run lengths respectively for DTLZ1, DTLZ2,
DTLZ3, DTLZ4, DTLZS, DTLZS and DTLZ6. Total number

of iterations, iter, per temperature is set accordingly. We have
run real-coded NSGA-II (code obtained from KANGAL site:
http://www iitk.ac.in/kangal/codes.html). For NSGA-II the fol-
lowing parameter setting is used: probability of crossover
=0.99, probability of mutation=(1/1), where [ is the string
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The final non-dominated front obtained by (a) AMOSA (b) MOSA for the test problems (1) DTLZ1 (2) DTLZ2 (3) DTLZ3

TABLE III
NEW MEASURE displacement ON THE TEST FUNCTIONS FOR BINARY ENCODING

Algorithm | SCH2 | Deb4 zZDT1 | ZDT2 | ZDT6

AMOSA 0.0230 | 0.0047 | 0.0057 | 0.0058 | 0.0029

PAES 0.6660 | 0.0153 | 0.0082 | 0.0176 | 0.0048

NSGA-II 0.0240 | 0.0050 | 0.0157 | 0.0096 | 0.0046
TABLE IV

TIME TAKEN BY DIFFERENT PROGRAMS (IN SEC) FOR BINARY ENCODING

Algorithm | SCH1 | SCH2 | Debl | Debd | ZDT1 | ZDT2 | ZDT6
AMOSA 15 14.5 20 20 58 56 12
PAES 6 5 5 15 17 18 16
NSGA-II 11 11 14 14 7 60 21

length, distribution index for the crossover operation=10, dis-
tribution index for the mutation operation=100.

In MOSA [17] authors have used unconstrained archive
size. Note that the archive size of AMOSA and the pop-
ulation size of NSGA-II are both 100. For the purpose of
comparison with MOSA that has an unlimited archive [17],

the clustering procedure (adopted for AMOSA), is used to
reduce the number of solutions of [32] to 100. Comparison
is performed in terms of Purity, Convergence and Minimal
Spacing. Table V shows the Purity, Convergence, Minimal
Spacing measurements for DTLZ1-DTLZ6 problems obtained
after application of AMOSA, MOSA and NSGA-II. It can
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be seen from this table that AMOSA performs the best in
terms of Purity and Convergence for DTLZ1, DTLZ3, DTLZS,
DTLZ6. In DTLZ2 and DTLZ4 the performance of MOSA is
marginally better than that of AMOSA. NSGA-II performs the
worst among all. Table V shows the Minimal Spacing values
obtained by the 3 algorithms for DTLZ1-DTLZ6. AMOSA
performs the best in all the cases.

As mentioned earlier, for comparing the performance of
MOSA (by considering the results reported in [32]), a version
of AMOSA without clustering and with unconstrained archive
is executed. The results reported here are the average over 10
runs. Table VI shows the corresponding Purity, Convergence
and Minimal Spacing values. Again AMOSA performs much
better than MOSA for all the test problems except DTLZ4. For
DTLZA4, the MOSA performs better than that of AMOSA in
terms of both Purity and Convergence values. Figure 8 shows
final Pareto-optimal front obtained by AMOSA and MOSA
for DTLZ1-DTLZ3 while Figure 9 shows the same for DTLZ5
and DTLZ6. As can be seen from the figures, AMOSA appears
to be able to better approximate the front with more dense
solutions as compared to MOSA.

It was mentioned in [33] that for a particular test problem,
almost 40% of the solutions provided by an algorithm with
truncation of archive got dominated by the solutions provided
by an algorithm without archive truncation. However the
experiments we conducted did not adequately justify this
finding. Let us denote the set of solutions of AMOSA with
and without clustering as S, and S, respectively. We found
that for DTLZ1, 12.6% of S. were dominated by S, while
4% of Sy were dominated by S.. For DTLZ2, 5.1% of S,
were dominated by S. while 5.4% of S. were dominated by
Swe- For DTLZ3, 22.38% of S, were dominated by .S, while
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The final non-dominated front obtained by (a) AMOSA (b) MOSA for the test problems (1) DTLZ5 (2) DTLZ6

0.53% of S. were dominated by S,,.. For DTLZ4, all the
members of S, and S, are non-dominating to each other
and the solutions are same. Because execution of AMOSA
without clustering doesn’t provide more than 100 solutions.
For DTLZS, 10.4% of S,,. were dominated by S. while 0.5%
of S. were dominated by S,,.. For DTLZ6, all the members
of Sy and S, are non-dominating to each other.

To have a look at the performance of the AMOSA on a
four-objective problem, we apply AMOSA and NSGA-II to
the 13-variable DTLZ2 test problem. This is referred to as
DTLZ2 4. The problem has a spherical Pareto-front in four
dimensions given by the equation: f7+ f2+ f2+ f? = 1 with
fi €0,1] for i = 1 to 4. Both the algorithms are applied for a
total of 30,000 function evaluations (for NSGA-II popsize=100
and number of generations=300) and the Purity, Convergence
and Minimal Spacing values are shown in Table VII. AMOSA
performs much better than NSGA-II in terms of all the three
measures.

The proposed AMOSA and NSGA-II are also compared
for DTLZ1.5 (9-variable 5 objective version of the test prob-
lem DTLZI1), DTLZ1.10 (14-variable 10 objective version
of DTLZI1) and DTLZ1_15 (19 variable 15 objective version
of DTLZI1). The three problems have a spherical Pareto-
front in their respective dimensions given by the equation
Z?il fi = 0.5 where M is the total number of objective
functions. Both the algorithms are executed for a total of
1,00,000 function evaluations for these three test problems
(for NSGA-II popsize=200, number of generations=500) and
the corresponding Purity, Convergence and Minimal Spacing
values are shown in Table VII. Convergence value indicates
that NSGA-II doesn’t converge to the true PO front where
as AMOSA reaches the true PO front for all the three cases.



TABLE V

Convergence AND Purity MEASURES ON THE 3 OBJECTIVE TEST FUNCTIONS WHILE Archive IS BOUNDED TO 100

Test Convergence Purity MinimalSpacing

Problem AMOSA | MOSA NSGA-II | AMOSA MOSA NSGA-II AMOSA | MOSA | NSGA-II

DTLZ1 | 0.01235 | 0.159 13.695 0.857 0.56 0.378 0.0107 0.1529 | 0.2119
(85.7/100) (28.35/75) (55.7/100)

DTLZ2 | 0.014 0.01215 | 0.165 0.937 0.9637 0.23 0.0969 0.1069 | 0.1236
(93.37/100) | (96.37/100) (23.25/100)

DTLZ3 | 0.0167 0.71 20.19 0.98 0.84 0.232 0.1015 0.152 0.14084
(93/95) (84.99/100) (23.2/70.6)

DTLZ4 | 0.28 0.21 0.45 0.833 0.97 0.7 0.20 0.242 0.318
(60/72) (97/100) (70/100)

DTLZ5 | 0.00044 | 0.0044 0.1036 1 0.638 0.05 0.0159 0.0579 | 0.128
(97/97) (53.37/83.6) | (5/100)

DTLZ6 | 0.043 0.3722 0.329 0.9212 0.7175 0.505 0.1148 0.127 0.1266
(92.12/100) | (71.75/100) (50.5/100)

12

TABLE VI
Convergence, Purity AND Minimal Spacing MEASURES ON THE 3 OBJECTIVES TEST FUNCTIONS BY AMOSA AND MOSA WHILE Archive 1S UNBOUNDED

Test Convergence Purity MinimalSpacing
Problem AMOSA | MOSA | AMOSA MOSA AMOSA | MOSA
DTLZ1 | 0.010 0.1275 | 0.99(1253.87/1262.62) | 0.189(54.87/289.62) | 0.064 0.083.84
DTLZ2 | 0.0073 0.0089 | 0.96(1074.8/1116.3) 0.94(225/239.2) 0.07598 | 0.09595
DTLZ3 | 0.013 0.025 0.858(1212/1412.8) 0.81(1719/2003.9) 0.0399 0.05
DTLZ4 | 0.032 0.024 0.8845(88.5/100) 0.4050(38.5/94.9) 0.1536 0.089
DTLZ5 | 0.0025 0.0047 | 0.92(298/323.66) 0.684(58.5/85.5) 0.018 0.05826
DTLZ6 | 0.0403 0.208 0.9979(738.25/739.75) | 0.287(55.75/194.25) | 0.0465 0.0111
TABLE VII
Convergence, Purity AND Minimal Spacing MEASURES ON THE DTLZ2 4, DTLZ15, DTLZ1_10 AND DTLZ1_15 TEST FUNCTIONS BY AMOSA AND
NSGA-II
Test Convergence Purity Minimal Spacing
Problem AMOSA | NSGA-TT | AMOSA NSGA-II AMOSA | NSGA-T
DTLZ24 0.2982 0.4563 0.9875(98.75/100) | 0.903(90.3/100) | 0.1876 0.22
DTLZ15 0.0234 306.917 | 1 0 0.1078 0.165
DTLZ1.10 | 0.0779 355.957 | 1 0 0.1056 0.2616
DTLZ1.15 | 0.193 357.77 1 0 0.1 0.271

The Purity measure also indicates this. The results on many-
objective optimization problems show that AMOSA peforms
much better than NSGA-II. These results support the fact that
Pareto ranking-based MOEAs such as NSGA-II do not work
well on many-objective optimization problems as pointed out
in some recent studies [26], [27].

D. Discussion on Annealing Schedule

The annealing schedule of an SA algorithm consists of (i)
initial value of temperature (7'maz), (ii) cooling schedule, (iii)
number of iterations to be performed at each temperature and
(iv) stopping criterion to terminate the algorithm. Initial value
of the temperature should be so chosen that it allows the SA
to perform a random walk over the landscape. Some methods
to select the initial temperature are given in detail in [18]. In
this article, as in [17], we have set the initial temperature to
achieve an initial acceptance rate of approximately 50% on
derogatory proposals. This is described in Section VI.C.

Cooling schedule determines the functional form of the
change in temperature required in SA. The most frequently
used decrement rule, also used in this article, is the geometric

schedule given by: Tpy1 = a X Tj, where a (0 < a <
1) denotes the cooling factor. Typically the value of « is
chosen in the range between 0.5 and 0.99. This cooling
schedule has the advantage of being very simple. Some other
cooling schedules available in the literature are logarithmic,
Cauchy and exponential. More details about these schedules
are available in [18]. The cooling schedule should be so
chosen that it is able to strike a good balance between
exploration and exploitation of the search space. In order
to investigate the performance of AMOSA with another
cooling schedule, the following is considered (obtained from
http://members.aol.com/btluke/simanf1.htm):

Ty i/N
E_%<%> '

Here N is the total number of iterations, T is the final
temperature and 7Ty is the initial temperature. 7; is the
temperature at iteration ;. AMOSA with the above cooling
schedule is applied on ZDT1. The Convergence and Minimal
Spacing values obtained are 0.008665 and 0.017 respectively.
Comparing with the corresponding values in Table I and II it is
found that the results with this cooling schedule are somewhat



poorer. However, an exhaustive sensitivity study needs to be
performed for AMOSA.

The third component of an annealing schedule is the number
of iterations performed at each temperature. It should be so
chosen that the system is sufficiently close to the stationary
distribution at that temperature. As suggested in [18], the value
of the number of iterations should be chosen depending on
the nature of the problem. Several criteria for termination of
an SA process have been developed. In some of them, the
total number of iterations that the SA procedure must execute
is given, where as in some other, the minimum value of the
temperature is specified. Detailed discussion on this issue can
be found in [18].

V. DISCUSSION AND CONCLUSIONS

In this article a simulated annealing based multi-objective
optimization algorithm has been proposed. The concept of
amount of domination is used in solving the multi-objective
optimization problems. In contrast to most other MOO algo-
rithms, AMOSA selects dominated solutions with a probability
that is dependent on the amount of domination measured
in terms of the hypervolume between the two solutions in
the objective space. The results of binary-coded AMOSA
are compared with those of two existing well-known multi-
objective optimization algorithms - NSGA-II (binary-coded)
[19] and PAES [20] for a suite of seven 2-objective test
problems having different complexity levels. In a part of the
investigation, comparison of the real-coded version of the
proposed algorithm is conducted with a very recent multi-
objective simulated annealing algorithm MOSA [17] and real-
coded NSGA-II for six 3-objective test problems. Real-coded
AMOSA is also compared with real-coded NSGA-II for some
4,5, 10 and 15 objective test problems. Several different com-
parison measures like Convergence, Purity, MinimalSpacing,
and Spacing, and the time taken are used for the purpose
of comparison. In this regard, a measure called displacement
has also been used that is able to reflect whether a front is
close to the PO front as well as its extent of coverage. A
complexity analysis of AMOSA is performed. It is found that
its complexity is more than that of PAES but smaller than that
of NSGA-IL

It is seen from the given results that the performance of the
proposed AMOSA is better than that of MOSA and NSGA-II
in a majority of the cases, while PAES performs poorly in
general. AMOSA is found to provide more distinct solutions
than NSGA-II in each run for all the problems; this is a de-
sirable feature in MOO. AMOSA is less time consuming than
NSGA-II for complex problems like ZDT1, ZDT2 and ZDT6.
Moreover, for problems with many objectives, the performance
of AMOSA is found to be much better than that of NSGA-
II. This is an interesting and appealing feature of AMOSA
since Pareto ranking-based MOEAs, such as NSGA-II [19]
do not work well on many-objective optimization problems as
pointed out in some recent studies [26], [27]. An interesting
feature of AMOSA, as in other versions of multi-objective SA
algorithms, is that it has a non-zero probability of allowing
a dominated solution to be chosen as the current solution

13

in favour of a dominating solution. This makes the problem
less greedy in nature; thereby leading to better performance
for complex and/or deceptive problems. Note that it may be
possible to incorporate this feature as well as the concept of
amount of domination in other MOO algorithms in order to
improve the performance.

There are several ways in which the proposed AMOSA
algorithm may be extended in future. The main time con-
suming procedure in AMOSA is the clustering part. Some
other more efficient clustering techniques or even the PAES
like grid based strategy, can be incorporated for improving its
performance. Implementation of AMOSA with unconstrained
archive is another interesting area to pursue in future. An
algorithm, unless analyzed theoretically, is good for only the
experiments conducted. Thus a theoretical analysis of AMOSA
needs to be performed in the future in order to study its
convergence properties. Authors are currently trying to develop
a proof for the convergence of AMOSA in the lines of the
proof for single objective SA given by Geman and Geman [4].
As has been mentioned in [18], there are no firm guidelines
for choosing the parameters in an SA-based algorithm. Thus,
an extensive sensitivity study of AMOSA with respect to its
different parameters, notably the annealing schedule, needs to
be performed. Finally, application of AMOSA to several real-
life domains e.g., VLSI system design [34], remote sensing
imagery [35], data mining and Bioinformatics [36], needs to
be demonstrated. The authors are currently working in this
direction.
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