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Abstract— In this article, a new symmetry based genetic
clustering algorithm is proposed which automatically evolves the
number of clusters as well as the proper partitioning from a
data set. Strings comprise both real numbers and the don’t
care symbol in order to encode a variable number of clusters.
Here, assignment of points to different clusters are done based
on a point symmetry based distance rather than the Euclidean
distance. A newly proposed point symmetry based cluster validity
index, Sym-index, is used as a measure of the validity of the
corresponding partitioning. The algorithm is therefore able to
detect both convex and non-convex clusters irrespective of their
sizes and shapes as long as they possess the symmetry property.
Kd-tree based nearest neighbor search is used to reduce the
complexity of computing point symmetry based distance. A
proof on the convergence property of variable string length
genetic algorithm with point symmetry based distance clustering
(VGAPS-clustering) technique is also provided. The effectiveness
of VGAPS-clustering compared to variable string length Genetic
K-means algorithm (GCUK-clustering) and one recently devel-
oped weighted sum validity function based hybrid niching genetic
algorithm (HNGA-clustering) is demonstrated for nine artificial
and five real-life data sets.

Index Terms— Unsupervised classification, cluster validity in-
dex, symmetry, point symmetry based distance, Kd tree, Genetic
Algorithms, Real encoding

I. INTRODUCTION

Clustering [1] is a core problem in data mining with innumer-
able applications spanning many fields. In order to mathematically
identify clusters in a data set, it is usually necessary to first
define a measure of similarity or proximity which will establish
a rule for assigning patterns to the domain of a particular cluster
centroid. The measure of similarity is usually data dependent.
It may be noted that one of the basic features of shapes and
objects is symmetry. Symmetry is considered as a pre-attentive
feature which enhances recognition and reconstruction of shapes
and objects [2]. As symmetry is so common in the natural world,
it can be assumed that some kind of symmetry exists in the
clusters also. Based on this, a new point symmetry (PS) based
distance dps (PS-distance) is developed in [3]. This overcomes
the limitations of an earlier point symmetry distance proposed in
[4]. For reducing the complexity of computing the PS-distance,
use of Kd-tree [5] is incorporated in [3]. This proposed distance
is then utilized to develop a genetic algorithm based clustering
technique, GAPS, where the number of clusters is assumed to be
known apriori [3].

Determining the appropriate number of clusters from a given
data set is an important consideration in clustering. For this
purpose, and also to validate the obtained partitioning, several
cluster validity indices have been proposed in the literature. The
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measure of validity of the clusters should be such that it will be
able to impose an ordering of the clusters in terms of its goodness.
The classical approach of determining the number of clusters is
to apply a given clustering algorithm for a range of K values and
to evaluate a certain validity function of the resulting partitioning
in each case [6], [7], [8], [9], [10], [11], [12], [13], [14]. The
partitioning exhibiting the optimal validity is chosen as the true
partitioning. This method for searching an optimal number of
cluster number depends on the selected clustering algorithm,
whose performance may depend on the initial cluster centers.
Furthermore, most of the validity measures usually assume a
certain geometrical structure in the cluster shapes. But if several
different structures exist in the same data set, these have often
been found to fail.

Since the global optimum of the validity functions would
correspond to the most “valid” solutions with respect to the
functions, stochastic clustering algorithms based on Genetic Algo-
rithms (GAs) have been reported to optimize the validity functions
to determine the cluster number and partitioning of a data set
simultaneously [9], [15], [16]. Other than evaluating the static
clusters generated by a specific clustering algorithm, the validity
functions in these approaches are used as clustering objective
functions for computing the fitness, which guides the evolution
to search for the “valid” solution. However, Simple GA (SGA)
[17] or its variants are used as the genetic clustering techniques
in [9], [15], [16]. In [18], a function called Weighted Sum
Validity Function (WSVF), which is a weighted sum of the several
normalized validity functions, is used for optimization along with
a Hybrid Niching Genetic Algorithm (HNGA) to automatically
evolve the proper number of clusters from a given data set. Within
this HNGA, a niching method is developed to prevent premature
convergence by preserving both the diversity of the population
with respect to the number of clusters encoded in the individuals
and the diversity of the subpopulation with the same number
of clusters during the search. In [19], a multi-objective genetic
approach is used for clustering where several validity functions
are simultaneously optimized.

In the above mentioned genetic clustering techniques for au-
tomatic evolution of clusters, assignment of points to different
clusters are done in the lines of K-means clustering algorithm.
Consequently, all these approaches are only able to find compact
hyperspherical, equisized and convex clusters like those detected
by the K-means algorithm [20]. If clusters of different geometric
shapes are present in the same data set, the above methods will
not be able to find all of them perfectly. This article presents an
attempt in this direction. Here we define a cluster validity index
named Sym-index (symmetry based cluster validity index) that
uses a new definition of the point symmetry (PS) distance (dps)
that is able to detect clusters of any shape and size as long as
they possess the symmetry property.

In this paper, a variable string length GA (VGA) based clus-



tering method is used as the underlying segmentation technique.
Here assignment of points to different clusters is done based on
the PS distance. The Sym-index is used as the optimizing criterion.
The characteristic features of the proposed clustering technique,
referred to as VGAPS-clustering, are as follows. Use of variable
string length GA allows the encoding of a variable number of
clusters. The Sym-index, used as the fitness function, provides the
most approximate partitioning even when the number of clusters,
K, is varied. Again use of GA enables the algorithm to come out
of local optima, a typical problem associated with local search
methods like the K-means (note that optimizing Sym-index is not
inherent to a GA framework. Any other optimization technique,
such as Simulated Annealing [21] may be used rather). Finally use
of the PS-distance enables the evolution of clusters of any shape
and size as long as they possess the symmetry property. Using
finite Markov chain theory, a convergence proof of VGAPS-
clustering to a globally optimal partition is also established. In
[22], a very preliminary version of fuzzy variable string length GA
clustering technique with point symmetry distance is proposed.
But no convergence proof nor any detailed comparative results
were presented in [22]. In this paper the effectiveness of the pro-
posed VGAPS-clustering for evolving the appropriate partitioning
of a dataset is demonstrated on nine artificial and five real-life data
sets having different characteristics. The performance of VGAPS-
clustering is compared with those of GCUK-clustering [16] and
the recently proposed HNGA-clustering [18].

II. A NEW DEFINITION OF THE POINT SYMMETRY DISTANCE

In this section, a new PS distance [3], dps(x, c), associated with
point x with respect to a center c is described. As shown in [3],
dps(x, c) is able to overcome some serious limitations of an earlier
PS distance [4]. Let a point be x. The symmetrical (reflected)
point of x with respect to a particular centre c is 2 × c − x . Let
us denote this by x∗. Let knear unique nearest neighbors of x∗

be at Euclidean distances of dis, i = 1, 2, . . . knear. Then

dps(x, c) = dsym(x, c) × de(x, c), (1)

=

� knear
i=1 di

knear
× de(x, c), (2)

where de(x, c) is the Euclidean distance between the point x and
c and dsym(x, c) is a symmetry measure of x with respect to c. It
can be seen from Equation 2 that knear cannot be chosen equal
to 1, since if x∗ exists in the data set then dps(x, c) = 0 and
hence there will be no impact of the Euclidean distance. On the
contrary, large values of knear may not be suitable because it may
underestimate the amount of symmetry of a point with respect to
a particular cluster center. Here knear is chosen equal to 2. It
may be noted that the proper value of knear largely depends on
the distribution of the data set. A fixed value of knear may have
many drawbacks. For instance, for very large clusters (with too
many points), 2 neighbors may not be enough as it is very likely
that a few neighbors would have a distance close to zero. On
the other hand, clusters with too few points are more likely to
be scattered, and the distance of the two neighbors may be too
large. Thus a proper choice of knear is an important issue that
needs to be addressed in the future.
Note that dps(x, c), which is a non-metric, is a way of measuring
the amount of point symmetry between a point and a cluster
center, rather than the distance like any Minkowski distance.

The benefits of using several neighbors instead of just one in
Equation 2 are as follows.

1) Here since the average distance between x∗ and its knear

unique nearest neighbors have been taken, this term will
never be equal to 0, and the effect of de(x, c), the Euclidean
distance, will always be considered. Note that if only the
nearest neighbor of x∗ is considered and this happens to
coincide with x∗, then this term will be 0, making the
distance insensitive to de(x, c). This in turn would indicate
that if a point is marginally more symmetrical to a far off
cluster than to a very close one, it would be assigned to
the farthest cluster. This often leads to undesirable results
as demonstrated in [3].

2) Considering the knear nearest neighbors in the computa-
tion of dps makes the PS-distance more robust and noise
resistant. From an intuitive point of view, if this term is less,
then the likelihood that x is symmetrical with respect to c

increases. This is not the case when only the first nearest
neighbor is considered which could mislead the method in
noisy situations.
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Fig. 1. Example of a data set having some symmetrical interclusters

Definition 1: The Euclidean distance difference (EDD) property
is defined as follows:
Let x be a data point, c1 and c2 be two cluster centers, and θ

be a distance measure. Let θ1 = θ(x, c1), θ2 = θ(x, c2), de1
=

de(x, c1) and de2
= de(x, c2). Then θ is said to satisfy EDD

property if for θ1

θ2

< de2

de1

, point x is assigned to c1, otherwise it
is assigned to c2.

Observation 1: The proposed symmetry measure satisfies the
Euclidean distance difference property.

Proof : Let us assume that there are two clusters, having cluster
centers c1 and c2. Let x be a particular data point. Let the knear
nearest neighbors of the reflected point of x with respect to center
c1 be at distances of d1

i , i = 1, . . . , knear. Then dps(x, c1) =

dsym(x, c1)×de1 = � knear
i=1

d1

i

knear ×de1, where de1 is the Euclidean
distance between x and c1. Let the knear nearest neighbors of the
reflected point of x with respect to center c2 be at distances of
d2

i , i = 1, . . . , knear. Hence, dps(x, c2) = dsym(x, c2) × de2 =

� knear
i=1

d2

i

knear × de2, where de2 is the Euclidean distance between x

and c2. Now in order to preserve the EDD property given that
dsym(x,c1)
dsym(x,c2)

< de2

de1

, the point x is assigned to center c1. Point x is
assigned to cluster of c1 if dps(x, c1) < dps(x, c2). This indicates



that � knear
i=1 d1

i

knear
× de1 <

� knear
i=1 d2

i

knear
× de2 (3)

=⇒ � knear
i=1

d1

i

knear

� knear
i=1

d2

i

knear

<
de2

de1
(4)

=⇒ dsym(x, c1)

dsym(x, c2)
<

de2

de1
. (5)

It therefore becomes evident that the dsym satisfies the EDD
property defined in Definition 1.

Definition 2: If two clusters are symmetrical to each other
with respect to a third cluster center, then these clusters are called
“symmetrical interclusters”.

Observation 2: The proposed dps measure is able to detect the
symmetrical interclusters properly.

Proof: In Figure 1, the first and the third clusters are “symmet-
rical interclusters” with respect to the middle one. As explained
in the above example, though there exists a symmetrical point
of x with respect to cluster center c2, but x is assigned to the
first cluster as the newly developed dps distance satisfies the
EDD property. As a result, the three clusters present in Figure
1 are identified properly. Thus it is proved that the proposed
point symmetry based distance is able to detect symmetrical
interclusters properly.

It is evident that the symmetrical distance computation is very
time consuming because it involves the computation of the nearest
neighbors. Computation of dps(xi, c) is of complexity O(nD),
where D is the dimension of the data set and n is the total
number of points present in the data set. Hence for K clusters, the
time complexity of computing point symmetry distance between
all points to different clusters is O(n2KD). In order to reduce
the computational complexity, an approximate nearest neighbor
search using the Kd-tree approach is adopted in this article.

A. Kd-tree Based Nearest Neighbor Computation

A K-dimensional tree, or Kd-tree is a space-partitioning data
structure for organizing points in a K-dimensional space. ANN
(Approximate Nearest Neighbor) is a library written in C++ [23],
which supports data structures and algorithms for both exact
and approximate nearest neighbor searching in arbitrarily high
dimensions. In this article ANN is used to find exact dis, where
i = 1, . . . , knear, in Equation 2 efficiently. The ANN library
implements Kd-tree data structure.

The function performing the k-nearest neighbor search in ANN
is given a query point q, a nonnegative integer k, an array of point
indices, nnidx, and an array of distances, dists. Both arrays are
assumed to contain at least k elements. This procedure computes
the k nearest neighbors of q in the point set, and stores the
indices of the nearest neighbors in the array nnidx. Here, k is
set equal to knear, in this article it is k = 2. In order to find
point symmetry distance of a particular point x with respect to
the centre c, we have to find the first knear nearest neighbors of
x∗ which is equal to 2× c−x. Therefore the query point q is set
equal to x∗. After getting the knear nearest neighbors of x∗ the
symmetrical distance of x with respect to a centre c is calculated
using Equation 2.

B. The Cluster Validity Measure

1) Definition: The newly developed PS distance is used to
define a cluster validity function which measures the overall

average symmetry with respect to the cluster centers. This is
inspired by the I-index developed in [10].
Consider a partition of the data set X = {xj : j = 1, 2, . . . n} into
K clusters where the center of cluster ci is computed by using

ci = � ni
j=1

xi
j

ni
where ni (i = 1, 2, . . . , K) is the number of points

in cluster i and xi
j denotes the jth point of the ith cluster. The

new cluster validity function Sym is defined as:

Sym(K) =

�
1

K
× 1

EK
× DK � . (6)

Here,

EK =
K�

i=1

Ei, (7)

such that

Ei =

ni�
j=1

d∗ps(x
i
j , ci) (8)

and
DK = maxK

i,j=1‖ci − cj‖ (9)

DK is the maximum Euclidean distance between two cluster
centres among all pairs of centres. d∗ps(x

i
j , ci) is computed by

Equation 2 with some constraint. Here, the first knear nearest
neighbors of x∗

j = 2× ci −xi
j will be searched among only those

points which are in cluster i, i.e., the knear nearest neighbors of
x∗

j , the reflected point of xi
j with respect to ci, and xi

j should
belong to the ith cluster. The objective is to maximize this index
in order to obtain the actual number of clusters.

2) Explanation: As formulated in Equation 6, Sym-index is a
composition of three factors, 1/K, 1/EK and DK . The first factor
increases as K decreases; as Sym-index needs to be maximized
for optimal clustering, this factor prefers to decrease the value
of K. The second factor is a measure of the total within cluster
symmetry. For clusters which have good symmetrical structures,
EK value is less. Note that as K increases, in general, the
clusters tend to become more symmetric. Moreover, as de(x, c) in
Equation 2 also decreases, EK decreases, resulting in an increase
in the value of the Sym-index. Since Sym-index needs to be
maximized, it will prefer to increase the value of K. Finally the
third factor, DK , measuring the maximum separation between a
pair of clusters, increases with the value of K. Note that the value
of DK is bounded by the maximum separation between a pair of
points in the data set. As these three factors are complementary
in nature, so they are expected to compete and balance each other
critically for determining the proper partitioning.

The use of DK , as the measure of separation, requires further
elaboration. Instead of using the maximum separation between
two clusters, several other alternatives could have been used. For
example, if DK was the sum of pairwise inter cluster distances in
a K-cluster structure, then it would increase largely with increase
in the value of K. This might lead to the formation of maximum
possible number of clusters equal to the number of elements in
the data set. If DK was the average inter cluster distance then it
would decrease at each step with K, instead of being increased.
So, this will only leave us with the minimum possible number
of clusters. The minimum distance between two clusters may
be another choice for DK . However, this measure would also
decrease significantly with increase in the number of clusters. So
this would lead to a structure where the loosely connected sub-
structures remain as they were, where in fact a separation was
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expected. Thus maximum separability may not be attained. In
contrast, if we consider the maximum inter cluster separation then
we see that this tends to increase significantly until we reach the
maximum separation among compact clusters and then it becomes
almost constant. The upper bound of this value, which is equal to
the maximum separation between two points, is only attainable
when we have two extreme data elements as two single element
clusters. But the terminating condition is reached well before this
situation. This is the reason why we try to improve the maximum
distance between two maximally separated clusters.

C. The Interaction Between Different Components of Sym-index

In order to show how the different components of the newly
proposed Sym-index compete with each other to determine the
proper number of clusters from a data set, the variations of
different components of Sym-index along with the number of
clusters are shown pictorially for one artificially generated data
set, Normal 2 5. This data set has 2000 two dimensional points
distributed over 5 clusters. The variations of different components
of the Sym-index along with the number of clusters are shown in
Figure 2. Note that generally DK increases rapidly with K upto
a certain value of K, after which the rate of increase becomes
less. In fact the upper bound of DK is equal to the maximum
separation between any two points in the data set. EK generally
decreases with K. The overall variation of DK

EK×K versus K is
plotted in Figure 2(d). We have also explored the variations of
other forms of Sym-index with the number of clusters. Figure 2(d)
also shows the variation of Sym-index, with K replaced by K2 in
the denominator, with the number of clusters. It shows that this
form of Sym-index fails to identify the proper number of clusters
from Normal 2 5 data. In order to establish the need to have
DK in Sym-index, Figure 2(e) shows the variation of the index
(SymwoDK-index) without having the factor DK . Evidently the
index then fails to identify the proper number of clusters.

III. VGAPS: VARIABLE STRING LENGTH POINT SYMMETRY

BASED CLUSTERING TECHNIQUE

In this section a new clustering algorithm based on the proposed
Sym-index and genetic algorithm is described in detail. It includes
determination of the number of clusters as well as the appropriate
clustering of the data set. This genetic clustering technique is sub-
sequently referred to as variable string length genetic clustering
technique with point symmetry based distance (VGAPS).

A. String Representation and Population Initialization

In VGAPS clustering, the chromosomes are made up of real
numbers which represent the coordinates of the centers of the
partitions. If chromosome i encodes the centers of Ki clusters
in d dimensional space then its length li is taken to be d ∗ Ki.
For example, in three dimensional space, the chromosome <

12.3 1.4 5.6 22.1 0.01 10.2 0.0 5.3 15.3 13.2 10.2 7.5 >

encodes 4 cluster centers, (12.3, 1.4, 5.6), (22.1, 0.01, 10.2), (0.0,
5.3, 15.3) and (13.2, 10.2, 7.5). Each center is considered to
be indivisible. Each string i in the population initially encodes
the centers of a number, Ki, of clusters, such that Ki =

(rand()mod(Kmax−1))+2. Here, rand() is a function returning
an integer, and Kmax is a soft estimate of the upper bound of the
number of clusters. The number of clusters will therefore range
from two to Kmax. The Ki centers encoded in a chromosome
are randomly selected distinct points from the data set.

B. Fitness Computation

Fitness computation is composed of two steps. Firstly points
are assigned to different clusters using the point symmetry based
distance, dps. Next, the cluster validity index, Sym-index, is
computed and used as a measure of the fitness of the chromosome.



1) Assignment of points: Here each point xi, 1 ≤ i ≤ n

is assigned to cluster k iff dps(xi, ck) ≤ dps(xi, cj), j =

1, . . . , K, j 6= k and dsym(xi, ck) ≤ θ. Here θ is a threshold
described later. For dsym(xi, ck) > θ, point xi is assigned to some
cluster m iff de(xi, cm) ≤ de(xi, cj), j = 1, 2 . . . K, j 6= m. In
other words, point xi is assigned to that cluster with respect to
whose center its PS-distance is the minimum, provided this value
is less than some threshold θ. Otherwise assignment is done based
on the minimum Euclidean distance criterion as normally used
in [16] or the K-means algorithm. The reason for doing such
an assignment is as follows: In the intermediate stages of the
algorithm, when the centers are not yet properly evolved, then
the minimum dps value for a point is expected to be quite large,
since the point might not be symmetric with respect to any center.
In such cases, using Euclidean distance for cluster assignment
appears to be intuitively more appropriate.

We also provide a rough guideline of the choice of θ, the
threshold value on the PS-distance. It is to be noted that if a
point is indeed symmetric with respect to some cluster center
then the symmetrical distance computed in the above way will
be small, and can be bounded as follows. Let dmax

NN be the
maximum nearest neighbor distance in the data set. That is
dmax

NN = maxi=1,...N dNN (xi), where dNN (xi) is the nearest
neighbor distance of xi. Let us assume that the reflected point of
x with respect to the cluster center c lies near any point in the
data space. Ideally, a point x is exactly symmetrical with respect
to some c if d1 = 0. However considering the uncertainty of the
location of a point as a sphere of radius dmax

NN /2 around it, we
can bound d1 as d1 ≤ dmax

NN

2 and d2 ≤ 3×dmax
NN

2 , resulting in

d1 + d2

2
≤ dmax

NN

Thus, we have kept the threshold θ equals to dmax
NN , making

its computation automatic and without user intervention. After
the assignments are done, the cluster centers encoded in the
chromosome are replaced by the mean points of the respective
clusters. This is referred to as the k-means like update center
operation.

2) Fitness Calculation: The fitness of a chromosome is com-
puted using the newly developed Sym-index. The objective is
to maximize this index in order to obtain the actual number of
clusters and to achieve proper clustering. The fitness function for
chromosome j is defined as Symj , where Symj is the Sym-index
computed for the chromosome. This fitness function is maximized
using a genetic algorithm.

C. Genetic Operations and Terminating Criterion

The following genetic operations are performed on the
population of strings for a number of generations.

1) Selection: The selection operator randomly selects a
chromosome from the previous population according to the
distribution given by

P (si) =
F (si)� N

j=1 F (sj)
(10)

where F (si) represents fitness value (Sym-index) of the string
si in the population and N denotes the population size. Here,
a string receives a number of copies that is proportional to its
fitness in the population.

2) Crossover: For the purpose of crossover, the cluster centers
are considered to be indivisible, i.e., the crossover points can
only lie in between two cluster centers. The crossover operation,
applied stochastically, must ensure that information exchange
takes place in such a way that both the offspring encode the
centers of at least two clusters. For this purpose, the operator
is defined as follows [24]: Let parent chromosomes P1 and P2

encode M1 and M2 cluster centers, respectively. The crossover
point, τ1, in P1 is generated as τ1=rand() mod M1. Let τ2 be the
crossover point in P2; it may vary in between [LB(τ2),UB(τ2)],
where LB(τ2) and UB(τ2) indicate the lower and upper bounds
of the range of τ2, respectively. LB(τ2) and UB(τ2) are given by
LB(τ2) = min[2, max[0, 2 − (M1 − τ1)]] and UB(τ2) = [M2 −
max[0, 2 − τ1]]. Therefore τ2 is given by

τ2 = LB(τ2) + rand()mod(UB(τ2) − LB(τ2)), if(UB(τ2) ≥ LB(τ2)),

τ2 = 0 otherwise.

It can be verified by some simple calculations that if the crossover
points τ1 and τ2 are chosen according to the above rules, then
none of the offspring generated would have less than two clusters.

Crossover probability, pc, is selected adaptively as in [25]. The
expressions for crossover probabilities are given below:

pc = k1 × (fmax − f
′

)

(fmax − f)
, when f

′

≥ f , (11)

= k3, when f
′

< f, (12)

where fmax is the maximum fitness value of the current pop-
ulation, f is the average fitness value of the population and f

′

is the larger of the fitness values of the solutions to be crossed.
Here the values of k1 and k3 are kept equal to 1.0 [25]. The
aim behind such adaptation is to achieve a trade-off between
exploration and exploitation in a different manner by varying
probability of crossover, pc, and probability of mutation, pm,
adaptively in response to the fitness values of the solutions; pc

and pm are increased when the population tends to get stuck at a
local optimum and are decreased when the population is scattered
in the solution space.

3) Mutation: Three types of mutations are considered here.
• A valid position (i.e., which is not ‘#’) is replaced with a

random variable drawn from a Laplacian distribution, p(ε) ∝
e−

|ε−µ|
δ , where the scaling factor δ sets the magnitude of

perturbation. Here µ is the value at the position which is to
be perturbed. The scaling factor δ is chosen equal to 2. The
old value at the position is replaced with the newly generated
value.

• A randomly chosen valid position is removed and replaced
by ‘#’.

• A randomly chosen invalid position is replaced by randomly
chosen point from the data set.

Any one of the above mentioned types of mutation is applied
on each chromosome of the population with some probability
of mutation, pm. The mutation probability is selected adaptively
for each chromosome as in [25]. The expression for mutation
probability, pm, is given below:

pm = k2 × (fmax − f)

(fmax − f)
where f ≥ f , (13)

= k4 where f < f. (14)

Here, values of k2 and k4 are kept equal to 0.5.



4) Termination Criterion: In this article the processes of fitness
computation, selection, crossover, and mutation are executed for
a maximum number of generations. The best string having the
largest fitness (i.e., the largest Sym-index value) seen up to the
last generation provides the solution to the clustering problem.
We have implemented elitism at each generation by preserving
the best string seen up to that generation in a location outside
the population and also inside the population by replacing the
string with lowest fitness value. Thus on termination, this location
contains the centers of the final clusters.

IV. ON THE CONVERGENCE PROPERTY OF VGAPS

It has been shown using the finite Markov chain theory that
the canonical genetic algorithms converge to the global optimum
[26]. In [27] it is also been proved along the lines of [26] that
Genetic K-means algorithm also converges to the global optimum
depending on some conditions on its parameters. Here the global
convergence of VGAPS will be proved along the similar lines
by deriving some conditions on the parameters of VGAPS that
ensures the global convergence.

Consider the process {P(t)}, t ≥ 0, where P(t) represents
the population maintained by VGAPS at generation t. The state
space of this process is the space of all possible populations
S; and the states are numbered from 1 to |S|. Here the state
space comprises the populations containing strings representing
partitions with K clusters where K ∈ [Kmin, Kmax]. From the
definition of VGAPS, P(t + 1) can be determined completely by
P(t), i.e.,

Pr{P(t) = pt|P(t − 1) = pt−1, . . . ,P(0) = p0}
= Pr{P(t) = pt|P(t − 1) = pt−1}.

Hence {P(t)}, t ≥ 0, is a Markov chain. Also, the transition
probabilities are independent of the time instant, i.e., if

pij(t) = Pr{P(t) = pj |P(t − 1) = pi}

then pij(s) = pij(t) for all pi, pj ∈ S and for all s, t ≥ 1.
Therefore, {P(t)}, t ≥ 0 is a time-homogeneous finite Markov
chain. Let P = (pij) be the transition matrix of the process
{P(t)}, t ≥ 0. The entries of the matrix P satisfy pij ∈ [0, 1]

and
� |S|

j=1 pij = 1, ∀i ∈ S . Any matrix whose entries satisfy the
above conditions is called a stochastic matrix. Some definitions
are given below which will be used in the rest of this section.

A square matrix Am×m is said to be positive, if aij > 0, ∀i, j ∈
{1, 2, . . . , m} and is said to be primitive, if there exists a positive
integer k such that A

k is positive. A square matrix is said to
be column-allowable, if it has at least one positive entry in each
column.

In the following theorem it is required that P be a primitive
matrix. So, first we investigate the conditions on the operators
which make the matrix P primitive. The probabilistic changes of
the chromosome within the population caused by the operators
used in VGAPS are captured by the transition matrix P, which
can be decomposed in a natural way into a product of stochastic
matrices

P = K × C × M × S, (15)

where K, C, M and S describe the intermediate transitions caused
by K-means like update center operator, crossover operator, mu-
tation and selection operators, respectively. It is easy to consider
that all these matrices are stochastic matrices.

Proposition 1. Stochastic matrices form a group under matrix
multiplication.

Thus for the two stochastic matrices, K and C, by proposition
1, C

′

= K × C is also a stochastic matrix. Therefore Equation
15 can be written as

P = C
′

×M × S, (16)

where C
′

, M and S are stochastic matrices.

Proposition 2. Let C
′

, M and S be stochastic matrices, where
M is positive and S is column-allowable. Then the product C

′

×
M × S is positive.

Since every positive matrix is primitive, it is therefore, enough
to find the conditions which make M positive and S column-
allowable.

A. To check whether the mutation matrix is positive

The matrix M is positive if any string s ∈ S can be ob-
tained from any other string on application of the corresponding
mutation operator. The mutation operator defined in the earlier
section ensures the above condition. The mutation operator is
of three types. The first type is for obtaining a valid position
from any other valid position. By generating a random variable
using a Laplacian distribution, there is a non-zero probability
of generating any valid position from any other valid position
while probability of generating a value near the old value is
more. The second type is for decreasing the value of K i.e.,
from a chromosome consisting of K1 number of centers, another
chromosome of having K2 number of clusters, where K1 > K2,
is generated by this type of mutation operation. The third type of
mutation operator is for increasing the value of K in a particular
chromosome, i.e., if a chromosome encodes K1 clusters, where
K1 < Kmax, then by the third type of mutation operation some
new cluster centers can be included in it, increasing in number
of clusters.

The above discussion implies that the mutation operation can
change any string to any other string in the search space with
nonzero probability. Hence, the transition matrix, M, correspond-
ing to the above mutation operator is positive.

B. Conditions on Selection

The probability of survival of a string in the current population
depends on the fitness value of the string; so is the transition
matrix due to selection, S. Very little can be said about S if
the fitness function is defined as only the Sym-index value of
that particular partition. The following modification to the fitness
function will ensure the column allowability of S. Let

F (s) = cs × Symmax + Sym(s) (17)

where Symmax is the maximum Sym-index value that has been
encountered till the present generation and cs ≥ 1. Sym(s) is the
Sym-index value of the sth string. Then the fitness value of each
chromosome in the population is strictly positive. Therefore, the
probability that selection does not alter the present state, sii can
be bounded as follows:

sii ≥
F (s1)� N
l=1 F (sl)

× F (s2)� N
l=1 F (sl)

. . . × F (sN )� N
l=1 F (sl)



= � N
l=1 F (sl)

(
� N

l=1 F (sl))N
> 0∀i ∈ S

where sl is the lth string of the current population. Even though
this bound changes with the generation, it is always strictly
positive; hence selection matrix S is column-allowable.

Theorem IV.1. Let X(t) = Sym(s∗(t)), where s∗(t) is the string
with maximum Sym-index value, encountered during the evolution
of VGAPS till the time instant t. Let the mutation operator be as
same as defined in subsection III-C.3, and the fitness function be
as defined in Equation 17. Then

lim
t→∞

Pr{X(t) = Sym∗} = 1 (18)

where Sym∗ = max{Sym(i)|i ∈ T }, T is the set of all legal
strings.

Proof: It is proved (Ref. [26], Theorem 6) that a canonical
GA whose transition matrix is primitive and which maintains the
best solution found over time, converges to the global optimum
in the sense given in Equation 18. As proved in Proposition 2, the
transition matrix of VGAPS is primitive. Moreover, VGAPS uses
elitist model of GA, i.e., it preserves the best solution found till
the current time instant. Thus, the above theorem follows from
([Ref. [26], Theorem 6]).

The above theorem implies that X(t), the maximum Sym-index
value of the strings encountered by VGAPS till the instant t,
converges to the global optimum Sym∗, with probability 1.

V. DATA SETS USED AND IMPLEMENTATION RESULTS

This section provides a description of the data sets and the
implementation results of the proposed algorithm. Nine artificial
and five real life data sets are used for the experiments.

A. Data Sets Used

1) Artificial data sets:
a) Data1: This data set, used in [3], is a combination of

ring-shaped, spherically compact and linear clusters
shown in Figure 3(a). The total number of points in it
is 350.

b) Data2: This data set contains 400 points distributed on
two crossed ellipsoidal shells shown in Figure 3(b).

c) Data3: This data set contains 850 data points dis-
tributed on five clusters, as shown in Figure 3(c).

d) Data4: This data set, used in [16], consists of 250 two
dimensional data points distributed over 5 spherically
shaped clusters. The clusters present in this data set are
highly overlapping, each consisting of 50 data points.
This data set is shown in Figure 4(a). The clusters
present in this data set are symmetrical, some of which
are symmetrical interclusters.

e) Data5: This data set, used in [16], consists of 300
data points distributed over 6 different clusters in
two dimensions. The clusters are of same sizes. This
data set is shown in Figure 4(b). There are some
symmetrical interclusters in this data set.

f) Data6: This is a two-dimensional data set, used in
[28], composed of three clusters shown in Figure 4(c).
This data set consists of two small clusters (one has
six elements and the other has three) separated by a
large (40 element) cluster.

g) Data7: This data set contains 398 points distributed
on two non-overlapping ellipsoidal shells in three
dimensions as shown in Figure 5(a).

h) Data8: This data set contains 598 points distributed
on two non-overlapping ellipsoidal shells and in one
elliptical shaped cluster in three dimensions as shown
in Figure 5(b).

i) Pat: This data set, used in [29], consists of 2 non-
linear, non-overlapping and asymmetric clusters. The
data set is shown in Figure 5(c).

2) Real-life data sets: The 5 real life data sets were obtained
from [30].

a) Iris: Iris data set consists of 150 data points distributed
over 3 clusters. Each cluster consists of 50 points.
This data set represents different categories of irises
characterized by four feature values [31]. It has three
classes Setosa, Versicolor and Virginica. It is known
that two classes (Versicolor and Virginica) have a large
amount of overlap while the class Setosa is linearly
separable from the other two. A two dimensional
projection of the data set is shown in Figure 6(a).

b) Breast Cancer: This Wisconsin Breast Cancer data
set consists of 683 sample points. Each pattern has
nine features corresponding to clump thickness, cell
size uniformity, cell shape uniformity, marginal ad-
hesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli and mitoses. There are two
categories in the data: malignant and benign. The two
classes are known to be linearly separable.

c) Newthyroid: The original database from where it has
been collected is titled as Thyroid gland data (’nor-
mal’, ’hypo’ and ’hyper’ functioning). Five laboratory
tests are used to predict whether a patient’s thyroid
belongs to the class euthyroidism, hypothyroidism or
hyperthyroidism. There are a total of 215 instances
and the number of attributes is five. A two dimensional
projection of the data set is shown in Figure 6(b).

d) Glass: This is a glass identification data consisting
of 214 instances having 9 features (an Id# feature
has been removed). The study of the classification of
the types of glass was motivated by criminological
investigation. At the scene of the crime, the glass left
can be used as evidence, if it is correctly identified.
There are 6 categories present in this data set. A two
dimensional projection of the data set is shown in
Figure 6(c).

e) LiverDisorder: This is the Liver Disorder data consist-
ing of 345 instances having 6 features each. The data
has two categories.

B. Results and Discussions

In VGAPS-clustering, the population size P is taken to be equal
to 100. Kmin and Kmax are set equal to 2 and

√
n, respectively,

where n is the total number of data points in the particular data
set. VGAPS is executed for a total of 30 generations. Note that
it is shown in Ref. [32] that if exhaustive enumeration is used to
solve a clustering problem with n points and K clusters, then one
requires to evaluate 1/K

� K
j=1(−1)K−jjn partitions. For a data

set of size 10 with 2 clusters, this value is 29 − 1(= 511), while
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Fig. 5. (a) Data7 dataset (b) Data8 dataset (c) Pat dataset
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that of size 50 with 2 clusters, it is 249 − 1 (i.e., of the order
of 1015). If the number of clusters is not specified a priori, then
the search space will become even larger and the effectiveness of
GAs becomes more evident. In order to evaluate the proposed

method, we performed two types of experiments. At first we
show that VGAPS optimizing Sym-index performs better than
VGAPS optimizing two other indices, viz., PS-index [33] and
I-index [10]. After that, we explore the properties of the VGAPS
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Fig. 9. Clustered Data3 using (a) VGAPS-clustering where 5 clusters are detected (b) GCUK-clustering where 7 clusters are detected (c) HNGA-clustering
where 18 clusters are detected

optimizing Sym-index and compare its performance with other
genetic clustering methods, which do not need knowledge about
the number of clusters a priori.

1) Exploring Sym-index as fitness function: In the first ex-
periment, we establish the effectiveness of using the Sym-index
with VGAPS-clustering vis-a-vis another point symmetry based
validity index, PS-index [33] and a Euclidean distance based
cluster validity index, I-index [10]. The number of clusters
obtained after applying VGAPS optimizing these three validity

indices separately for all the data sets are shown in Table I. It
can be seen from the table that VGAPS-clustering with Sym-
index is able to find out the proper cluster number from data
sets having symmetrical shaped clusters. VGAPS-clustering with
I-index is able to find the proper cluster number from data sets
with spherically symmetrical structure but it is not able to detect
other shaped clusters. It is because the I-index essentially prefers
hyperspherical clusters, which is not the case for Data1, Data2,
Data7, Data8, and Pat. VGAPS-clustering with PS-index is able
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Fig. 11. (a) Clustered Data5 by VGAPS-clustering, GCUK-clustering and HNGA-clustering where 6 clusters are detected (b) Clustered Data6 by VGAPS-
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Fig. 12. Clustered Data7 using (a) VGAPS-clustering where 2 clusters are detected (b) GCUK-clustering where 8 clusters are detected (c) HNGA-clustering
where 5 clusters are detected

to detect the proper clusters from those data sets where the clusters
have strong point symmetry. However, as discussed in [3], the
definition of point symmetry distance in PS-index precludes the
detection of symmetrical interclusters. Thus it fails for Data4 and
Data5 which have clearly symmetrical interclusters.

2) Exploring the VGAPS-clustering: In this section, we com-
pare the performance of the VGAPS-clustering with those of the
GCUK-clustering [16] and a recently developed HNGA clustering
[18]. Before discussing the comparative experiments, we first
briefly describe the GCUK-clustering and the HNGA-clustering
methods. In the GCUK-clustering, variable string length Genetic
Algorithm (VGA) [17] was applied with real parameter represen-

tation as the underlying search tool. The chromosome encodes the
centers of a number of clusters, whose value may vary. Modified
versions of crossover and mutation are used. Davies-Bouldin
cluster validity index is utilized for computing the fitness of the
chromosomes. In Hybrid Niching Genetic Algorithm (HNGA)
[18], a weighted sum validity function (WSVF), which is a
weighted sum of several normalized cluster validity functions, is
used for optimization to automatically evolve the proper number
of clusters and the appropriate partitioning of the data set. Within
the HNGA, a niching method is developed to prevent premature
convergence during the search. Additionally, in order to improve
the computational efficiency, a hybridization between the niching



−5
0

5

−2.5−2−1.5−1−0.500.511.522.5

−4

−2

0

2

4

6

8

10

12

14

−5
0 5 −2.5−2−1.5−1−0.500.511.522.5

−4

−2

0

2

4

6

8

10

12

14

−5
0

5

−2.5−2−1.5−1−0.500.511.522.5

−4

−2

0

2

4

6

8

10

12

14

(a) (b) (c)

Fig. 13. Clustered Data8 using (a) VGAPS-clustering where 3 clusters are detected (b) GCUK-clustering where 8 clusters are detected (c) HNGA-clustering
where 17 clusters are detected
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Fig. 14. Clustered Pat using (a) VGAPS-clustering where 4 clusters are detected (b) GCUK-clustering where 2 clusters are detected (c) HNGA-clustering
where 4 clusters are detected

method with the computationally attractive K-means is made.
Here WSVF is defined as WSV F =

� m
i=1 wifi(x) where m

is the number of component functions, specifically m = 6

is used here. wis are the non-negative weighting coefficients
representing the relative importance of the functions such that� m

i=1 wi = 1, and fi(x) are component functions (as used in
[18]) corresponding to 1/(DB-index [34]), SIL-index [35], Dunn-
index [36], Generalized Dunn-index [37], CH-index [38] and I-
index [10], respectively. Here weighting coefficients are chosen
as w1 = w2 = . . . = wm = 1/m.

Table I shows the number of clusters identified by the three
clustering algorithms for all the data sets. As is evident from
Table I, except for Pat and LiverDisorder, for the other data sets
VGAPS is able to find out the appropriate number of clusters
and the proper partitioning for all the data sets. Figures 7(a), 8(a),
9(a), 10(a), 11(a), 11(b), 12(a), 13(a) and 14(a) show the final seg-
mentation obtained after application of VGAPS on Data1, Data2,
Data3, Data4, Data5, Data6, Data7, Data8, and Pat, respectively.
Although for Data4, VGAPS is able to detect the clusters reason-
ably well, it is found to somewhat over-approximate the central
cluster (which extends to the left). The reason is as follows. Let us
take a point p which actually belongs to the left cluster but after
application of VGAPS it is included in the central cluster (shown
in Figure 10(a)). It can be seen from the figure that even though
de(p, c2) is slightly greater than de(p, c1) but since dsym(p, c2) is
significantly smaller than dsym(p, c1), p is assigned to the central
cluster. As expected for dataset Pat, VGAPS is not able to detect

the proper partitioning since the clusters are not symmetrical. For
real-life data sets, it is not possible to show the segmentation
results visually as these are higher dimensional data sets. Here
segmentation results of three of these multi-dimensional data sets,
just for an illustration, are provided by projecting the clustered
data in some two dimensional feature space. Figures 15(a), 16(a)
show, respectively, the segmentation results projected on first
two feature space obtained on Iris and Newthyroid by VGAPS-
clustering technique. Figure 17(a) shows the segmentation result
by VGAPS-clustering on Glass data set projected on the first and
the fourth feature space. The results on real-life data sets are
therefore quantitatively compared with respect to the Minkowski
scores described later. In order to validate the clustering results,
the Hinton diagrams representing the similarities of all pairs of
actual and observed cluster centers according to the Euclidean
distance for three real-life data sets, Iris, Newthyroid and Glass,
are shown in Figures 18-20 just for illustration. Similar diagrams
can be also obtained for other two real-life data sets (these are
not provided here due to restriction in page limit). Here hinton
diagrams are sorted by columns so that the minimum squares
corresponding to each row are along the diagonal. It is clearly
evident from these diagrams that the cluster centers provided by
VGAPS-clustering are very close to actual cluster centers.

Final clustering results obtained after the application of GCUK
algorithm on the 9 artificial data sets are also shown in Figures
7(b), 8(b), 9(b), 10(b), 11(a), 11(c), 12(b), 13(b) and 14(b), re-
spectively. Results shown in Table I reveals that GCUK-clustering
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Fig. 15. Clustered Iris data projected on the first two dimensions using (a) VGAPS-clustering where 3 clusters are detected (b) GCUK-clustering where 2
clusters are detected (c) HNGA-clustering where 2 clusters are detected

TABLE I

COMPARING THE NUMBER OF CLUSTERS FOUND ON THE EXPERIMENTAL

DATA SETS BY VGAPS-CLUSTERING USING Sym-INDEX, PS-INDEX AND

I -INDEX AS THE CLUSTER OBJECTIVE FUNCTION FOR COMPUTING

FITNESS, GCUK-CLUSTERING AND HNGA-CLUSTERING. HERE AC

DENOTES ACTUAL NUMBER OF CLUSTERS PRESENT IN THE DATA AND OC

DENOTES THE OBTAINED NUMBER OF CLUSTERS.

Data Set AC OC by VGAPS using OC by different methods
Sym I PS VGAPS GCUK HNGA

Data1 3 3 8 3 3 3 16
Data2 2 2 8 2 2 3 8
Data3 5 5 5 5 5 7 18
Data4 5 5 6 4 5 5 5
Data5 6 6 6 4 6 6 6
Data6 3 3 3 3 3 2 3
Data7 2 2 3 9 2 8 5
Data8 3 3 4 9 3 8 17
Pat 2 4 5 3 4 2 4
Iris 3 3 3 2 3 2 2
Cancer 2 2 2 2 2 2 2
Newthy 3 3 7 8 3 8 5
roid
Glass 6 6 4 2 6 3 6
Liver 2 3 5 3 3 2 2
Disorder

is able to determine the proper cluster number only for Data1,
Data4, Data5, Pat, Cancer and LiverDisorder data sets. However,
for Data1 and Pat even though GCUK-clustering is able to detect
the proper number of clusters, the final partitionings identified by
it (shown in Figure 7(b) and 14(b)) are not proper. Figures 7(c),
8(c), 9(c), 10(c), 11(a) 11(b), 12(c), 13(c) and 14(c) show, respec-
tively, the clustering results obtained after application of HNGA-
clustering on the nine artificial data sets. Again, results shown
in Table I, reveal that HNGA-clustering is able to determine the
proper cluster number only for Data4, Data5, Data6, Cancer,
Glass and LiverDisorder data sets. Thus it is easy to conclude that
HNGA-clustering is only able to find out hyperspherical clusters
from a data set but not any other shaped clusters. The main
reason behind such performance is that it optimizes a convex
combination of some cluster validity indices all of which are
only able to detect hyperspherical shaped clusters. For three real-
life data sets, the Hinton diagrams representing similarities of all
pairs of actual and obtained cluster centers by GCUK-clustering
and HNGA-clustering algorithms according to Euclidean distance
are also shown in Figures 18-20. The 2-d projection of the
segmentation results obtained by GCUK-clustering and HNGA-

TABLE II

MINKOWSKI SCORES OBTAINED BY THREE ALGORITHMS FOR ALL DATA

SETS USED HERE FOR EXPERIMENT

Data Set VGAPS-clustering GCUK-clustering HNGA-clustering
Data1 0.12 ± 0.00 1.05 ± 0.02 0.85 ± 0.02

Data2 0.00 ± 0.00 0.98 ± 0.01 0.89 ± 0.012

Data3 0.00 ± 0.00 1.12 ± 0.021 0.9 ± 0.001

Data4 0.25 ± 0.02 0.14 ± 0.001 0.10 ± 0.002

Data5 0 ± 0.00 0 ± 0.00 0 ± 0.00

Data6 0 ± 0.00 0.62 ± 0.02 0 ± 0.00

Data7 0.0 ± 0.00 1.01 ± 0.02 1.12 ± 0.012

Data8 0.0 ± 0.00 1.1 ± 0.03 1.21 ± 0.01

Pat 0.85 ± 0.00 1.25 ± 0.002 0.85 ± 0.00

Iris 0.62 ± 0.02 0.847726 ± 0.01 0.854081 ± 0.025

Cancer 0.367056 ± 0.001 0.386768 ± 0.02 0.380332 ± 0.023

Newthyroid 0.58 ± 0.03 0.828616 ± 0.021 0.838885 ± 0.022

Glass 1.106217 ± 0.01 1.324295 ± 0.022 1.117940 ± 0.023

LiverDisorder 0.987329 ± 0.01 0.982611 ± 0.03 0.981873 ± 0.021

clustering for three real-life data sets are also shown in Figures
15-17. Minkowski Score (MS) [39] of the resultant partitioning
is calculated after application of all the three algorithms on all
the data sets used here for experiment. MS is a measure of the
quality of a solution given the true clustering . Let T be the “true”
solution and S the solution we wish to measure. Denote by n11

the number of pairs of elements that are in the same cluster in
both S and T. Denote by n01 the number of pairs that are in the
same cluster only in S, and by n10 the number of pairs that are
in the same cluster in T. Minkowski Score (MS) is then defined
as:

MS(T, S) =

�
n01 + n10

n11 + n10
. (19)

For MS, the optimum score is 0, with lower scores being “better”.
Each of the above mentioned three algorithms are executed ten
times for each of the data sets. The average MS scores and
their standard deviations for all the experimental data sets after
application of the three algorithms are given in Table II. For
all the data sets, except for Data4 and LiverDisorder, VGAPS-
clustering is found to provide low MS which indicates that par-
titioning corresponding to VGAPS-clustering is the best among
the three clustering algorithms. ANOVA [40] statistical analysis
is performed on the combined results of the three algorithms.
The One-Way ANOVA procedure produces a one-way analysis
of variance for a quantitative dependent variable (here it is MS
value) by a single independent variable (here it is the algorithm).
Analysis of variance is used to test the hypothesis that several
means are equal. From the statistical test ANOVA, it is found
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Fig. 16. Clustered Newthyroid data projected on the first two dimensions using (a) VGAPS-clustering where 3 clusters are detected (b) GCUK-clustering
where 8 clusters are detected (c) HNGA-clustering where 5 clusters are detected
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Fig. 17. Clustered Glass data projected on the first and the fourth dimensions using (a) VGAPS-clustering where 6 clusters are detected (b) GCUK-clustering
where 3 clusters are detected (c) HNGA-clustering where 6 clusters are detected
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Fig. 18. Hinton diagram showing the similarities in terms of Euclidean distance between all pairs of actual and observed cluster centers for Iris data set by
(a) VGAPS-clustering (b) GCUK-clustering (c) HNGA-clustering techniques. Here OC denotes obtained cluster centers and AC denotes actual cluster centers.

that the difference in the mean MS values obtained by VGAPS-
clustering with those obtained by GCUK-clustering and HNGA-
clustering algorithms, are statistically significant with significance
value < 0.05 for all data sets except Data4 and LiverDisorder.
This indicates that the better performance of VGAPS as compared
to GCUK-clustering and HNGA-clustering for all the data sets
except Data4 and LiverDisorder, in terms of the MS scores, are
statistically significant. For Data4, HNGA-clustering performs the
best in terms of MS score and the difference in the mean MS
values is statistically significant with significance value 2.4603e−
008. For LiverDisorder although the mean MS score obtained
by VGAPS-clustering is poorer than those obtained by HNGA-
clustering and GCUK-clustering, the difference in the mean MS
values are not statistically significant (here significance values are
0.42 and 0.34, respectively).

It may be noted that while assigning points using point sym-
metry based distance in VGAPS-clustering, every reflected point

may not be close to another true point. We have also counted how
many points are really assigned to different clusters based on the
point symmetry based distance rather than the Euclidean distance
while VGAPS is executed on different data sets. Our experiments
show that for Data1, Data3, Data4 and Iris data sets, 90%, 75%,
86% and 98% points are assigned to different clusters based on
the point symmetry based distance.

C. Effectiveness of Using Kd-tree for Nearest Neighbor Search

Note that the proposed computation of the Sym-index utilizes
a Kd-tree structure to reduce the time required for identifying
the nearest neighbors. In order to demonstrate the computational
advantage thus obtained, VGAPS-clustering is executed without
using the Kd-tree data structure on a PIV processor, 1.6GHz
speed, running Linux. Table III provides the time required for the
two cases for three data sets, namely, Data1, Data4 and Data5.
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Fig. 19. Hinton diagram showing the similarities in terms of Euclidean distance between all pairs of actual and observed cluster centers for Newthyroid data
set by (a) VGAPS-clustering (b) GCUK-clustering (c) HNGA-clustering techniques. Here OC denotes obtained cluster centers and AC denotes actual cluster
centers.
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Fig. 20. Hinton diagram showing the similarities in terms of Euclidean distance between all pairs of actual and observed cluster centers for Glass data
set by (a) VGAPS-clustering (b) GCUK-clustering (c) HNGA-clustering techniques. Here OC denotes obtained cluster centers and AC denotes actual cluster
centers.

As is evident, incorporation of Kd-tree significantly reduces the
computational burden of the process. The time taken by the
GCUK and HNGA clustering algorithms for these datasets are
also reported in Table III. It is evident from this table that the
computation of point symmetry based distance makes the pro-
posed VGAPS-clustering more time consuming than the existing
algorithms for unknown K. It is also well-known that the Kd-
tree is not efficient for high dimensional data (d > 20). In order
to investigate the time required for some high dimensional data
sets, a 20-dimensional artificial data set is generated consisting
of 3000 points. The data has three clusters, two hyperellipsoidal
shaped clusters and one hyperspherical cluster (containing 1000
points in each). VGAPS-clustering with Kd-tree took 6 minutes to
execute the first generation where as VGAPS-clustering without
Kd-tree didn’t complete its first generation even in 250 minutes.
Similar data sets are also generated by increasing the number
of dimensions to 30, 40, 50, 60 and 70, respectively. The total

TABLE III

EXECUTION TIME (VGAPS IS IMPLEMENTED IN C AND EXECUTED ON

LINUX PLATFORM, PIV PROCESSOR, 1.66 GHZ SPEED) IN SECONDS BY

VGAPS WITH AND WITHOUT KD TREE BASED SEARCH,

GCUK-CLUSTERING AND HNGA-CLUSTERING

Data set VGAPS with VGAPS with out GCUK HNGA
Kd tree Kd tree

Data1 77 5280 68 72
Data4 62 2268 60 61
Data5 128 6112 62.353 85

time taken by VGAPS-clustering with Kd-tree to execute one
generation for these data sets are 16, 17, 36, 47 and 54 minutes,
respectively. Thus, the time taken by VGAPS-clustering for higher
dimensional data sets is quite significant. However, its ability to
detect the number of clusters and the proper partitioning from data
sets having clusters of widely varying characteristics, irrespective



of their convexity, or overlap or size, as long as they possess the
property of symmetry, might offset this limitation for situations
where clustering performance not time is the most overriding
consideration.

VI. DISCUSSION AND CONCLUSION

Most of the clustering methods make prior assumptions about
the structure of the clusters. For example, GCUK-clustering,
which is a genetic K-means technique for automatic determination
of clusters, can only detect equisized hyperspherical clusters from
a data set. In this article a new point symmetry based distance
is utilized to develop a variable string length genetic clustering
technique (VGAPS-clustering) which automatically evolves the
number of clusters present in a data set. The newly proposed
cluster validity index, Sym-index, which is capable of detecting
both the proper partitioning and the proper number of clusters
present in a data set, is used as the fitness of the chromosomes. In
VGAPS-clustering, the assignment of points to different clusters
is done based on the point symmetry distance rather than the
Euclidean distance when the point is indeed symmetric with
respect to a center. Moreover, the use of adaptive mutation
and crossover probabilities helps VGAPS-clustering to converge
faster. Kd-tree based nearest neighbor search is utilized to reduce
the computational complexity of computing the point symmetry
based distance. The global convergence property of the pro-
posed VGAPS-clustering is also established. The effectiveness
of the VGAPS-clustering, as compared to two recently proposed
automatic clustering techniques, namely, GCUK-clustering and
HNGA-clustering, is demonstrated on nine artificially generated
and five real-life data sets of different characteristics. Results on
the fourteen data sets establish the fact that VGAPS-clustering
is well-suited to detect the number of clusters and the proper
partitioning from data sets having clusters of widely varying char-
acteristics, irrespective of their convexity, or overlap or size, as
long as they possess the property of symmetry. VGAPS seeks for
clusters which are point symmetric with respect to their centers.
Thus VGAPS will fail if the clusters do not have this property.
Based on these observations, and the fact that the property of
symmetry is widely evident in real-life situations, application of
VGAPS-clustering to automatically determine the proper number
of clusters and the proper partitioning from different data sets
seems justified and is therefore recommended.

The current work concentrates only on a particular form
of symmetry viz., point-based symmetry. Other forms of sym-
metry may be line-based symmetry, polynomial symmetry etc.
Techniques for detecting clusters, along with their theoretical
analysis, with these forms of symmetry need to be developed
in the future. The application of VGAPS-clustering for medical
image segmentation as well as object detection in images is
another direction of future work. Finally, development of some
multiobjective clustering technique using symmetry, connectivity,
compactness etc. as different objective functions so that it can
work well for partitioning any type of data sets needs to be
investigated.
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